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ABSTRACT The relationship between the un-
folding pseudo free energies of reduced and de-
tailed atomic models of the GCN4 leucine zipper is
examined. Starting from the native crystal struc-
ture, a large number of conformations ranging from
folded to unfolded were generated by all-atom mo-
lecular dynamics unfolding simulations in an aque-
ous environment at elevated temperatures. For the
detailed atomic model, the pseudo free energies are
obtained by combining the CHARMM all-atom poten-
tial with a solvation component from the general-
ized Born, surface accessibility, GB/SA, model. Re-
duced model energies were evaluated using a
knowledge-based potential. Both energies are highly
correlated. In addition, both show a good correla-
tion with the root mean square deviation, RMSD, of
the backbone from native. These results suggest
that knowledge-based potentials are capable of de-
scribing at least some of the properties of the folded
as well as the unfolded states of proteins, even
though they are derived from a database of native
protein structures. Since only conformations gener-
ated from an unfolding simulation are used, we
cannot assess whether these potentials can discrimi-
nate the native conformation from the manifold of
alternative, low-energy misfolded states. Neverthe-
less, these results also have significant implica-
tions for the development of a methodology for
multiscale modeling of proteins that combines
reduced and detailed atomic models. Proteins
1999;35:447–452. r 1999 Wiley-Liss, Inc.
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INTRODUCTION

The ab initio prediction of the three-dimensional struc-
ture of a protein, starting from its amino acid sequence,
has long been a major challenge1–4 for computational
biophysics. The majority of such ab initio approaches are
based on the hypothesis that the native structure of a
protein corresponds to the global free energy minimum of
the protein–solvent system.5,6 Hence, these computational
methods construct a potential energy function4,7–10 that
describes the interactions between various constituents of

the protein–solvent system. However, depending on the
application, different methods employ different levels of
detail to describe the energy or pseudo free energy func-
tion. The most straightforward approaches use a detailed
atomic representation for the potential energy function.7,8

Here, both the protein and the solvent are described in
atomic detail, and the laws of physical chemistry govern
interactions between the constituent atoms. The time
evolution of the system is simulated using molecular
dynamics (MD) techniques.11,12 In principle, it is possible
to simulate the folding process of a protein using detailed
atomic potentials and molecular dynamics techniques
provided that the simulation can cover a sufficiently long
time scale. However, with the computing power available
today, with very few exceptions, only simulations of nano-
second time scales are possible for real protein–water
systems.13 On the other hand, proteins fold on the time
scale of milliseconds to seconds14; therefore, it has not been
possible to fold even relatively small proteins using de-
tailed atomic potentials. Nevertheless, MD with detailed
atomic potentials has been successful in simulating fast
events involving local or small distance structural rear-
rangements. For example, ab initio folding of short pep-
tides has been possible in a few cases,15–18 with the most
recent example being the folding of the villin headpiece
from the denatured state.19 By starting from two parallel a
helices aligned with the correct registration,20 it has also
been possible to obtain the detailed structure of coiled
coils. Furthermore, using high-temperature MD and de-
tailed atomic potentials, unfolding simulations have pro-
vided interesting insights into possible unfolding path-
ways.21–24 Using detailed atomic potentials and umbrella
sampling, information about the folding landscape has
also been obtained by carrying out free-energy calcula-
tions25–27 along an assumed reaction coordinate. However,
due to time scale limitations, detailed atomic models
cannot be routinely used for ab initio folding or for the
simulation of folding thermodynamics. Thus, complemen-
tary approaches are required.
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To access longer time scales, reduced protein mod-
els4,9,10,28 have been developed. In these reduced models,9,28

most atomic details of the polypeptide chain are com-
pletely ignored. Rather, each residue is represented by two
interaction sites and corresponds, for example, to the Ca

and/or the center of mass of the amino acid side chain.
Similarly, explicit solvent is completely ignored. The inter-
actions between the interaction sites in reduced models
are described by a knowledge-based potential4,9,10 derived
from a statistical analysis of a database of known native
structures of proteins and that implicitly describes the
effects of solvent. In these reduced models, the interaction
sites are either confined to a set of lattice points9,28 or may
lie in continuous space.29–31 A lattice representation has
the advantage that many quantities can be precomputed,
and hence the computational speed of a simulation can be
considerably increased. Using a lattice model and knowl-
edge-based potentials, the ab initio folding of several
proteins has been achieved.28,32,33 Furthermore, insights
into the folding thermodynamics of a number of real
systems have been obtained.34–36 A recent statistical me-
chanical analysis of the thermodynamics of the conforma-
tional transition of the GCN4 leucine zipper, GCN4-lz,

indicates that these knowledge-based potentials can de-
scribe a number of conformational properties of both the
native and denatured states and can explain the physical
basis of the experimentally observed two-state folding
transition.36

