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ABSTRACT An improved generalized compara-
tive modeling method, GENECOMP, for the refine-
ment of threading models is developed and vali-
dated on the Fischer database of 68 probe–template
pairs, a standard benchmark used to evaluate
threading approaches. The basic idea is to perform
ab initio folding using a lattice protein model, SI-
CHO, near the template provided by the new thread-
ing algorithm PROSPECTOR. PROSPECTOR also
provides predicted contacts and secondary struc-
ture for the template-aligned regions, and possibly
for the unaligned regions by garnering additional
information from other top-scoring threaded struc-
tures. Since the lowest-energy structure generated
by the simulations is not necessarily the best struc-
ture, we employed two structure-selection proto-
cols: distance geometry and clustering. In general,
clustering is found to generate somewhat better
quality structures in 38 of 68 cases. When applied to
the Fischer database, the protocol does no harm and
in a significant number of cases improves upon the
initial threading model, sometimes dramatically.
The procedure is readily automated and can be imple-
mented on a genomic scale. Proteins 2001;44:133–149.
© 2001 Wiley-Liss, Inc.
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INTRODUCTION

In this postgenomic era, when knowledge of the full
proteome (the entire set of protein sequences) of an
organism is becoming commonplace, the theoretical predic-
tion of protein structure from the sequence of amino acids
has also become a very urgent task for computational
biology.1 For a given protein sequence of unknown struc-
ture, there are three possible theoretical approaches to
structure prediction. The most welcome situation occurs
when, for a query protein, it is possible to find (using
standard sequence comparison tools) another protein that
is highly homologous (30% or larger sequence similarity)
and for which the structure has been already solved

experimentally.2–5 In such cases, classical comparative
modeling methods allow for the construction of molecular
models, whose accuracy is sometimes (depending on the
sequence similarity and “completeness” of the sequence
alignment) close to that of experimental methods. Another
quite typical situation is when sequence methods, or
threading procedures, can detect only weakly similar
sequences of protein(s) of known structure.6–10 Conse-
quently, the similarity of the (unknown) three-dimen-
sional structure of the query sequence to the template
structure cannot be quantified a priori. The two structures
may have identical topology; however they may differ in
the details of their loop conformations. Also, particular
secondary structure elements may be of different size, and
there may be different packing angles between secondary
structural elements. Frequently, the actual structural
similarity may be limited to only that part of the structure
having a common structural motif (or motifs) while the
remainder of the structure is completely different.10,11 In
the past, application of comparative modeling tools to such
cases led to molecular models that differed substantially
from the true structure of the query protein.5

Finally, the third possible situation occurs when the
(unknown) fold of the query protein is significantly differ-
ent from any of the known protein folds or when the
existing sequence comparison and threading tools are
unable to detect the proper structural template. In such a
situation, one needs to apply ab initio type approaches of
protein structure prediction.12–15 Although progress in the
field of ab initio structure prediction has recently become
quite significant (as demonstrated by a number of groups
during the CASP3 exercise), successful applications re-
main limited to relatively small proteins with rather
simple fold topologies.15 Moreover, even when successful,
ab initio methods usually provide structures of low resolu-
tion. Quite often such predicted structures can be helpful
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in predicting the biological functions, in particular the
biochemical functions, of proteins.1,16–19

The focus of this article is on those cases that fall within
the second protein structure prediction category outlined
above. For ;30–50% of protein sequences in a newly
sequenced genome, it is possible to detect a weakly homolo-
gous protein of known structure.20–22 Our goal is to
provide a method that enables construction of moderate-
resolution molecular models for these sequences, in spite
of the often significant structural differences between the
detected template and the actual structure of the query
protein whose structure is unknown.

To achieve this goal, computational tools capable of
meeting the following requirements are necessary: First,
one needs an efficient threading algorithm (or a combina-
tion of a sequence-based approach and threading) that
detects plausible template proteins and provides an align-
ment of as good as possible quality.9 The meaning of
“good-quality alignment” in the context of this approach is
discussed in some detail below. Let us point out that the
structural template provided by the alignment of the
query sequence to the structure of a known protein does
not need to be complete (a substantial portion of the target
proteins may remain undefined).

