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ABSTRACT A method is presented for the deri-
vation of knowledge-based pair potentials that cor-
rects for the various compositions of different pro-
teins. The resulting statistical pair potential is more
specific than that derived from previous approaches
as assessed by gapless threading results. Addition-
ally, a methodology is presented that interpolates
between statistical potentials when no homologous
examples to the protein of interest are in the struc-
tural database used to derive the potential, to a
Go-like potential (in which native interactions are
favorable and all nonnative interactions are not)
when homologous proteins are present. For cases in
which no protein exceeds 30% sequence identity,
pairs of weakly homologous interacting fragments
are employed to enhance the specificity of the poten-
tial. In gapless threading, the mean z score in-
creases from 210.4 for the best statistical pair poten-
tial to 212.8 when the local sequence similarity,
fragment-based pair potentials are used. Examina-
tion of the ab initio structure prediction of four
representative globular proteins consistently re-
veals a qualitative improvement in the yield of
structures in the 4 to 6 Å rmsd from native range
when the fragment-based pair potential is used
relative to that when the quasichemical pair poten-
tial is employed. This suggests that such protein-
specific potentials provide a significant advantage
relative to generic quasichemical potentials. Pro-
teins 2000;38:3–16. r 2000 Wiley-Liss, Inc.
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INTRODUCTION

One of the key problems in the prediction of a protein’s
tertiary structure from its amino acid sequence is the
development of potentials that can recognize the native
conformation among the myriad of alternatives.1–3 Such
potentials might be at atomic level of detail4–6 or might
describe interactions in a reduced protein model.7,8 What-
ever the representation, for protein structure prediction,

one would like to have a Go-like pair potential in which all
native interactions are attractive and all nonnative inter-
actions are repulsive.9,10 If one could obtain such a poten-
tial without knowledge of the native structure, this would
greatly facilitate the prediction of the native conformation.
Obviously, Go-like potentials are protein specific. For
example, in a Go-like pair potential, some Leu pairs would
be attractive (because they involve native contacts),
whereas other Leu pairs would be repulsive because they
would involve nonnative contacts. In contrast, in standard
knowledge-based pair potentials, all pairs of Leu are
attractive.11–14 A key question is how to derive Go-like
potentials without a priori knowledge of the native struc-
ture. One way to proceed is suggested by sequence-based
approaches that detect evolutionary relationships among
proteins.15–17 These methods accurately predict protein
structure provided that the level of sequence identity is
sufficiently high, i.e., roughly 35%. If the sequence identity
drops into the so-called twilight zone (below 30%), then the
identification of homologous proteins becomes much less
certain and structure prediction becomes less reliable.18

This observation suggests it might be profitable to develop
a methodology for potential derivation that can span the
range from high to nonexistent sequence identity to pro-
teins in a representative structural library. In what fol-
lows, we focus on a method that accomplishes this goal and
focus specifically on the derivation of pair potentials,
although the formalism could be applied to any type of
potential.

Potentials can be at the level of atomic detail or can
describe interactions at a reduced level of description of
the protein. The advantage of atomic resolution models is
that their relevant potentials can, in principle, be directly
derived from the laws of physics.4–6 The disadvantage is
that such models are computationally very expensive.
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Nevertheless, there have been some encouraging develop-
ments of late in the ab initio folding of a small protein at
full atomic detail.19–21 When one reduces the level of
description to provide for computational tractability, one
needs potentials of mean force.22 To date, no one has
succeeded in developing a practical prescription for the
calculation of mean force potentials from detailed atomic
models; thus, alternative approaches have been developed.
These come in two basic flavors. One formulation derives
so-called knowledge-based potentials based on observed
properties in proteins of known structure.11,12,14,23–26 Most
recently, transformations of such knowledge-based poten-
tials have been proposed with the aim of improving the
quality of such potentials.27 Alternatively, potentials are
obtained by searching for a parameter set that discrimi-
nates the native state from a collection of decoys.28–31

In what follows, because we shall extend knowledge-
based approaches to the derivation of pair potentials, a
brief overview of the fundamental ideas is appropriate.
Consider for definiteness side chain contact-based pair
potentials, i.e., we consider square well functional forms.
In a representative structural database, let rgd be the
observed fraction of the total number of contacts occurring
between amino acids of types g and d and let pgd

o be the
expected fraction of g-d contacts if there were no preferen-
tial interactions between amino acids g and d. The poten-
tial of mean force between residues g and d is then given by

egd 5 2kBT ln(pgd/pgd
o ) (1)

Here, kB is Boltzmann’s constant, and T is the absolute
temperature. Embedded in the calculation of pgd

o is the
choice of reference state, and to a great extent the differ-
ences in the various potentials derived to date arise
because of differences in this term.11 When the quasichemi-
cal approximation to ro

gd is made,

pgd
o 5 xgxd (2)

where xg is the mole fraction of residues of type g. Although
initially it was believed that equation 2 neglected the
effects of chain connectivity, recently it has been shown
that this is not the case; the only approximation inherent
in Equation (2) (or more precisely, a specific realization of
this equation) is the neglect of side chain repacking
because of different sizes of amino acids.14 In fact, more
recent work further suggests that the magnitude of this
repacking term is also quite small (Skolnick, unpublished
data).

In the types of potentials described above, one simply
considers a complete structural library with no selection
based on knowledge of local sequence similarity. Thus, in
the formulation of Equation (1), the goal has been to derive
potentials that are generic and can be applied to any
protein. So, if, for example, in a very large structural
library, one happened to have a protein with 50% identity
to the target sequence, the potential would be insensitive
to such a relationship, even though it is very likely that the
target sequence adopts this structure. Although this may

be advantageous if one wants to use knowledge-based
potentials to investigate general questions of protein fold-
ing and folding mechanisms, this might not be the best
strategy if structure prediction is the goal.

Of course, the idea of exploiting sequence similarity for
the prediction of protein structure is not new. There are
very powerful sequence-based approaches, such as
BLAST17,32 and FASTA,33 which attempt to detect evolu-
tionary relationships between proteins and thereby pro-
vide insights into protein structure and function. This type
of approach works very well if one of the proteins has an
experimentally determined structure, but it cannot be
directly used for structure prediction when none of the
homologous proteins has a solved structure. This is not to
say that sequence information cannot be exploited in
structure prediction. For example, a most promising ap-
proach to the prediction of local secondary structure is
based on the extraction of secondary structural propensi-
ties from fragments chosen on the basis of their local
sequence similarity to the probe sequence of interest.34–37

This idea is motivated in part by the recent work of
Salamov and Solovyev,34 who demonstrated that by using
local sequence alignments and multiple sequence informa-
tion, a secondary structure prediction accuracy of 73.5% is
obtained. Similarly, Baker et al.35,38 report encouraging
results for the assembly of tertiary structures using frag-
ments having locally similar sequences to the probe se-
quence. Although these approaches use a criterion of local
sequence similarity to select representative conformations
that are then used in folding or for secondary structure
prediction, alternatively, such a conformational subset
could define a structural library from which knowledge-
based potentials are extracted. This approach was fol-
lowed in a recent article by Kolinski and coworkers.39

When such local preferences are modulated by a protein
model that includes protein-like features, then the accu-
racy of secondary structure prediction increases from 69%
to 72% in a small test set.