Given any reduced model, there is always an inherent
limitation to its accuracy. In a small number of cases, this
accuracy has been improved when structures obtained
from lattice simulations are further refined32 using a
detailed atomic model. Hence, it might be possible to
develop hybrid models that combine the advantages of
reduced and detailed atomic models. For example, one can
use a reduced model in the early stages of folding where
one has to distinguish between low-energy compact states
and the very large number of unfolded states. Then, a
detailed atomic model could be used for distinguishing the
native state from other compact alternatives. However, a
minimal requirement for success is that the two potentials
similarly rank a set of conformers according to their
energies. Therefore, in the present work, we present a
comparison of an ensemble of structures for GCN4-lz. This
molecule has been chosen because it has been extensively

Fig. 1. Plot of the all-atom energy versus the Ca RMSD from native for a set of GCN4-lz structures.
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studied using both reduced32,36,37 and detailed atomic
models.20,38

This comparison between knowledge-based potentials
and detailed atomic potentials is also important from
another point of view. Recently, questions have been raised
in the literature39,40 about whether or not knowledge-
based potentials have any physical basis. Hence, one
might also ask whether or not these knowledge-based
potentials, derived from native structures of proteins, are
applicable to nonnative states and whether or not ques-
tions related to the thermodynamics of folding can be
addressed. Since the detailed atomic potentials in
CHARMM are based on fundamental laws of physics and
chemistry, they should be better able to describe both
native and denatured states; this is consistent with a wide
body of literature.13,41,42 A good correlation between the two
potentials would indicate that knowledge-based potentials
could also describe the properties of native and nonnative
states.

METHOD

To investigate the correlation between the two classes of
potentials, we need an ensemble of native and nonnative

structures of GCN4-lz. These could be generated from a
reduced or detailed atomic model simulation. The disadvan-
tage of the former is that one must then reconstruct a
detailed atomic model; this could introduce errors that
obscure the correlation between the two classes of ener-
getic terms. On the other hand, the energetic terms in the
reduced model could equally well be applied to an atomic
model, and this is the strategy we shall pursue here.
Hence, the ensemble of structures was generated by
starting from the native X-ray structure43 and by carrying
out MD simulations at elevated temperatures. Both the
protein and water were treated at atomic detail, and the
CHARMM force field7 was used to describe the interac-
tions. From the MD trajectory, a set of structures for
GCN4-lz was obtained that varied from the completely
folded state to the completely unfolded state. The degree of
unfolding was measured by calculating the root-mean-
square deviation (RMSD) of the Ca atoms from the native
GCN4-lz. The knowledge-based energies for this set of
structures were calculated from the coordinates of the Ca’s
and the centers of mass of the side chains. The interaction
scheme and force field parameters for the calculation of the
knowledge-based energy were the same as in our recent

Fig. 2. Plot of the knowledge-based energy versus the Ca RMSD from native for a set of GCN4-lz structures.

449CORRELATION BETWEEN KNOWLEDGE-BASED AND DETAILED ATOMIC POTENTIALS



study of the GCN4-lz folding thermodynamics and cor-
rectly account for the amount of secondary structure in the
denatured state.36 In the detailed atomic model, the en-
ergy of a given conformational state of GCN4-lz is given by
the sum of the intrinsic potential energy and the solvation
energy arising from protein–water and water–water inter-
actions. Since the protein–water—and particularly water–
water—interactions exhibit large fluctuations during MD
simulations at constant temperature, these components of
the all-atom energy were estimated by adding a general-
ized Born/accessible surface area, GB/SA, term44 to the
CHARMM all-atom protein energy.7 This GB model has
been specifically parameterized to reproduce electrostatic
forces and energies for proteins and nucleic acids with the
CHARMM force field.45 After obtaining the knowledge-
based energies and all-atom energies, their respective
correlations with the backbone Ca RMSD from native as
well as the correlation between the reduced and atomic
energies were calculated.

RESULTS

Figure 1 shows the correlation between the CHARMM
plus GB/SA energy with the RMSD from native GCN4-lz.