Moreover, the template can differ substantially from the
equivalent portion of the (unknown) probe structure; in
many cases, a template/probe root-mean-square deviation
(RMSD) (coordinate from native after the best superposi-
tion) in the range of 10 Å remains an acceptable starting
conformation. This leads to the second requirement.
Namely, a molecular modeling tool must be developed that
is capable of rearranging the initial threading-based model
in such a way that the final structure is closer (sometimes
much closer) to the query protein’s “true” structure than it
is to the template. This can be achieved only when the
employed modeling tool permits very efficient sampling of
protein conformational space (large-scale structural rear-
rangements) and when the force field of the employed
molecular model is capable of selecting native-like struc-
tures of the query protein (at least when the search is
limited to a portion of conformational space in a neighbor-
hood of the template that is wide enough to comprise the
query protein’s structure). Finally, a means of a priori
estimating the expected accuracy of the obtained molecu-
lar models needs to be provided.

Recently, we reported a method for the improvement of
threading-based molecular models of proteins.23 Using
Monte Carlo simulations of a lattice model of polypeptide
chains in which the conformations were restricted to a
“tube” surrounding the template structure, it was possible
to achieve substantial improvement in about 50% of the
threading-based models in a small set of 12 test proteins.
Although the goal of this work is similar, and we use
essentially the same protein representation, there are also
qualitative differences between that work and the present
approach. First, we employ a different, recently developed
threading algorithm called PROSPECTOR.9 This new
threading algorithm (described elsewhere) has three fea-
tures that are very important for the present approach. It

detects even remotely related pairs of proteins and pro-
duces very good alignments, sometimes close to the best
structural alignments. Second, the force field of the lattice
model has been refined and a more efficient Monte Carlo
sampling scheme has been adopted. Third, the threading
algorithms are used to derive a large set of restraints
employed in the modeling,24 as described below.

The threading template coordinates comprise a subset of
the restraints. Threading-based predictions of tertiary
contacts and local chain geometry are incorporated into
the refinement algorithm. In addition, pair potentials and
short-range restraints (distance restraints reflecting sec-
ondary structure preferences) are derived from a statisti-
cal analysis of sequentially similar protein fragments.
These subsets of potentials and restraints are complemen-
tary, and they encode structural biases of very different
origins.

To address the issues of fold identification, probe–
template alignment and subsequent refinement, the mod-
eling procedure consists of a hierarchy of sequence- and
structure-based threading algorithms, Monte Carlo simu-
lations,23 distance–geometry-based averaging, as well as
clustering of the lattice models, with subsequent construc-
tion of a detailed atomic model. In spite of the variety of
computational tools used, the entire procedure is quite
straightforward, relatively fast, and easy to use in an
automated fashion for large-scale protein structure predic-
tion.

It should be noted that the approach can also be
employed in those cases where threading, or sequence
comparisons, fails to detect a related global fold (or folds)
but indicates possible local structural similarity to pro-
tein(s) of known structure. In such cases, a small struc-
tural motif (a long helix, helical hairpin, fragment of a
b-sheet) can be used as a modeling “template.” Such a
template provides a folding scaffold, thereby reducing the
conformational space to be searched in order to assemble
the remaining portions of the structure of the query
protein. Thus, there is a continuous transition from a type
of comparative modeling (when the highly homologous
structural template can be detected), through folding in a
restricted space around a fragmentary template provided
by the threading algorithm to weakly restrained essen-
tially ab initio folding. As would be expected, the success
rate of correct fold assembly and the average accuracy of
the obtained molecular models decrease with the decaying
quality and length of the template protein alignment.
Reasonably good templates enable large, even multi-
domain proteins to be modeled, while the ab initio domi-
nant approach is limited to small (no larger than 100–140
residues), single-domain proteins.