Recently, Finkelstein40 and coworkers have suggested a
means of using homologous sequence information to en-
hance the specificity of pair potentials. The idea behind
this approach is that the set of calculated potentials differs
from the true potentials by random errors that can be
reduced by averaging over homologous protein sequences.
They then demonstrated that this conjecture holds in a
model system constructed to satisfy this assumption.
Recently, Reva et al.41 showed that this result also holds
when it is applied to statistical pair potentials extracted
from a database describing interactions between Ca car-
bons. The basic idea is as follows: in a set of S-aligned
sequences, in the sth such sequence, let the pair interac-
tion between the ith and jth residues be eij. Note that i and j
refer to a position in the sequence and not residue types.
The effective pair potential describing the average interac-
tion between the ijth pair is given by

eij 5 o
s51

S

eij(s)9S (3)
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One might imagine that the averaging process works by
decreasing the contribution of eij in those regions of the
sequence that are not conserved and enhancing its contri-
bution in those regions that are. Using a recently devel-
oped Ca-based pair potential and a test set of 20 proteins,
each having from 20 to 70 homologs taken from the HSSP
sequence-structure base,42 they showed that averaging of
protein energies over homologs reduces the average z score
(the energy in standard deviation units from the mean
value) from , 26.1 to , 28.1. Such an increase in
selectivity is important for protein fold recognition.

The organization of this article is as follows. In the first
part of the Methods section, we explore various technical
improvements to our quasichemical-based pair potential
because this will provide the background potential against
which all protein sequence–specific potentials will have to
compete. Next, we describe a novel means of deriving
protein-specific pair potentials (i.e., different potentials for
each protein) for proteins whose native conformation is
unknown. Such a treatment is a step towards deriving
Go-like pair potentials. Then, in Results, we present a
number of potentials and examine their performance in a
set of gapless threading tests. Finally, in Discussion and
Conclusions, we examine the significance of this work, its
limitations, and the prospects for future developments.

METHODS
Improvements in Quasichemical-Based Pair
Potentials

An essential question in the derivation of knowledge-
based potentials is the choice of the reference state. In fact,
because Equation (1) consists of the ratio of two quantities,
the observed and expected random contact probabilities, in
practice, there are a number of ways that these quantities
can be obtained. Consider a library of L structures. Let
ngd (<) be the observed number of contacts between residue
types g and d in the <th structure, with Nc(<) being the
total number of contacts in that structure. Then, the
simplest way of calculating the pair potential between
these two residues is to simply pool all the observed and
expected number of contacts. This gives the following pair
potential, termed the composition independent scale,

egd
pooled 5 2kBT ln1o

<51

L

ngd(<)9ngd
o 2 (4a)

where the mean expected number of contacts ngd
o is calcu-

lated from

ngd
o 5 Nc xg xd (4b)

The total number of contacts is given by

Nc 5 o
g51

20

o
d51

20

o
<51

L

ngd(<) (4c)

and the average mole fraction of residue type g is

xm 5 o
<51

L

ag(<)9o
g51

20

o
<51

L

ag(<) (4d)

with ag(<) the number of residues of type g in the <th
protein.

The second means of calculating the pair potential
between residues gand d is to calculate the expected
number of contacts not by counting the entire number in
the structural database but rather by counting the ex-
pected number of contacts per protein, no

gd. We term this
the partial composition corrected scale. This is the ap-
proach we followed previously.14 Here, rather than using
Equations (4b) through (4d), we consider

,
egd

5 2kBT ln1o
<51

L

ngd(<)9o
<51

L

Ngd
o (<)2 (5a)

where the expected number of contacts of residues g and gd

in the <th structure, no
gd(<), is

ngd
o (<) 5 Nc(<) xg(<) xd(<) (5b)

with Nc(<) the total number of contacts and xg(<) is the
mole fraction of residues of type g in the <th structure.

Nc(<) 5 o
g51

20

o
d51

20

ngd(<) (5c)

and

xg(<) 5 ag(<)9o
d51

20

ad(<). (5d)

The problem with Equations (4a) and (5a) is that by
pooling residues from different proteins with different
compositions, the expected and/or observed number of
contacts can be incorrectly accounted for. For example,
consider contacts involving relatively rare residues such
as Trp. In those proteins, entirely devoid of such contacts,
Equation (4a) would still assert that the expected number
would be nonzero. Equation (5a) is somewhat better, in
that the expected contact number would be zero for the kth
such protein. Nevertheless, by pooling the observed num-
ber of contacts over all proteins, this observed number is
spread out among those proteins that have contacts and
those that do not.

This incorrect accounting for composition can be readily
fixed, as follows:

7egd8 5 o
<51

L

wgd(<) egd(<)9o
<51

L

wgd(<) (6a)
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with

wgd(<) 5 min (ag(<) ad(<), 1) (6b)

egd(<) 5 5 2kBT ln(ngd(<)/ngd
o (<) (6c)

with ngd
o (<) given by Equation (5b). Equation (6a) is simply

the pair energy between residues of types g and d averaged
over all the structures in the database. The averaging is
over all structures where a g–d contact is found. We term
this the composition corrected, quasichemical scale.

Derivation of protein specific pair potentials

Consider the sequence of interest, for which we propose
building a protein-specific pair potential. Let each residue
be located at the center of a window of 2w11 residues.
Empirically, we have found that w56 gives the best
results. In a database of L protein structures, the local
sequence similarity score for the ith such residue with
respect to the kth fragment in the <th structure is given by

sik(<) 5 o
W

B (ai1iv, Ak1iv(<)) (7a)
iv 5 2w;

ai 5 Ak((<))

where B is the Blosum62 mutation matrix,43 an is the
amino acid identity of the nth residue in the sequence of
interest, and Ak(<) is the identity of the kth amino acid in
the <th structure. Note that the identity of amino acids at
the center of both fragments must be the same. We then
calculate the average sequence similarity score ,si. and
standard deviation si of the similarity between the frag-
ment centered about the ith residue and all other frag-
ments in the structural database. Namely,

7si8 5 o
<

o
k

sik (<)9Mi(L) (7b)

si 5 Îo
<

o
k

(sik (<) 2 7si8)29Mi(L) (7c)

with Mi(L) the number of fragments whose sequence
similarity is compared with the fragment centered about
the ith residue in the entire database.44 It is trivially
obtained by replacing sik in the numerator of Equation (7b)
by 1 and evaluating the resulting expression.

Next, for residues i and j, we consider all contacting
fragments, such that sik(<) . fsi, sjm(<) . fsm and ai 5 Ak(<);
aj 5 Am(<). Empirically, f 5 3.0 gives the best results. Then,
we count the weight of all contacts within 65 residues of
the contacting central pair as

qi1D1, j1D2
(k,l,<)

5 Ck1D1,l1D2
(<)u(B(ai1D1

, Ak1D1
))u(C(aj1D2

, Am1D2
))vij,kl (8a)

where Crs51(0) if residues r and s are (not) in contact,

0D10#5 and 0D2 #5

u(x) 5 5
1 if x . 0
0 otherwise (8b)

The idea of choosing all residues whose amino acid
substitution matrix element is favorable is that such
contacts are more likely to be retained in the native
conformation of the sequence of interest. Finally, we wish
to give those contacts involving fragments that are more
homologous to the sequence of interest greater weight
than we give those that lie just at the threshold of
sequence identity. Empirically, we have found a functional
form for vij, kl of the following type to work quite well

vij,km(<) 5 0.2 1 (sik(<) 2 fsi)(sjm(<) 2 fsm)9
(sii

o 2 fsi)(sjj
o 2 fsm)

(8c)

where sii
o is the corresponding sequence similarity score

for matching the ith fragment with itself. That is,

sii
o 5 o

kk5i2w

i1w

B(akk, akk) (8d)

The idea behind Equation (8) is that we consider not
only the central contacting residue of the fragment of
interest but also the contacts of the neighbors. For sets of
overlapping homologous fragments, this will generate a
coherent side chain contact potential that stretches over
interacting regions of the protein. In practice, it is found to
substantially improve the specificity of the pair potential.