As can be seen, there is a quite reasonable correlation with
a correlation coefficient of 0.77. This indicates that the
solvation energy term, computed using GB/SA, is able to
mimic the effect of explicit waters and that the detailed
atomic potential is able to discriminate these nativelike
structures from other nonnative states that are generated
in the GCN4 unfolding simulation. Since other alternative
low-energy states are not evaluated here, we cannot tell
whether or not either the detailed atomic or reduced model
potentials can successfully discriminate against them.
Similarly, Figure 2 shows a plot of the knowledge-based
energy versus RMSD for the same set of GCN4-lz struc-
tures, with the correlation coefficient being 0.82. This
indicates that the knowledge-based potential can also
distinguish the native state from other nonnative states.
In both cases, it should be observed that below about 3 Å
rms, neither potential has a particularly strong correlation
with the rms of the particular conformation from native. In
particular, the native conformation is not the lowest
energy state. This most likely reflects the resolution of
both classes of potentials as well as their inaccuracies.

The above results do not directly answer the question of
whether or not detailed atomic potentials and knowledge-

Fig. 3. Plot of knowledge-based energy versus all-atom energy for a set of GCN4-lz structures.
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based potentials are correlated for the set of generated
conformations. In Figure 3, we address this point by
plotting the detailed atomic potential (CHARMM 1 GB/
SA) versus the knowledge-based potential. These two
quantities are highly correlated, with a correlation coeffi-
cient of 0.80. Moreover, the correlation extends from folded
to unfolded conformations. This provides direct evidence
that knowledge-based potentials can be used to describe
many features of nonnative states of proteins, even though
they were derived from a database of native structures.
The good correlation suggests that it should indeed be
possible to use hybrid models for protein structure predic-
tion.

In a recent work, O’Donoghue and Nilges46 concluded
that their knowledge-based potential describing residue
burial and pair interactions could not discriminate be-
tween native and nonnative states of coiled coils. Rather it
must be combined with an all-atom protein backbone
potential to achieve such discrimination. Although our
knowledge-based potential contains burial and pair inter-
action contributions, it also includes a backbone term that
describes local interactions.9 Thus, their results and ours
are entirely consistent.

CONCLUSION

A comparison of a knowledge-based potential and de-
tailed atomic potential indicates that there is a significant
correlation between them that extends over the whole
range of conformations, from folded to unfolded states.
Since it is generally believed that detailed atomic poten-
tials can describe the properties of folded and unfolded
states of proteins, the excellent correlation suggests that
knowledge-based potentials can also describe the proper-
ties of the full range of conformational states. Hence,
statistical thermodynamic calculations can be carried out
using knowledge-based potentials to gain insight into
folding thermodynamics. The results presented here also
demonstrate that it should be feasible to combine knowl-
edge-based potentials with detailed atomic potentials in
order to develop hybrid models for protein structure
prediction. However, these observations are based on our
analysis of the GCN4-lz unfolding trajectory. A similar
comparison between reduced and detailed atomic models
must be carried out for other proteins to demonstrate the
generality of these conclusions. These studies are now
under way.

Finally, we comment on a recent study from Hermans
and coworkers47 that uses potentials similar in sprit to
those employed here to distinguish folded from misfolded
protein structures using the Holm and Sander EMBL
database of misfolded proteins.48 In the study of Hermans
and coworkers, 12 of the 25 structures from this database
were examined using a protocol that relied on molecular
dynamics using explicit solvent to estimate configura-
tional entropy and an implicit solvent model to provide an
energetic assessment of free energy differences between
the misfolded and folded structures. In their study, they
correctly identified all of the structures they examined. In
recent work from our laboratory, using the energy function

described here (CHARMM 1 GB/SA), we also explored the
use of implicit solvent models to identify the correct fold
from misfolded proteins for the entire Holm and Sander
database (B.N. Dominy and C.L. Brooks, unpublished
data). Our findings parallel those of Hermans in that we
correctly identify 24 of the 25 structures, but fail for the
specific case of a protein containing an iron sulfur cluster
(not included in protein structures for fold assessment).
These findings are similar to those from Hermans and
coworkers and further validate the energy functions used
here. Furthermore, given that our studies used only
minimization to ‘‘prepare’’ the protein structures before
fold assessment suggests, as noted from the Hermans
findings, that configurational entropy differences between
this set of misfolded proteins is not a determining factor in
identifying the correctly folded protein. However, we note
that the presence/absence of cofactors and or metal ligands
in calculations of energetics can complicate the identifica-
tion of correct folds. Thus, studies such as those of Her-
mans and coworkers, as well as our recent unpublished
work, provide further evidence that implicit solvent mod-
els can be of great utility in fold identification. Conse-
quently, a more complete understanding of the relation-
ship between these potentials and the reduced
representation, generally lattice-based, potentials as exam-
ined in this article provides a useful path for integration of
modeling tools for structure prediction.
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