In this work, we describe the proposed methodology and
analyze its performance using the Fischer database25 as a
test set. This test set is commonly used to benchmark
threading approaches and is probably quite representative
of larger sets of proteins. The similarity level of the related
pairs of proteins from this database ranges from closely to
very remotely related. Of course, our purpose is not only to
detect related pairs of proteins, but also to test the ability
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to obtain good molecular models for a substantial fraction
of the test proteins. In this context, we briefly discuss the
perspectives for the large-scale structural (and functional)
annotation of genomic data. In a forthcoming publication,
the method will be applied to structural annotation of
proteins from a small genome, M. genitalium.26

METHODS

The present approach is a combination of a number of
recently developed methods for protein recognition,9 ab
initio folding, and comparative modeling.24 An overview is
presented in Figure 1. Detailed descriptions and analysis
of some of the components have been recently pub-
lished.9,23,24 For these algorithms, a brief summary is
presented for the reader’s convenience. Newer and less
documented methods and algorithms are described in
more detail.

The entire procedure consists of the following subse-
quent steps:

1. Thread the query sequence through the structural
database and derive the sequence-specific long-range
and short-range potentials.9

2. Build the starting lattice model using the partial thread-
ing alignment as a structural scaffold. As previously,
the side-chain-only (SICHO) lattice model is used.27

3. Optimize the lattice model by the replica exchange
Monte Carlo (REMC) method, using the template as a
source of weak spatial restraints.28,29

4. Calculate the average lattice model by means of a
clustering30 or distance geometry (DG) procedure.31

5. Rebuild the atomic details (optional).

Although this procedure may appear somewhat com-
plex, it is relatively straightforward and is easy to auto-
mate.

Threading

Our new threading approach, PROSPECTOR, uses a set
of close and distant sequence profiles to generate first pass
alignments.9 The second pass for each also uses multiple-
sequence-averaged pair potentials and secondary struc-
ture propensities, where the partners for the evaluation of
the pair interactions are extracted from the alignment
generated by the respective first pass sequence profiles.
For the top 20 scoring structures (four scoring functions
times the best five scoring functions for each structure) if a
contact is present in 25% of the structures, it constitutes a
predicted contact. Then, using a previously derived formal-
ism,32 these predicted contacts are also converted to a
threading-based, protein-specific pair potential that is
used in a subsequent iteration of threading, PROSPEC-
TOR2. Additional predicted contacts are then collected;
the threading-based, protein-specific pair potential, PAIR2,
is recalculated using these new contacts, and the process is
iterated for a third time in PROSPECTOR3. We term the
resulting pair potential PAIR3. The resulting set of con-
tacts from PROSPECTOR1–3 is pooled to form the pre-
dicted contacts used in subsequent simulations. We have

found that, on average, PROSPECTOR3 gives the best
alignments, as well as the best set of predicted local
distances. The final template has the best Z-score between
the distant sequence profile-based threading alignment
and the alignment generated from the combined sequence
profile, PAIR3, and the secondary structure profile. The
entire set of predicted contacts are used as tertiary re-
straints. PROSPECTOR3 also provides a set of local chain
geometry predictions that are extracted from the average
geometry from the top scoring structures and that are
subsequently incorporated into the lattice-based folding
algorithm.

Multiple sequence alignments and the threading of
short test sequence fragments are also used to derive
protein-specific, additional short-range distance restraints
(up to several residues along the chain), as well as
orientation-dependent, protein-specific pair potentials.

Building the Starting Lattice Model

Proteins are modeled as lattice chains connecting verti-
ces corresponding to the centers of mass of the “side”-
chains (in reality, the center of mass of the side-chain
heavy atoms plus the Ca). This model is named the
side-chain-only, or SICHO, model. The grid of the underly-
ing simple cubic lattice is equal to 1.45 Å. The distribution
of distances between two subsequent chain units mimics

Fig. 1. Overview of the GENECOMP method. Starting from a se-
quence one first does multiple sequence alignments and then threads the
sequence through a library of known protein structures. If a template is
found, threading not only provides an alignment of the probe sequence to
the template, but also of predicted contacts and secondary structure that
may also include nonaligned regions. After an initial lattice model is built,
ab initio folding in the vicinity of the template is done, and the structure is
selected by either distance geometry or clustering, with the latter provid-
ing somewhat better models. Finally, atomic detail is added.
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the distribution seen in the structural databases of pro-
teins. The various distances reflect the different amino
acid sizes, different conformations of the main chain and
different side-chain rotamers (when applicable). Any given
protein structure can be fitted to the corresponding lattice
model with an average accuracy of ;0.8 Å RMSD. The
model force field contains generic protein-like terms that
convert the random coil into an average protein. Included
in these generic terms are local stiffness, hydrogen bond-
ing, and side-chain packing terms that generate protein-
like side-chain packing patterns. There are also sequence-
specific terms that reflect local conformational preferences,
local side-chain burial, and orientation dependent pair
interactions. Additional details about this lattice represen-
tation of proteins, a description of the modeling of protein
dynamics and the basic force field of the model can be
found in several recent publications.23,24,27