Using Equation (8a), the total weight of observed con-
tacts for the i–jth pair in the sequence of interest is

Qij 5 o
<
o

k
o

l
qij (k,l,<). (9a)

In general, in a library of nonhomologous structures
(chosen so that the global sequence identity is less than
30%), Qij is nonzero for only a small fraction of the possible
number of contacting pairs. For those pairs, we calculate
the pair potential between residues as

Eij 5 2kBT ln(Qij 9 Qij
o) Qij . 0. (9b)

Here, the expected number of contacts, Qij
o, in a protein

containing N residues is given by

Qij
o 5 o

i5j

N

o
j51

N

Qij 9 N2 (9c)

For those regions of the molecule lacking such contacts
(because there are no contacting sequentially homologous
fragments in the structural database), we simply employ
the best statistical pair potential that we have derived. In
practice, this is given by Equation (6a), which, as shown
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below, is found to be the most specific as assessed by
gapless threading. That is,

Eij 5 7ea1aj
8 when Qij 5 0. (9d)

The net result of such an analysis will be a protein-
specific, pseudopair potential, which does not require
knowledge of the global protein structure; rather, it at-
tempts to build the protein-specific pair potential on the
basis of local sequence similarity of contacting fragments.
The advantage of this formulation is that if there were a
highly homologous protein in the structural library, essen-
tially a target potential for the corresponding structure

would result. This stands in contrast to more standard
techniques for the derivation of statistical pair potentials,
in which such valuable information would be washed out
and essentially ignored. Indeed, in threading without
gaps, z scores of 240 to 250 result for the native sequence
in its structure if the native structure is (incorrectly)
included in the structure library used to construct the
potential. In the validation phase, to avoid this effect, one
has to be very careful to insure that no structures of
moderate to weakly homologous sequences are included in
the structural library (this is the origin of the 30%
sequence identity cutoff described below in the selection of
structures). However, suppose that in a genuine structural

TABLE IA. Partially Composition-Corrected Pair Scale

GLY ALA SER CYS VAL THR ILE PRO MET ASP ASN LEU LYS GLU GLN ARG HIS PHE TYR TRP

GLY 1.7 1.4 .9 .9 .8 .6 .5 1.1 .6 .8 .6 .7 .7 1.1 .8 .3 .7 .4 .3 .2
ALA 1.4 1.0 .9 .6 2.1 .6 2.3 .8 2.2 1.1 .8 2.1 1.0 1.1 .6 .4 .5 2.2 2.2 2.5
SER .9 .9 .5 .4 .4 .2 .4 .6 .3 .3 .4 .4 .7 .4 .2 .3 .1 .1 .1 2.2
CYS .9 .6 .4 21.7 2.5 .1 2.5 .4 2.5 .5 .5 2.5 .9 .8 .2 .2 2.2 2.8 2.3 2.7
VAL .8 2.1 .4 2.5 2.8 2.1 21.0 .2 2.8 .8 .5 2.9 .5 .5 .3 .1 2.1 2.9 2.7 2.9
THR .6 .6 .2 .1 2.1 .2 2.2 .5 2.1 .1 .2 .0 .5 .2 .1 .0 .0 2.2 2.2 2.3
ILE .5 2.3 .4 2.5 21.0 2.2 21.1 .1 2.8 .6 .4 21.2 .4 .3 .0 2.2 .0 21.1 2.8 21.1
PRO 1.1 .8 .6 .4 .2 .5 .1 .9 .0 .9 .6 .1 .8 .5 .4 .1 .3 2.2 2.5 2.7
MET .6 2.2 .3 2.5 2.8 2.1 2.8 .0 21.0 .4 .1 21.0 .3 .4 2.1 .0 2.3 21.1 2.8 21.2
ASP .8 1.1 .3 .5 .8 .1 .6 .9 .4 .6 .0 .6 2.2 .7 .2 2.6 2.2 .4 2.1 .0
ASN .6 .8 .4 .5 .5 .2 .4 .6 .1 .0 .1 .3 .3 .3 .0 .0 .0 .0 2.2 2.2
LEU .7 2.1 .4 2.5 2.9 .0 21.2 .1 21.0 .6 .3 21.1 .3 .4 .0 2.2 .0 21.1 2.9 21.1
LYS .7 1.0 .7 .9 .5 .5 .4 .8 .3 2.2 .3 .3 1.6 2.4 .1 .6 .6 .3 2.2 2.1
GLU 1.1 1.1 .4 .8 .5 .2 .3 .5 .4 .7 .3 .4 2.4 1.0 .2 2.5 2.1 .2 2.2 2.2
GLN .8 .6 .2 .2 .3 .1 .0 .4 2.1 .2 .0 .0 .1 .2 .0 .0 2.1 2.1 2.3 2.5
ARG .3 .4 .3 .2 .1 .0 2.2 .1 .0 2.6 .0 2.2 .6 2.5 .0 2.1 2.1 2.4 2.7 2.6
HIS .7 .5 .1 2.2 2.1 .0 .0 .3 2.3 2.2 .0 .0 .6 2.1 2.1 2.1 2.6 2.3 2.7 2.7
PHE .4 2.2 .1 2.8 2.9 2.2 21.1 2.2 21.1 .4 .0 21.1 .3 .2 2.1 2.4 2.3 21.2 2.9 21.3
TYR .3 2.2 .1 2.3 2.7 2.2 2.8 2.5 2.8 2.1 2.2 2.9 2.2 2.2 2.3 2.7 2.7 2.9 2.7 21.1
TRP .2 2.5 2.2 2.7 2.9 2.3 21.1 2.7 21.2 .0 2.2 21.1 2.1 2.2 2.5 2.6 2.7 21.3 21.1 21.1

