

Proteins - structural bioinformatics (4) Comparative modeling, simulations of protein dynamics, docking

http://biocomp.chem.uw.edu.pl

Sequence - structure

Protein Data Bank (PDB) - 140 000 protein structures

UniProtKB/TrEMBL sequence database - 133 507 323 nonredundant entries . Nov. 2018

Integrated Microbial Genomes & Microbiomes(IMG/M)database of 51 775 423 466 genes

(Coding genes *E. coli* - 4000, yeast – 6000, human, about -20000) (First high-resolution structure 1958, by John Kendrew and Max Perutz

Protein Folding Problem

A protein folds into a unique 3D structure under physiological conditions

Lysozyme sequence:

KVFGRCELAA AMKRHGLDNY RGYSLGNWVC AAKFESNFNT QATNRNTDGS TDYGILQINS RWWCNDGRTP GSRNLCNIPC SALLSSDITA SVNCAKKIVS DGNGMNAWVA WRNRCKGTDV QAWIRGCRL

Anfinsen, 1960: denatured proteins can refold to active enzymes

Structure Prediction

- Experimentally solved structures (130 000) about 0.11% of the number of protein sequences deposited in UniprotKB and TrEMBL
- Theoretical predictions (we know about 1500 folds from 5000 20,000 of possible)
 - *de novo* prediction (Protein folding problem)
 - comparative modeling (Most of newly identified protein structures are similar to already known)

Structure Prediction

Protein folding problem - the Holy Grail of the structural biology

Anton David E. Shaw Research

All-atom MD with explicit water - milliseconds of folding process of a small protein.

For realistic modeling of larger biomolecular systems, including flexible protein-protein docking, we need much faster simulations.

Structure Prediction

Local Alignment

Target Sequence

5' ACTACTAGATTACTTACGGATCAGGTACTTTAGAGGCTTGCAACCA 3'

Global Alignment

Homology modeling workflow

Are there any well characterized proteins similar to my protein?

What is the position-by-position target/template equivalence?

What is the detailed 3D structure of my protein?

Measure the model quality. Is my model any good?

Comparative Modeling--Basic Protocol

1. Identification of homologue for target sequence

42

- Alignment of target sequence to template sequence and structure
- Side-chain modeling, copy the backbone of the template and model the new side chains onto this backbone
- Loop modeling, for insertions and deletions in the alignment
- 5. Refinement of model -- moving template closer to target
- 6. Assessment of (predicted) model quality
- Using the model to explain experiments and guide new ones

David F B, Charlotte M D, Hampapathalu A N, Nuria C, An Iterative Structure-Assisted Approach to Sequence Alignment and Comparative Modeling, PROTEINS: Structure, Function, and Genetics Supplementations, 3, pp. 55-60.

Structure – Comparative modeling – alignment gaps

Comparative (homology) modeling

Comparative (homology) modeling

Both cases (A,B) represent extremely distant homologies with sequence identity on the level of 10–12%

В

Comparative (homology) modeling

MODELLER

https://salilab.org/modeller/

SWISS-MODEL

https://swissmodel.expasy.org

Oue to a planne	ed power outage at University of Sasel, this service will	be severely affecte	d on Saturday 1s	d December. We hope t	lo keep
	downtime to a	minimum;			
art a New Mod	elling Project e				
Target Sequence Parmat roat te NUTN, Coanst Instructing, or a calif Instructiong, or a calif Instruction 4C()	Parts your target sequence(s) or thidyetd! At here		Supported Inputs O		
				Denierceit)	-
				Target Temptate Alignment	-
				Litar Terapato	
	+ Upted Taget Separate Fac			DeepView Project	
ect Title	United Project				
inait.	Optimu				

MODELLER (Sali)

references

- A. Šali and T. L. Blundell. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779-815, 1993.
- A. Fiser, R. K. G. Do and A. Š ali. Modeling of loops in protein structures. Protein Science 9, 1753-1773, 2000.
- Fiser A, Sali A. (2003). Modeller: generation and refinement of homology-based protein structure models. *Methods Enz.* 374:461-91
- loop-modeling via dynamics
- evaluation:
 - >30% identity?
 - stereochemistry: Procheck
 - contacts/exposure: ProSA (Sippl, 1993) – distance-based pair potentials

Note problems with sequence alignments

Structure Prediction

Rosetta in CASP4

Fig. 3. Comparison of predicted and native structures. Corresponding sequence regions are colored

Concept of Threading

- o Thread (*align* or *place*) a query protein sequence onto a template structure in "optimal" way
- Good alignment gives approximate backbone structure

Query sequence

MTYKLILNGKTKGETTTEAVDAATAEKVFQYANDNGVDGEWTYTE

Template set

Protein threading

Structure is better conserved than sequence

Structure can adopt a wide range of mutations.

Physical forces favor certain structures.

Number of folds is limited. Currently ~700 Total: 1,000 ~10,000

TIM barrel

Protein Threading – energy function

MTYKLILNGKTKGETTTEAVDAATAEKVFQYANDNGVDGEWTYTE

how preferable to put two particular residues nearby: E_p

alignment gap penalty: E_g

how well a residue fits a structural environment: E_s

total energy: E_p + E_s + E_g

find a sequence-structure alignment to minimize the energy function

Comparative (homology) modeling Threading instead of sequence alignment

I-TASSER (Y. Zhang)