The alignment of the query sequence to the template
structure is usually incomplete and contains insertions
and gaps. The building procedure for the starting model
takes this into consideration. First, the aligned residues of
the template are projected onto the lattice, with the proper
(lattice model-based) restrictions for the distances be-
tween the two subsequent units and planar angles for
three subsequent units. An excluded-volume envelope (the
distance of closest approach for two model residues is 3
lattice units, i.e., 4.35 Å) is then built around the align-
ment. In the next step, the nonaligned parts of the chains
are successively added, taking into account the excluded
volume of the already existing chain. In those cases when
the number of residues of the query sequence is too small
to connect a gap in the template, the closest fragments of
the template are relaxed to accommodate such an align-
ment artifact. Nonaligned ends are attached in a semiran-
dom fashion. For “very good” alignments, this procedure
builds a quite accurate lattice model of the query protein.
When the alignment becomes worse and covers a small
fraction of the test sequence, the starting model could be
very far from the target structure.

Restrained Lattice Folding—Optimization of the
Initial Model

Lattice folding occurs in a restrained space using the
Replica Exchange Monte Carlo method as the conforma-
tional search tool.28 For this purpose, a number of copies of
the initial model are created and placed at various tempera-
tures, according to the REMC scheme. This Monte Carlo
simulation consists of two parts: In the first stage, a short
annealing run is performed using rather high tempera-
tures in dimensionless units (T 5 2.5–1.5). Then, in the
second stage, the temperature range is set to T 5 2.0–1.0
and a 5–10-times longer run compared to the first stage is
performed. One simulation trajectory takes 1–2 days on a
Pentium III 733 MHz PC. Twenty copies guarantee a very
fast and efficient swapping of conformations among the
various temperature levels (the temperature increment
between replicas has been assumed temperature indepen-
dent—a linear temperature set). Those conformations
seen at the lowest temperature of the REMC scheme

rapidly find energy minima. The minimum in many cases
(as shown later) corresponds to near-native conformations.
REMC proves to be much more efficient and faster than
the conventional simulated annealing procedure that we
recently used in a very similar context of lattice-based
comparative modeling. Another difference between the
previous and the present attempts to improve threading-
based protein models is in the way the template and other
restraints are implemented.

Previously, sampling was restricted to a “tube” surround-
ing the template structure.23 The lattice model was free to
move inside this tube and only occasionally to leave the
tube, as a result of a substantial energy penalty. Conse-
quently, the degree of improvement of the initial model
was limited. Here, we apply a much softer and more
diverse set of restraints for the lattice folding. Three sets of
restraints are applied during the folding/optimization
procedure.

The first set is associated with the template. For an
aligned residue where the equivalence between the target
and template residues was established by threading, the
following potential is used:

Vtempl 5 V5 1 V1 (1a)

with

V5 5 0 for

rmin , 2 ~in lattice units or 2.9 in Ångstroms! (1b)

V5 5 0.5 z εrest z rmin for rmin $ 2 (1c)

and

V1 5 2εrest for ri,j , 2 (1d)

where ri, j is the distance between the ith Ca of the
template structure and the jth Ca of the modeled target
structure. The first index corresponds to the template
residue and the second to the probe, and the aligned pairs
have, by definition, the same indices, and rmin 5 min{ri22, j

ri21, j, ri, j, ri11 ,j, ri12, j}, the smallest distance between the
target Ca and the five-residue Ca fragments of the tem-
plate. The last condition allows for two-residue shifts of
the target chains along the template structure, enabling
“corrections” of the initial alignment. erest is a constant
scaling factor that sets the strength of the restraints (see
below).