TABLE IB. Composition-Corrected Pair Scale

GLY ALA SER CYS VAL THR ILE PRO MET ASP ASN LEU LYS GLU GLN ARG HIS PHE TYR TRP

GLY 1.1 1.2 .8 .1 .7 .6 .4 .8 .2 .7 .4 .6 .6 .9 .5 .2 .3 .3 .2 2.2
ALA 1.2 .8 .8 .0 .0 .5 2.3 .7 2.3 .9 .7 2.1 .8 1.0 .4 .3 .2 2.2 2.3 2.6
SER .8 .8 .2 2.4 .4 .2 .3 .4 2.1 .2 .2 .4 .5 .3 .1 .2 2.2 .0 .0 2.5
CYS .1 .0 2.4 22.4 2.7 2.5 2.8 2.4 21.3 2.3 2.5 2.6 2.3 2.2 2.7 2.6 21.4 21.1 21.0 21.5
VAL .7 .0 .4 2.7 2.7 2.1 21.0 .2 2.8 .6 .3 2.9 .4 .4 .1 .0 2.3 2.9 2.7 21.0
THR .6 .5 .2 2.5 2.1 .0 2.2 .3 2.3 .1 .1 .0 .4 .1 .0 .0 2.2 2.3 2.2 2.6
ILE .4 2.3 .3 2.8 21.0 2.2 21.1 .0 2.9 .5 .2 21.2 .3 .3 2.1 2.2 2.3 21.1 2.9 21.2
PRO .8 .7 .4 2.4 .2 .3 .0 .3 2.4 .6 .3 .1 .5 .4 .0 .0 2.2 2.3 2.6 2.9
MET .2 2.3 2.1 21.3 2.8 2.3 2.9 2.4 21.4 .0 2.3 21.0 2.1 .0 2.5 2.4 2.9 21.2 21.0 21.6
ASP .7 .9 .2 2.3 .6 .1 .5 .6 .0 .2 .0 .5 2.2 .5 .0 2.6 2.4 .2 2.2 2.4
ASN .4 .7 .2 2.5 .3 .1 .2 .3 2.3 .0 2.2 .3 .2 .2 2.2 2.2 2.4 2.2 2.3 2.6
LEU .6 2.1 .4 2.6 2.9 .0 21.2 .1 21.0 .5 .3 21.1 .3 .4 .0 2.2 2.2 21.1 2.9 21.2
LYS .6 .8 .5 2.3 .4 .4 .3 .5 2.1 2.2 .2 .3 .6 2.4 .0 .4 .1 .1 2.3 2.5
GLU .9 1.0 .3 2.2 .4 .1 .3 .4 .0 .5 .2 .4 2.4 .5 .1 2.5 2.3 .1 2.2 2.5
GLN .5 .4 .1 2.7 .1 .0 2.1 .0 2.5 .0 2.2 .0 .0 .1 2.5 2.2 2.5 2.3 2.4 2.9
ARG .2 .3 .2 2.6 .0 .0 2.2 .0 2.4 2.6 2.2 2.2 .4 2.5 2.2 2.3 2.4 2.4 2.7 2.9
HIS .3 .2 2.2 21.4 2.3 2.2 2.3 2.2 2.9 2.4 2.4 2.2 .1 2.3 2.5 2.4 21.2 2.6 2.9 21.2
PHE .3 2.2 .0 21.1 2.9 2.3 21.1 2.3 21.2 .2 2.2 21.1 .1 .1 2.3 2.4 2.6 21.3 21.0 21.4
TYR .2 2.3 .0 21.0 2.7 2.2 2.9 2.6 21.0 2.2 2.3 2.9 2.3 2.2 2.4 2.7 2.9 21.0 2.9 21.3
TRP 2.2 2.6 2.5 21.5 21.0 2.6 21.2 2.9 21.6 2.4 2.6 21.2 2.5 2.5 2.9 2.9 21.2 21.4 21.3 21.7
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prediction, such a weak sequence similarity exists between
the probe sequence and one of the proteins used to build
the fragment library. It may well be detected by this
approach so that a Go-like potential is obtained. This is a
real advantage that could be profitably exploited by this
method. On the other hand, if there are no contacting pairs
of fragments of significant sequence similarity, then one sim-
ply recovers the statistical pair potential of Equation (6a). In
other words, this method interpolates between a standard
statistical potential and a predicted Go-like potential. As
suggested by the results described below, in practice, one is in
this intermediate limit when realistic cases are considered.

Next, for the test proteins, a list of homologous sequen-
ces was generated by scanning the EMBL/SWISSPROT
database with FASTA45 and filtering the sequences using
MAXHOM.46 We calculate the effective pair potentials by
the method of Finkelstein.47 If one has a set of S homolo-
gous protein sequences, then

Eij 5 o
s51

S

Eij(s) 9 S (10)

s 5 1 is the sequence of interest and all sequences s . 1 are
aligned to the first sequence. All sequences have a se-
quence identity greater than 30% with respect to the first
sequence. For sequence s, if either (or both) of the partners
have a gap in their alignment with the first sequence, then
Eij(S) 5 0. This has the effect of weighting positions that
are aligned more than those that are not. In principle, this
should enhance the specificity of the potential.

Structural Database

A set of 496 structures was randomly selected from the
May 1996 PDB select library48 for the generation of the
protein-specific pair potentials, with a further set of 45 test
proteins also randomly selected. This list of proteins is
available for downloading from our Web site (http://
bioinformatics.danforthcenter.org/).

For gapless threading tests, each sequence is threaded
through the set of 496 structures used to generate the pair
potentials, plus the additional 45 proteins that constitute
the testing set. This is done to insure that the protein
discriminates not only against proteins in the testing set
but also against proteins that make up the training set.

RESULTS
Quasichemical Type of Pair Potentials

Tables IA and IB present the quasichemical partial
composition corrected scale (derived on the basis of Equa-
tion [5a]) and the composition corrected scale (derived on
the basis of Equation [6a]), respectively. These scales, and the
composition-independent scale, may be downloaded from our
Web site (http://bioinformatics.danforthcenter.org/).

In Table II, we present the results for the various
quasichemical-based scales in gapless threading as a
function of the number of protein structures used to
generate the potentials. A total of 543 structures were
used. Each protein is threaded into the set of proteins used
to derive the potentials, as well as the other 44 structures
of the test set. Both the composition-independent poten-
tials and the scale that is partially corrected for composi-
tion perform comparably; they do not become more specific
with increasing size of the structural database and give very
similar results. This is a somewhat disconcerting result, in
that one might have expected the specificity of the potentials
to improve with an increasing number of structures. In
contrast, the composition-corrected scale becomes more spe-
cific with increasing numbers of structures (from an average of
29.18 for 25 structures to 29.78 when 496 structures are used
to derive the scale). Furthermore, the mean z score is about
two standard deviation units lower when composition is
accounted for correctly. In other words, this scale performs
substantially better than do alternative approaches.

Table III shows the set of proteins used, the z score of the
native state, and the protein structure whose energy is
lowest and its z score obtained in gapless threading using

TABLE II. Comparison of Various Quasichemical-Based Pair Potentials as a Function of the Number of Structures
Used to Derive the Potential

Quasichemical composition-
independent scale

Quasichemical partial
composition-corrected scale

Quasichemical composition-
corrected scale

Number of
structures
used to
derive
potential

Number of
structures
correctly
assigned

Mean z
score of
correctly
assigned

structures

Number of
structures

used to
derive

potential

Number of
structures
correctly
assigned

Mean z
score of
correctly
assigned

structures

Number of
structures

used to
derive

potential

Number of
structures
correctly
assigned

Mean z
score of
correctly
assigned

structures

25 43/45 27.50 25 44/45 27.26 25 43/45 28.99
(43/44) (27.34)

25a 43/45 28.09 25a 44/45 27.99 25a 43/45 29.36
(43/44) (28.07)

50 43/45 28.02 50 44/45 27.76 50 43/45 29.37
(43/44) (27.85)

