%0 Journal Article %J BMC Structural Biology %D 2007 %T Type II restriction endonuclease R.Eco29kI is a member of the GIY-YIG nuclease superfamily %A Elena M. Ibryashkina %A Marina V. Zakharova %A Vladimir B. Baskunov %A Ekaterina S. Bogdanova %A Maxim O. Nagornykh %A Marat M Den'mukhamedov %A Bogdan S. Melnik %A Andrzej Koliński %A Dominik Gront %A Marcin Feder %A Alexander S. Solonin %A Janusz M. Bujnicki %K Amino Acid Sequence %K Binding Sites %K Computational Biology %K Computational Biology: methods %K Deoxyribonucleases %K DNA %K DNA Cleavage %K DNA: metabolism %K Electrophoretic Mobility Shift Assay %K Models %K Molecular %K Molecular Sequence Data %K Mutation %K Protein %K Protein Conformation %K Sequence Alignment %K Structural Homology %K Type II Site-Specific %K Type II Site-Specific: chemist %K Type II Site-Specific: metabol %X BACKGROUND: The majority of experimentally determined crystal structures of Type II restriction endonucleases (REases) exhibit a common PD-(D/E)XK fold. Crystal structures have been also determined for single representatives of two other folds: PLD (R.BfiI) and half-pipe (R.PabI), and bioinformatics analyses supported by mutagenesis suggested that some REases belong to the HNH fold. Our previous bioinformatic analysis suggested that REase R.Eco29kI shares sequence similarities with one more unrelated nuclease superfamily, GIY-YIG, however so far no experimental data were available to support this prediction. The determination of a crystal structure of the GIY-YIG domain of homing endonuclease I-TevI provided a template for modeling of R.Eco29kI and prompted us to validate the model experimentally. RESULTS: Using protein fold-recognition methods we generated a new alignment between R.Eco29kI and I-TevI, which suggested a reassignment of one of the putative catalytic residues. A theoretical model of R.Eco29kI was constructed to illustrate its predicted three-dimensional fold and organization of the active site, comprising amino acid residues Y49, Y76, R104, H108, E142, and N154. A series of mutants was constructed to generate amino acid substitutions of selected residues (Y49A, R104A, H108F, E142A and N154L) and the mutant proteins were examined for their ability to bind the DNA containing the Eco29kI site 5'-CCGCGG-3' and to catalyze the cleavage reaction. Experimental data reveal that residues Y49, R104, E142, H108, and N154 are important for the nuclease activity of R.Eco29kI, while H108 and N154 are also important for specific DNA binding by this enzyme. CONCLUSION: Substitutions of residues Y49, R104, H108, E142 and N154 predicted by the model to be a part of the active site lead to mutant proteins with strong defects in the REase activity. These results are in very good agreement with the structural model presented in this work and with our prediction that R.Eco29kI belongs to the GIY-YIG superfamily of nucleases. Our study provides the first experimental evidence for a Type IIP REase that does not belong to the PD-(D/E)XK or HNH superfamilies of nucleases, and is instead a member of the unrelated GIY-YIG superfamily. %B BMC Structural Biology %V 7 %P 48 %8 jan %@ 1472680774 %G eng %U http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1952068&tool=pmcentrez&rendertype=abstract %R 10.1186/1472-6807-7-48 %0 Journal Article %J Proteins %D 2005 %T Generalized protein structure prediction based on combination of fold-recognition with de novo folding and evaluation of models %A Andrzej Koliński %A Janusz M. Bujnicki %K Algorithms %K Computational Biology %K Computational Biology: methods %K Computer Simulation %K Computers %K Data Interpretation %K Databases %K Dimerization %K Models %K Molecular %K Monte Carlo Method %K Protein %K Protein Conformation %K Protein Folding %K Protein Structure %K Proteomics %K Proteomics: methods %K Reproducibility of Results %K Secondary %K Sequence Alignment %K Software %K Statistical %K Tertiary %X To predict the tertiary structure of full-length sequences of all targets in CASP6, regardless of their potential category (from easy comparative modeling to fold recognition to apparent new folds) we used a novel combination of two very different approaches developed independently in our laboratories, which ranked quite well in different categories in CASP5. First, the GeneSilico metaserver was used to identify domains, predict secondary structure, and generate fold recognition (FR) alignments, which were converted to full-atom models using the "FRankenstein's Monster" approach for comparative modeling (CM) by recombination of protein fragments. Additional models generated "de novo" by fully automated servers were obtained from the CASP website. All these models were evaluated by VERIFY3D, and residues with scores better than 0.2 were used as a source of spatial restraints. Second, a new implementation of the lattice-based protein modeling tool CABS was used to carry out folding guided by the above-mentioned restraints with the Replica Exchange Monte Carlo sampling technique. Decoys generated in the course of simulation were subject to the average linkage hierarchical clustering. For a representative decoy from each cluster, a full-atom model was rebuilt. Finally, five models were selected for submission based on combination of various criteria, including the size, density, and average energy of the corresponding cluster, and the visual evaluation of the full-atom structures and their relationship to the original templates. The combination of FRankenstein and CABS was one of the best-performing algorithms over all categories in CASP6 (it is important to note that our human intervention was very limited, and all steps in our method can be easily automated). We were able to generate a number of very good models, especially in the Comparative Modeling and New Folds categories. Frequently, the best models were closer to the native structure than any of the templates used. The main problem we encountered was in the ranking of the final models (the only step of significant human intervention), due to the insufficient computational power, which precluded the possibility of full-atom refinement and energy-based evaluation. %B Proteins %V 61 Suppl. 7 %P 84–90 %8 jan %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/16187348 %R 10.1002/prot.20723