The second set of the restraints originates from the
contact prediction procedure. Only a fraction of predicted
contacts are exact, i.e., they are native for the target. A
much larger fraction of the predicted contacts are “almost”
correct, i.e., they are shifted by 61 or 62 residues with
respect to native. This was taken into consideration in the
design of the restraint potential, i.e.,

Vcont 5 2εrestc for dmin , 5 ~in lattice units!

1 εrestc z ~dmin 2 6! for dmin . 6 ~in lattice units! (2)

where dmin 5 min{ri6k, j6k, k 5 0,1,2}, and the index (i, j) is
the predicted contact in the template structure. The value
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of the εrestc is scaled relative to the number Nc of predicted
contacts as follows:

εrestc 5 εrest for Nc , N (3a)

where N is the number of residues in the target protein
and:

εrestc 5 εrest z N/Nc for Nc $ N (3b)

The positive part of the above potential enters into the
total energy when it exceeds a threshold value Nc/2,
allowing for the significant violation of a small fraction of
the restraints.

The third set of restraints contains the target distances
predicted from the fragment threading procedure. The
corresponding potential could be expressed as follows:

Vdist 5 2εrestd for uri, j 2 Ri, ju , 1 ~in lattice units)

1 εrestd 4~uri, j 2 Ri , ju 2 1!/~4 1 ui 2 ju!

for uri, j 2 Ri, ju $ 1 ~in lattice units!

(4)

where r denotes the actual distance and R the predicted
one. Those terms corresponding to distances that could be
larger than the diameter of the target protein, as esti-
mated from the distance ui2ju along the chain, are ignored.
Similar to the contact restraints, the strength of the
distance restraints is scaled to account for the various
numbers, Nd, of predicted restraints

εrestd 5 εrest for Nd , N (5a)

where N is the number of residues in the target protein and:

εrestd 5 εrest z N/Nd ~for Nd $ N! (5b)

The positive part of the above potential enters into the
total energy when it exceeds a threshold value of Nd/5,
allowing for the significant violation of a small fraction of
the restraints. This reflects the structure of the data for
predicted distances, which are similar to the contact-based
restraints. Most of them are almost exact, while a fraction
of the predicted set could be qualitatively wrong.

The total energy of the restraints is the sum of the above
three components for all relevant residues (aligned) or
pairs of residues (predicted contacts or distances). There is
one adjustable parameter εrest in this scheme. The results
are not very sensitive to the specific value; however, in the
context intrinsic to the model force field, a value of ;0.5
appears to be close to optimal.

Computing an Average Structure by Means of
Distance Geometry

As a result of deficiencies in the force field, the optimal
structure prediction in a folding simulation is not always
the lowest-energy structure. To this end, it is preferable to
obtain an average or consensus structure among the
low-energy folds. Thus, from each of 20 simulations in the
second pass described above, 200 conformations were
stored in a constant interval of simulation time. The
collected structures were averaged using a two-step dis-
tance geometry, DG, procedure.31 After the first pass,
those structures far away from the average were rejected,
and the final DG conformation was constructed from the
remaining set of structures. Interestingly, DG averaging
always led to a lower RMSD from the native than the
average RMSD for the original set of conformations from
the lattice simulations. Sometimes the structures from DG
were close to the best structures seen in the folding
simulations.

Computing an Average Structure by Clustering

Folding simulations near a template can generate clus-
ters of structures with significant differences between
them as compared to the differences between the struc-
tures within each cluster.30 When present, the different
clusters arise mainly from the nonaligned portions in the
low energy folds. Therefore, it is sometimes useful to
cluster the structures into groups of different folds before
obtaining the average structures.

The clustering of structures is carried out through a
partitioning clustering technique.30 This method arranges
a collection of folds in a multidimensional space defined by
a metric given by the relative root-mean-square deviation
(RRMSD). The RRMSD is defined as the RMSD divided by
a quantity that depends on the radius of gyration of the
two structures involved, which when applied to random
structures has a mean value approaching one as the chain
length increases. The clusters are initially selected by
determining the structures with a high probability of being
at the center of the cluster, and assigning to them the
structures that are significantly close to the center. The
centroids for each cluster are determined by optimally
aligning the structures in each cluster and then computing
their average. The clusters are then refined by an iterative

TABLE I. Comparison of the Accuracy of the Models for a
“Tuning” Set of 12 Small Proteins Produced by