496 43/45 27.92 496 44/45 27.69 496 43/45 29.78
(43/44) (27.78)

aA different set of 25 randomly chosen structures is chosen. The number in parenthesis is the average z score for the set of structures correctly
identified by either the composition-independent or the composition-corrected scale.
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the quasichemical composition-independent, partially com-
position-corrected, and composition-corrected scales. Fail-
ures in gapless threading are italicized. Interestingly, in
43 cases in which the native structure is selected, all scales
find the same set of native structures. Only in the case of
1ptx does the partially corrected composition scale identify
the native fold, whereas the other two scales do not.
Interestingly, its z score is worse for the partially corrected

composition scale (23.66) than when the full composition
correction is used (25.30). 1ptx is a scorpion toxin whose
native structure contains four disulfide bonds. This is perhaps
the reason why this set of scales fails to recognize it as the
native state. Furthermore, all scales fail to identify 1gky. This
is a guanylate kinase that was solved in complex with guano-
sine monophosphate. Here, there is no apparent reason why
all scales (including protein-specific pair potentials) fail. How-

TABLE III. Summary of Gapless Threading Results for Quasichemical-Based Scales†

Protein

Quasichemical
composition-independent scale

Quasichemical partially
composition-corrected scale

Quasichemical
composition-corrected scale

Znative
a Bestb Zbest

c Znative Best Zbest Znative Best Zbest

1aak_ 28.60 1aak_ 28.60 28.45 1aak_ 28.45 210.84 1aak_ 210.84
1amm_ 212.08 1amm_ 212.08 212.15 1amm_ 212.15 210.50 1amm_ 210.50
1c2rA 23.48 1c2rA 23.48 23.46 1c2rA 23.46 24.66 1c2rA 24.66
1cewI 25.31 1cewI 25.31 25.15 1cewI 25.15 26.39 1cewI 26.39
1cid_ 29.41 1cid_ 29.41 29.32 1cid_ 29.32 212.34 1cid_ 212.34
1cof_ 28.05 1cof_ 28.05 28.03 1cof_ 28.03 210.17 1cof_ 210.17
1csn_ 211.30 1csn_ 211.30 211.20 1csn_ 211.20 213.51 1csn_ 213.51
1dja_ 27.13 1dja_ 27.13 27.00 1dja_ 27.00 29.63 1dja_ 29.63
1dyr_ 212.06 1dyr_ 212.06 212.01 1dyr_ 212.01 213.77 1dyr_ 213.77
1eaf_ 27.20 1eaf_ 27.20 27.12 1eaf_ 27.12 28.29 1eaf_ 28.29
1eca_ 27.83 1eca_ 27.83 27.66 1eca_ 27.66 28.99 1eca_ 28.99
1erw_ 27.61 1erw_ 27.61 27.48 1erw_ 27.48 29.84 1erw_ 29.84
1esl_ 28.62 1esl_ 28.62 28.17 1esl_ 28.17 211.30 1esl_ 211.30
1fkj_ 25.75 1fkj_ 25.75 25.73 1fkj_ 25.73 27.73 1fkj_ 27.73
1gdy_ 26.82 1gdy_ 26.82 26.78 1gdy_ 26.78 28.08 1gdy_ 28.08
1gen_ 211.44 1gen_ 211.44 211.18 1gen_ 211.18 214.22 1gen_ 214.22
1ghr_ 29.99 1ghr_ 29.99 29.87 1ghr_ 29.87 213.04 1ghr_ 213.04
1gky_ 21.09 1psdA 23.50 21.10 1psdA 23.49 21.19 1psdA 23.96
1gpr_ 27.07 1gpr_ 27.07 26.90 1gpr_ 26.90 29.31 1gpr_ 29.31
1hcp_ 27.31 1hcp_ 27.31 26.70 1hcp_ 26.70 27.25 1hcp_ 27.25
1hfh_ 24.70 1hfh_ 24.70 24.46 1hfh_ 24.46 27.31 1hfh_ 27.31
1iae_ 28.73 1iae_ 28.73 28.46 1iae_ 28.46 29.62 1iae_ 29.62
1icn_ 27.43 1icn_ 27.43 27.24 1icn_ 27.24 29.54 1icn_ 29.54
1jcv_ 25.60 1jcv_ 25.60 25.40 1jcv_ 25.40 27.84 1jcv_ 27.84
1kaz_ 28.88 1kaz_ 28.88 28.77 1kaz_ 28.77 211.15 1kaz_ 211.15
1lbd_ 27.51 1lbd_ 27.51 27.45 1lbd_ 27.45 28.28 1lbd_ 28.28
1ltsD 27.92 1ltsD 27.92 27.71 1ltsD 27.71 29.85 1ltsD 29.85
1mls_ 27.55 1mls_ 27.55 27.54 1mls_ 27.54 29.75 1mls_ 29.75
1onc_ 27.20 1onc_ 27.20 27.01 1onc_ 27.01 28.87 1onc_ 28.87
1pkp_ 24.90 1pkp_ 24.90 24.77 1pkp_ 24.77 26.01 1pkp_ 26.01
1pou_ 27.98 1pou_ 27.98 27.83 1pou_ 27.83 29.43 1pou_ 29.43
1put_ 25.42 1put_ 25.42 25.48 1put_ 25.48 26.97 1put_ 26.97
1rci_ 26.72 1rci_ 26.72 26.69 1rci_ 26.69 28.72 1rci_ 28.72
1rgs_ 29.43 1rgs_ 29.43 29.44 1rgs_ 29.44 211.07 1rgs_ 211.07
1rie_ 25.66 1rie_ 25.66 25.46 1rie_ 25.46 27.98 1rie_ 27.98
1rsy_ 29.28 1rsy_ 29.28 29.08 1rsy_ 29.08 210.93 1rsy_ 210.93
1thx_ 28.25 1thx_ 28.25 28.15 1thx_ 28.15 210.43 1thx_ 210.43
1tlk_ 25.29 1tlk_ 25.29 25.18 1tlk_ 25.18 28.00 1tlk_ 28.00
1vin_ 28.71 1vin_ 28.71 28.77 1vin_ 28.77 29.71 1vin_ 29.71
1xel_ 29.89 1xel_ 29.89 29.82 1xel_ 29.82 213.19 1xel_ 213.19
2hvm_ 211.91 2hvm_ 211.91 211.73 2hvm_ 211.73 215.66 2hvm_ 215.66
2pcy_ 26.47 2pcy_ 26.47 26.32 2pcy_ 26.32 29.06 2pcy_ 29.06
2sas_ 29.38 2sas_ 29.38 29.19 2sas_ 29.19 210.80 2sas_ 210.80
5p21_ 28.50 5p21_ 28.50 28.47 5p21_ 28.47 210.48 5p21_ 210.48
1ptx_ 24.20 linp_ 24.22 23.66 1ptx_ 23.66 25.30 1bmfA 26.19
†Italicized structures are those incorrectly assigned as having the best z score.
aZnative is the z score of the native state.
bBest is the name of the lowest-energy structure.
cZbest is the z score of the lowest-energy structure.
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ever, these results suggest that if one uses a z score of27 as a
conservative cutoff, one can be reasonably certain that the
native fold will be found. This conclusion was also found when
a subset of 383 proteins of the PDB select set were used and
the composition-corrected pair potential was derived for each
protein in the set. Here, we used a jackknife procedure to
derive the composition-corrected potential. Of these, 370 are
correctly selected, but no protein with a z score below 27.0 is
incorrectly assigned to an alternative structure.

