TY - JOUR T1 - Mechanical stretching of proteins—a theoretical survey of the Protein Data Bank JF - Journal of Physics: Condensed Matter Y1 - 2007 A1 - Joanna I. Sulkowska A1 - Cieplak, Marek AB - The mechanical stretching of single proteins has been studied experimentally for about 50 proteins, yielding a variety of force patterns and peak forces. Here we perform a theoretical survey of proteins of known native structure and map out the landscape of possible dynamical behaviours under stretching at constant speed. We consider 7510 proteins comprising not more than 150 amino acids and 239 longer proteins. The model used is constructed based on the native geometry. It is solved by methods of molecular dynamics and validated by comparing the theoretical predictions to experimental results. We characterize the distribution of peak forces and investigate correlations with the system size and with the structure classification as characterized by the CATH scheme. Despite the presence of such correlations, proteins with the same CATH index may belong to different classes of dynamical behaviour. We identify proteins with the biggest forces and show that they belong to few topology classes. We determine which protein segments act as mechanical clamps and show that, in most cases, they correspond to long stretches of parallel β-strands, but other mechanisms are also possible. VL - 19 IS - 283201 ER -