GENECOMP With the Previous Version of Generalized
Comparative Modeling*

Probe/
template
proteins

GENECOMP
(PROSPECTOR

1 lattice
modeling 1 DG

averaging)

Previous
comparative

approach
Generalized

modeling

1aba_/1ego_ 4.75 (90.8) 4.86 (79.3)
1bbhA/2ccy_ 3.07 (93.9) 6.82 (88.5)
1cewI/1molA 7.79 (70.4) 14.38 (63.9)
1hom_/1lfb_ 1.57 (97.7) 3.70 (58.8)
1stfI/1molA 7.07 (69.5) 5.95 (84.7)
1tlk_/2rhe_ 3.42 (95.8) 4.17 (83.5)
256bA/1bbh_ 2.44 (84.9) 4.36 (98.0)
2azaA/1paz_ 7.87 (62.8) 10.77 (62.0)
2pcy_/2azaA 4.03 (88.9) 4.41 (94.5)
2sarA/9rnt_ 5.76 (91.7) 7.83 (76.0)
3cd4_/2rhe_ 7.15 (92.8) 6.39 (85.4)
5fd1_/2fxd_ 11.99 (55.7) 12.40 (65.1)

*Root-mean-square deviations (RMSD) from native in Ångstroms (%
of the length of the alignment to the template).
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process that consists of centroid calculations followed by
the recalculation of the cluster members until a measure of
cluster quality is optimized. The resulting clusters are
compared to eliminate redundant ones. Finally, the cen-
troid structures are refined by minimizing a harmonic
potential constructed from the average distances and
standard deviations between every pair of residues for
each cluster. This final step is similar to the distance
geometry method.

For the problem at hand, the structures in each trajec-
tory are clustered to eliminate or reduce unwanted correla-
tions. The resulting centroids from all trajectories are
clustered once again to determine the significant folds.
Because the structures are significantly similar due to the
fact that we are doing folding in the vicinity of a template,
the criterion that determines the size (in terms of RRMSD)
of each cluster is determined based on the distribution of
the RRMSD between each pair of structures. In particular,
two structures with an RRMSD above the average plus
two standard deviations of the RRMSD distribution are
not allowed in the same cluster. The average energy of the
structures of the cluster is assigned to the centroids and
used to rank-order them.

Rebuilding the Atomic Details

A fast procedure was designed for reconstruction of the
atomic details from the known positions of the Ca and the
side-chains. (Given the side-chain center of mass position,
it is quite easy to obtain a quick, approximate location of
the Ca) The only constraints are the positions of the
side-chain centers of mass. The initial local Ca trace
geometry built as a geometric function of the side-chain
centers of mass is not perfect. Therefore, the positions of
Ca are optimized in the first step. This is done by a
gradient optimization procedure using a very simple force
field. There are several harmonic terms in the force field,
including the distance between consecutive Ca atoms, the
distance between the Ca atom and the side-chain center of
mass, and a term that regularizes the angular correlation
of the Ca. Thus, an improvement in local geometry occurs.
In the next stage, the positions of the backbone atoms are
reconstructed according to the local Ca trace conforma-
tion. In this step, the vector normal to the plane defined by
three consecutive Ca is calculated. This vector is almost
parallel to the peptide bond plane. Thus, the remaining
atoms of the peptide bond can be positioned quite accu-
rately. Next, the positions of the side-chain atoms are
rebuilt. The conformations of the side-chains are chosen
from a representative rotamer database. For rigid amino
acids (e.g., phenylalanine), there is a single conformation
in the database. There are up to 20 conformations for
large, flexible side-chains (e.g., lysine). The conformation
of the rotamer depends on the distance between the Ca
atom and the center of mass of the side-chain, and the local
chain conformation (i.e., the Ca–Ca–Ca angle). Next, as a
final stage of the reconstruction procedure, the side-chains
are rotated around a virtual Ca center of mass bond to
avoid excluded volume conflicts. We also note that an

alternative, but slower method of comparable accuracy
was previously developed.33

This procedure yields reasonable structures; however,
the packing of side-chains after the all-atom reconstruc-
tion is not optimized. This could be accomplished using one
of the standard molecular mechanics procedures. Here,
since we are focusing on the quality of the models gener-
ated by the GENECOMP procedure, this step has been
omitted.