The fact that different reference states detect the same
set of native structures reflects the fact that the correla-
tion coefficient between the various scales is high (see
Table IV); nevertheless, substantial differences in perfor-
mance are seen. The question is why. As shown in Table I,
the biggest differences involve interactions with aromatic
residues. In addition, interactions among the rarer residues
(e.g., MET-MET from 21.0 to 21.4) are the most modified. It is
this accounting for less typical interactions that the composi-
tion-based correction is designed to fix, and, based on the
results of Table II, it has at least partially succeeded.

The situation can be further improved by using multiple
sequence averaging as in Equation (3). As shown in Table
V, which summarizes the results of all scales, the mean z
score improves from 29.78 to 210.43 when the composition-
corrected pair potential is averaged over a set of aligned
sequences. Once again, 43 of 45 structures are correctly
identified as being native. The two incorrectly identified
folds, 1gky and 1ptx, remain. In Table VI, we present the z
score of the native structure and the lowest energy struc-
ture and its z score, respectively, for the multiple-sequence
averaged potentials. Failures in gapless threading are
italicized. Again, if a z score threshold of 27 is used, then
no protein is incorrectly matched to its native state.

Protein Specific Pair Potentials

Empirically, we have found that for a database in which
no two structures have a greater than 30% sequence
identity, typically about 5% of the contacts involve frag-
ments selected on the basis of weak local sequence similar-
ity. The remaining pair contacts was described by our best
statistical pair potential, namely the composition-cor-
rected quasichemical scale. As shown in Table V, the
protein-specific scale now recognizes only 42/45 structures
with a mean z score of 29.92. This is marginally better
than the composition-corrected quasichemical scale itself.
The one additional protein missed by this class of poten-
tials, 1hcp, has a marginal z score of 25.5.

The real utility of this method of pair potential deriva-
tion only becomes apparent from Table V when we con-
sider the sequence similarity averaged protein-specific
pair potential. With the addition of multiple sequence
averaging, 1hcp is once again recognized with a z score of
27.92. All proteins that are not recognized (1ptx and 1gky)
have z scores above 27.0. Over the testing set, the mean z
score of correctly identified folds is 212.75. This is an
improvement of 2.2 standard deviation units from the best
sequence similarity averaged quasichemical potential. In
addition, with respect to a single sequence, the improve-
ment in mean z score is 2.83s. In contrast, the composition-
corrected quasichemical scale improves by 0.95s. Simi-
larly, the pair potential derived by Reva and coworkers41

improves by about 2s . However, there the mean z score is
about 28.1, whereas it is 212.75 in the present work.

What multiple sequence averaging does is enforce the
contribution of those regions in the structures that have a
very consistent pattern of side chain contacts across the
protein family. Those regions that do not consistently
select a pair of interacting fragments are replaced by a
weighted average of quasichemical scale and the local
fragment scale. If a pair of putative interacting regions is
spuriously chosen for a few sequences, but not for all
members of the protein family, then the quasichemical
scale will essentially describe the interaction between the
selected pairs. Regions that contain gaps are treated as being
neutral (pair potential of zero). This helps to eliminate highly
variable regions that should not dictate the fold.

Examination of Table VI reveals that a number of
proteins have a native state z score less than 215. The
presence of such a protein-specific pair potential should
facilitate folding as well as refinement of low-resolution
models. Indeed, about a 1-Å improvement was found in a
series of refinements of threading models when protein-
specific pair potentials were used compared with results
using the composition-corrected quasichemical scales.49

One might also imagine that such potentials should also be
useful in threading where gaps are allowed. However, use of a
residue-specific pair potential precludes dynamic program-
ming because the scoring function is inherently nonlocal.

Finally, for proteins up to 400 residues in length, we note
that protein-specific pair potentials can be obtained from
our Web site (http://bioinformatics.danforthcenter.org/).

TABLE IV. Correlation Coefficient Between Various
Quasichemical Scales

Composition-
independent

scale

Partially
corrected

scale

Composition-
corrected

scale

Composition-indepen-
dent scale 1.00 0.99 0.92

Partially corrected scale 0.99 1.00 0.91
Composition-corrected

scale 0.92 0.91 1.00

TABLE V. Comparison of Mean z scores of Correctly
Identified Structures Using the Different Scales

Scale type
Number
correct

Mean
z score

Quasichemical composition independent 43/45 27.92
Quasichemical partial composition correction 44/45 27.69
Quasichemical composition corrected 43/45 29.78
Sequence similarity averaged quasichemical 43/45 210.43
Protein-specific pair potential 42/45 29.92
Sequence similarity averaged protein-specific

pair potential 43/45 212.75
aAveraged over the 43 correctly identified structures given in Table III
but does not include 1ptx.
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Application to Ab Initio Folding
In reality, the actual quality of a given potential is

determined by its selectivity and specificity. The gapless
threading results presented here indicate that the two
classes of potentials have quite high selectivity. Both
recognize most of the proper folds for the set of the test

proteins. However, the fact that a number of additional
native structures are recognized by the homology-based
potential indicates its higher selectivity. Furthermore, the
significantly higher z scores for the recognized structures
in the case of the homology-based potentials indicate that
its specificity is also significantly greater. However, based

TABLE VI. Compilation of Gapless Threading Results for Sequence SimilarityAveraged Pair Potentials
and Protein-Specific Pair Potentials†