Test Proteins

Two sets of proteins were selected for the purpose of
tuning and benchmarking the modeling method described
in the previous section. The first set, containing 12 pairs of
target and template proteins, is identical to the set ana-
lyzed in our previous work on the application of lattice
models for the refinement of threading models.23 For some
of these test pairs, the new threading method, PROSPEC-
TOR,9 detects different template structures. However, for
the purpose of comparison, the same templates as before
were used, regardless of whether their threading scores
are lower. The set of 12 proteins was also used to tune the
scheme proposed here for the implementation of restraints
in the lattice model. The second set of proteins was
generated by the threading procedure applied to the
Fischer database of sequences and structures.25

Application to the set of 12 proteins and comparison
with previous work

The test set of 12 proteins was used to “tune” the
strength (and their functional form) of various restraints
employed in the lattice model. This was done by comparing
the average quality of the models resulting from a series of
simulations with various scaling factors of particular
restraints generated by PROSPECTOR (see the previous
sections). The results of the modeling for the present
version of GENECOMP are compared with the pervious
version of the generalized comparative modeling in Table
I. The present GENECOMP models are better in 10 of 12
test cases. In five cases, the improvement of the models is
of a qualitative nature. Improvement of the models is not
only attributable to refined lattice modeling, but to the DG
or cluster averaging of the final models and to the (on
average) better starting models (alignments to templates)
provided by PROSPECTOR as well.

Application to the Fischer database

The list of 68 target–template protein pairs in the
Fischer database is shown in Table II together with the
nomenclature of structure type assigned by SCOP.25 This
standard database contains a wide variety of structural
types: 13 a proteins, 27 b, 18 a/b, 8 a1b, and 2 small
proteins (which have small secondary structure content).
The lengths of the proteins vary from 62 to 581 amino acid
residues. Note that the correct template protein that has
the best structural superposition in the Fischer database
to the probe structure is always used for all the probe
proteins, even when PROSPECTOR fails to assign the
correct template in the first position (PROSPECTOR cor-
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TABLE II. Target/Template Protein Sets in the Fischer Database

Target protein Template protein

PDB code Name Length Structure type by SCOP PDB code Length

1aep_ Apolipopholin III 153 a; apolipopholin III 256bA 106
1bbhA Cytochrome C 131 a; 4 helical up and down bundle 2ccyA 127
1bgeB Granulocyte colony-stimulating factor 159 a; 4 helical cytokines 1gmfA 119
1c2rA Cytochrome C2 116 a; cytochrome 1ycc 108
1cpcL C-phycocyanin 172 a; globin-like 1colA 197
1dsbA Disulfide bond formation protein 188 a; disulfide-bond formation facilitator (DSBA),

insertion domain
2trxA 108

1dxtB Hemoglobin 147 a; globin-like 1hbg_ 158
1hom_ Antennapedia protein 68 a; DNA/RNA binding 3 helical bundle 1lfb_ 77
1lgaA Lignin peroxidase 343 a; heme-dependent peroxidase 2cyp_ 293
1osa_ Calmodulin 148 a; EF hand-like 4cpv 108
1rcb_ Interleukin-4 129 a; 4 helical cytokines 1gmfA 119
2hpdA Cytochrome P-450 457 a; cytochrome P-450 2cpp_ 405
2sas_ Sarcoplasmic calcium-binding protein 185 a; EF hand-like 2scpA 174
1aaj_ Amicyanin 105 b; cupredoxins 1paz_ 120
1arb_ Achromobacter protease I 263 b; trypsin-like serine protease 4ptp_ 223
1bbt1 Foot-and-mouth disease virus 186 b; viral coat and capsid 2plv1 288
1cauB Canavalin 184 b; double-stranded b-helix 1cauA 181
1cid_ CD4 177 b; immunoglobulin-like b sandwich 2rhe_ 114
1fc1A Immunoglobulin FC fragment 207 b; immunoglobulin-like b sandwich 2fb4H 229
1ltsD Heat-labile enterotoxin 103 b; OB-fold 1bovA 69
1mdc_ Fatty acid binding protein 132 b; lipocalin 1ifc_ 131
1mup_ Major urinary protein 157 b; lipocalin 1rbp_ 174
1pfc_ Immunoglobulin p/Fc fragment 111 b; immunoglobulin-like b sandwich 3hlaB 99
1sacA Serum amyloid component 204 b; Con A-like lectin/glucanases 2ayh_ 214
1ten_ Tenascin 90 b; immunoglobulin-like b sandwich 3hhrB 195
1tie_ Erythrina trypsin inhibitor 166 b; b trefoil 4fgf_ 124
1tlk_ Telokin 103 b; immunoglobulin-like b sandwich 2rhe_ 114
2azaA Azurin 129 b; cupredoxins 1paz_ 120
2afnA Nitrite reductase 331 b; cupredoxins 1aozA 552
2fbjL Immunoglobulin FAB fragment 213 b; immunoglobulin-like b sandwich 8fabB 214
2mtaC Methylamine dehydrogenase 147 b; cupredoxins 1ycc_ 108
2omf_ OMPF porin 340 b; transmembrane b barrels 2por_ 301
2pia_ Phosphatidylinositol 3-kinase 321 b; reductase/isomerase/elongation factor