Protein

Quasichemical
composition-corrected scale

sequence similarity averaged
Protein-specific
pair potential

Sequence similarity averaged
protein-specific pair potential

Znative
a Bestb Zbest

c Znative Best Zbest Znative Best Zbest

1aak_ 213.04 1aak_ 213.04 28.77 1aak_ 28.77 212.85 1aak_ 212.85
1amm_ 212.32 1amm_ 212.32 29.24 1amm_ 29.24 213.59 1amm_ 213.59
1c2rA 24.66 1c2rA 24.66 213.24 1c2rA 213.24 213.24 1c2rA 213.24
1cewI 27.38 1cewI 27.38 25.73 1cewI 25.73 27.89 1cewI 27.89
1cid_ 212.29 1cid_ 212.29 29.92 1cid_ 29.92 213.16 1cid_ 213.16
1cof_ 212.07 1cof_ 212.07 28.18 1cof_ 28.18 212.08 1cof_ 212.08
1csn_ 213.34 1csn_ 213.34 214.47 1csn_ 214.47 216.20 1csn_ 216.20
1dja_ 28.25 1dja_ 28.25 211.97 1dja_ 211.97 210.31 1dja_ 210.31
1dyr_ 215.30 1dyr_ 215.30 213.07 1dyr_ 213.07 220.76 1dyr_ 220.76
1eaf_ 28.83 1eaf_ 28.83 28.70 1eaf_ 28.70 211.30 1eaf_ 211.30
1eca_ 29.30 1eca_ 29.30 28.40 1eca_ 28.40 210.40 1eca_ 210.40
1erw_ 211.43 1erw_ 211.43 29.45 1erw_ 29.45 217.13 1erw_ 217.13
1es1_ 212.05 1es1_ 212.05 211.97 1esl_ 211.97 215.81 1esl_ 215.81
1fkj_ 29.13 1fkj_ 29.13 27.88 1fkj_ 27.88 211.77 1fkj_ 211.77
1gdy_ 28.53 1gdy_ 28.53 26.52 1gdy_ 26.52 28.12 1gdy_ 28.12
1gen_ 215.68 1gen_ 215.68 215.30 1gen_ 215.30 216.70 1gen_ 216.70
1ghr_ 215.81 1ghr_ 215.81 212.04 1ghr_ 212.04 217.03 1ghr_ 217.03
1gky_ 22.69 3pga1 24.20 22.00 2olbA 25.13 23.10 3pga1 25.16
1gpr_ 28.61 1gpr_ 28.61 27.75 1gpr_ 27.75 212.95 1gpr_ 212.95
1hcp_ 28.88 1hcp_ 28.88 25.45 1pkp_ 26.38 27.92 1hcp_ 27.92
1hfh_ 28.01 1hfh_ 28.01 25.50 2fcr_ 25.60 27.70 1hfh_ 27.70
1iae_ 29.95 1iae_ 29.95 27.06 1iae_ 27.06 29.86 1iae_ 29.86
1icn_ 29.61 1icn_ 29.61 212.58 1icn_ 212.58 217.58 1icn_ 217.58
1jcv_ 28.26 1jcv_ 28.26 29.86 1jcv_ 29.86 210.56 1jcv_ 210.56
1kaz_ 211.70 1kaz_ 211.70 210.61 1kaz_ 210.61 214.81 1kaz_ 214.81
1lbd_ 28.80 1lbd_ 28.80 27.03 1lbd_ 27.03 28.50 1lbd_ 28.50
1ltsD 29.85 1ltsD 29.85 28.37 1ltsD 28.37 28.37 1ltsD 28.37
1mls_ 29.91 1mls_ 29.91 210.62 1mls_ 210.62 212.71 1mls_ 212.71
1onc_ 29.37 1onc_ 29.37 28.12 1onc_ 28.12 210.96 1onc_ 210.96
1pkp_ 27.02 1pkp_ 27.02 27.62 1pkp_ 27.62 210.12 1pkp_ 210.12
1pou_ 29.53 1pou_ 29.53 28.44 1pou_ 28.44 29.16 1pou_ 29.16
1put_ 27.62 1put_ 27.62 27.78 1put_ 27.78 28.62 1put_ 28.62
1rci_ 28.85 1rci_ 28.85 27.32 1rci_ 27.32 28.95 1rci_ 28.95
1rgs_ 212.37 1rgs_ 212.37 212.15 1rgs_ 212.15 215.00 1rgs_ 215.00
1rie_ 28.31 1rie_ 28.31 26.53 1rie_ 26.53 29.35 1rie_ 29.35
1rsy_ 214.45 1rsy_ 214.45 212.10 1rsy_ 212.10 217.34 1rsy_ 217.34
1thx_ 28.75 1thx_ 28.75 210.18 1thx_ 210.18 215.07 1thx_ 215.07
1tlk_ 28.11 1tlk_ 28.11 210.93 1tlk_ 210.93 213.07 1tlk_ 213.07
1vin_ 29.30 1vin_ 29.30 27.27 1vin_ 27.27 29.13 1vin_ 29.13
1xel_ 214.80 1xel_ 214.80 212.20 1xel_ 212.20 216.51 1xel_ 216.51
2hvm_ 215.37 2hvm_ 215.37 216.09 2hvm_ 216.09 222.92 2hvm_ 222.92
2pcy_ 28.87 2pcy_ 28.87 214.54 2pcy_ 214.54 216.93 2pcy_ 216.93
2sas_ 210.85 2sas_ 210.85 28.59 2sas_ 28.59 28.65 2sas_ 28.65
5p21_ 212.04 5p21_ 212.04 211.89 5p21_ 211.89 217.34 5p21_ 217.34
1ptx_ 26.04 1iow_ 26.38 26.34 1ptx_ 26.34 26.18 1mla_ 26.30
†Italicized structures are those incorrectly assigned as having the best z score.
aZnative is the z score of the native state.
bBest is the name of the lowest-energy structure.
cZbest is the z score of the lowest-energy structure.
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on gapless threading alone, it is unclear how the enhanced
specificity and selectivity found in this relatively straight-
forward test apply to the most rigorous of situations, the
relative performance of such potentials in ab initio folding
simulations. To address this essential question, we have
performed a large number of ab initio Monte Carlo folding
experiments on a few small proteins of different structural
classes: 1gb1 which is an a/b protein, 1cis, which is a
mainly b-protein, 1ctf which is an a1b protein, and 4icb
which is an a-helical protein.

Reduced Model and Monte Carlo Simulations

For each sequence, simulations on a reduced protein
representation were undertaken for two types of pairwise
long-range potentials, given by Equations (6) and (9),
respectively, with exactly the same other contributions to
the model force field. Because this high-coordination lat-
tice model has been previously discussed,50 here we briefly
outline its essential features. The model chain is built from
virtual bonds connecting centers of consecutive interaction
units, each comprising the average position of a group of
atoms that include the side chain and the corresponding
a-carbon atom. The model force field, besides the tested
pairwise potentials, contains potentials representing short-
range interactions, main chain hydrogen bonds, and two
types of hydrophobic burial potentials. In contrast to the
previously published application of this model, here the
folding simulations are purely ab initio and use a very
conservative secondary structure prediction scheme. For
very strongly predicted helix or extended regions, (5 and
higher scores in both PHD51 and PSIpred methods [http://
globin.bio.warwick.ac.uk/psipred/]), statistical potentials
describing short-range interactions have been derived
from a structural database consisting of all-b and all-a
proteins, respectively.

About 600 simulated annealing Monte Carlo simula-
tions have been performed for each protein-potential pair.
The purpose of these simulations was to compare the

specificity of the two potentials and their ability to discrimi-
nate between native-like conformations and a manifold of
random coil states in ab initio simulations. Also, long
isothermal simulations near the folding temperature were
performed from which the relation between rmsd from
native and conformational energy could be extracted and
analyzed.

Results of Ab Initio Folding Simulations

In Figures 1 through 4 we illustrate the results of
simulated annealing Monte Carlo experiments. The histo-
grams show the percentage of the simulations that led to
structures with a given rmsd from the native structure (for
the Ca atoms) for both potentials of interest from the end
of the simulated annealing trajectories. From the point of
view of ab initio folding, helical proteins are the easiest.
Because 4icb is rather irregular helical protein, it is not a
trivial fold. In gapless threading, the mean z scores are
28.0 and 211.5, respectively, for the quasichemical and
protein-specific pair potentials. For ab initio folding, in
nearly 40% of the cases, simulated annealing led to the
correct fold (with an rmsd from native of 4 to 5 Å) when the
homology-based potential was employed. The large peak
around 8 Å corresponds to various misfolded structures,
with a large contribution from topological mirror image
folds. For this molecule, the purely statistical potential
performed significantly worse. Only about 5% of simula-
tions lead to similar quality native-like structures. The
inset in Figure 1 shows the ratio of good structures of
various qualities obtained from the homology-based poten-
tial to those of the purely statistical potential. The black
circles give another representation of the data presented
in the histogram, and the open squares correspond to the
data from entire annealing trajectory. Comparison of the
two shows that the homology-based potential performs
better at all temperatures

The more complex topology of protein G (1gb1) is per-
haps a more typical case. We note that in gapless thread-

Fig. 1. For 4icb, histograms of the percentage of
the simulations that led to structures with a given
rmsd from the native structure (for Ca atoms) for both
the quasichemical (dark gray) and protein-specific
potentials (light gray). Inset: for structures obtained
at the end of the simulated annealing trajectory, the
black circles indicate the ratio of good structures of
various qualities obtained from the homology-based
potential to those obtained from the purely statistical
potential. The open squares correspond to the data
from the entire annealing trajectory.
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ing, the z score of the native fold is 26.1 and 26.5 for the
quasichemical and protein-specific potentials, respec-
tively. Again, as shown in Figure 2A for ab initio folding,
the homology-based potential performs qualitatively bet-
ter. In about 7% of the runs, the correct fold could be
recovered. Is this result significant for protein structure
prediction? In Figure 2B, we compared the results for the
homology-based potential with simulations of hypothetical
compact random structures of 1gb1 chains. The compact-
ness was enforced by a strong, residue-dependent, centro-
symmetric potential. Other interactions were neglected.
As a result, the obtained structures had a density (and
volume) very close to the native structure, with the
fraction of buried hydrophobic residues very similar to
that observed in the same size native globular protein. In
1000 simulations, no structure below 7 Å rmsd from native
was observed. Thus, the results of our folding simulations

with more realistic protein-like potentials are very far
from random. The potential nicely discriminates not only
against other protein folds but also against the enormous
number of random conformations. It has to be mentioned
that the correlation between rmsd and the system’s confor-
mational energy for both potentials is not very strong.
Whether this reflects inadequate conformational sampling
or defects in the potential and protein model demands
further investigation.

Overall, the homology-based potential performs on aver-
age much better in ab initio folding than does the simple
statistical pair potential. A qualitative difference could be
seen for 1gb1, 4icb, and to a lesser extent for the 1cis case,
shown in Figure 3, in which the mean z score of the native
fold increases from 27.6 to 29.1 in gapless threading. For
1ctf, the homology-based potential seems to favor a topologi-
cal mirror image of the native structure and generates a

Fig. 2. A: For 1gb1, histograms of the percentage
of the simulations that led to structures with a given
rmsd from the native structure (for Ca atoms) for both
the quasichemical and the protein-specific potentials.
Inset: for structures obtained at the end of the
simulated annealing trajectory, the black circles indi-
cate the ratio of good structures of various qualities
obtained from the homology-based potential (light
gray) to those obtained from the purely statistical
potential (dark gray), whereas the open squares
correspond to the data from the entire annealing
trajectory. B: Comparison of the results for the homol-
ogy-based potential (gray) with simulations of hypo-
thetical compact random structures of 1gb1 chains
(hatched). The compactness was enforced by a
strong, residue-dependent, centrosymmetric poten-
tial.
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somewhat smaller number of the correct folds. The differ-
ence between the two potentials for this case is rather
insignificant when assessed on the basis of rmsd alone (see
Fig. 4A), but if the distance rmsd from native is employed
(see Fig. 4B), then the same trend is very strongly ob-
served. We further note that this result is consistent with
the trend observed in gapless threading in which the z
score of the native state increases from 24.7 to 210.1
when the protein-specific potential is employed.

Overall, these results suggest a tendency to generate
better structures at higher yield with more negative z
scores on gapless threading. Thus, gapless threading can
be used as a crude and fast indicator of the quality of a
potential in ab initio folding.

Finally, clustering of the results of a large number of
simulations enables a quite dependable identification of
the proper native-like structures. Proper averaging within
the ‘‘native-like’’ structures makes possible further improve-
ment in the accuracy of predicted structures. Parentheti-
cally, note that when the potentials presented here are
updated to account for various modes of side chain contacts
(three classes: parallel, antiparallel, and acute packing),
the efficiency of ab initio folding could be significantly
improved, but the trend of quasichemical versus protein-
specific potentials remains the same. This will be dis-
cussed in detail elsewhere.

DISCUSSION AND CONCLUSIONS

In the present work, we have presented a methodology
for the derivation of statistical pair potentials, which
accounts for protein composition effects. By correctly ac-
counting for composition, we can improve the sequence-
native structure specificity as assessed by gapless thread-
ing. Although such a test by no means insures that the
protein will be foldable using such a potential, empirically,
we have found a good qualitative correlation between the
gapless threading z score and improved foldability and
quality of the resulting models. Compared with potentials

that do not account for composition, the mean z score is
about 2s better, and the potential is found to systemati-
cally improve when more proteins are added to the struc-
tural database. Mainly, this results from the correct weight-
ing of the expected contribution of rare contacts. Such
potentials then provide an enhanced baseline for addi-
tional improvements.

One such improvement involved the generalization of
these pair potentials to be protein specific. The formalism
we developed nicely interpolates from a pure quasichemi-
cal statistical potential when there are no contacting pairs
of fragments that have significant sequence similarity to
the sequence of interest in the structural database to a
Go-like potential when an example of a homologous pro-
tein is included in the structural database. Clearly, it is
advantageous to have the largest structural database
possible. In the case considered here, we examined what
happens when no protein sequence in the structural
database has more than 30% sequence identity. This
regimen is the worst-case scenario. The resulting protein-
specific pair potential, when multiple sequence averaging
is included, performs substantially better than any of our
previously derived pair potentials. This conclusion is based
on the average gapless threading z scores, the behavior of
the potential in protein structure refinement,49 and, most
importantly, on our ab initio folding results. For gapless
threading, the observed spread of z scores reflects the
anecdotal nature of finding interacting pairs of locally
homologous fragments. For ab initio folding, a signifi-
cantly greater yield of low rmsd structures is generated
when protein-specific pair potentials are employed. This
alone clearly justifies their use.

In a series of articles on the derivation and testing of
pair potentials, we have demonstrated the following: First,
the quasichemical approximation to statistical pair poten-
tials in fact accounts for chain connectivity, but it does not
account for side chain repacking when one sequence is
mounted in the structure of another.14 Second, for the

Fig. 3. For 1cis, histograms of the percentage of
the simulations that led to structures with a given
rmsd from the native structure (for Ca atoms) for both
the quasichemical (dark gray) and protein-specific
(light gray) potentials. Inset: for structures obtained
at the end of the simulated annealing trajectory, the
black circles indicate the ratio of good structures of
various qualities obtained from the homology-based
potential to those obtained from the purely statistical
potential, whereas the open squares correspond to
the data from the entire annealing trajectory.
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range of parameters characteristic of real proteins, such
knowledge-based scales can recover the ‘‘true’’ potential in
model systems.52 Third, such knowledge-based potentials
are highly correlated with CHARMM plus GB/SA type
potentials in unfolding simulations of the GCN4 leucine
zipper.53 Thus, they have a physical basis. Fourth, proper
correction of composition effects can lead to enhanced
specificity. Fifth, using contacting fragments that exhibit
significant local sequence similarity to the protein of
interest, it is possible to derive a protein-specific potential
that exceeds, in some cases by a considerable margin, the
specificity of quasichemical potentials.

Future work will involve investigation of the repacking
contribution to effective pair potentials. Preliminary work
suggests that this effect is quite small. Next, we are
generalizing these pair potentials to include orientation
effects; as Bahar and Jernigan have pointed out, these may
be significant.54 Finally, these protein-specific pair poten-

tials can be improved by including information about
known or predicted secondary structure and/or tertiary
contacts such as disulfide bonds. Although more work in
the field of potential derivation is clearly warranted, these
results suggest that progress is being made.
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