common domain
1fnr_ 296

2sga_ Proteinase A 169 b; trypsin-like serin proteases 4ptp_ 223
2sim_ Sialidase 381 b; 6 bladed b propeller 1nsbA 390
2snv_ Sindbis virus capsid protein 151 b; trypsin-like serine proteases 4ptp_ 223
3cd4_ CD4 97 b; immunoglobulin-like b sandwich 2rhe_ 114
3hlaB Class I histocompatibility antigen

A2.1
99 b; immunoglobulin-like b sandwich 2rhe_ 113

4sbvA Southern bean mosaic virus coat
protein

199 b; viral coat and capsid 2tbvA 286

8i1b_ Interleukin-1 b 146 b; b trefoil 4fgf_ 124
1aba_ Glutaredoxin 87 a/b; thioredoxin fold 1ego_ 85
1atnA Doxyribonuclease I 372 a/b; ribonuclease H-like motif 1atr_ 383
1chrA Chloromuconate cycloisomerase 370 a/b; mandelate racemase 2mnr_ 357
1crl_ Lipase 534 a/b; a/b hydrolase 1ede_ 310
1eaf_ Dihydrolipoyl transacetylase 243 a/b; CoA-dependent acyltransferases 4cla_ 213
1gal_ Glucose oxidase 581 a/b; FAD/NAD(P) binding domain 3cox_ 500
1gky_ guanylate kinase 186 a/b; p-loop containing nucleotide tryphosphate

hydrolase
3adk_ 194

1gp1A Glutathione peroxidase 184 a/b; thioredoxin fold 2trxA 108
1hrhA Ribonuclease H domain of HIV-1

reverse transcriptase
125 a/b; ribonuclease H-like motif 1rnh_ 148

1mioC Nitrogenase molybdenium–iron
protein

525 a/b; nitrogenase iron molybdenium protein a-
and b-chains

3minB 522

1npx_ NADH peroxidase 447 a/b; FAD/NAD(P) binding domain 3grs_ 461
1tahA Lipase 318 a/b; a/b-hydrolase 1tca_ 317
2ak3A Adenylate inase isoenzyme-3 226 a/b; p-loop containing nucleotide tryphosphate

hydrolases
1gky_ 186

2cmd_ Malate dehydrogenase 312 a/b; NAD(P) binding Rossmann fold 6ldh_ 329
2gbp_ D-Galactose/D-glucose binding protein 309 a/b; periplasmic binding protein-like I 2liv_ 344
2mnr_ mandelate racemase 357 a/b; TIM a/b barrel 4enl_ 436
3chy_ cheY 128 a/b; flavodoxin-like 4fxn_ 138
3rubL ribulose 1,5-bisphosphate carboxilase/

oxygenase
442 a/b; TIM a/b barrel 6xia_ 387

1cewI Cystatin 108 a 1 b; cystatin-like 1molA 94
1fxiA Ferredoxin I 96 a 1 b; b-grasp(ubiquitin-like) 1ubq_ 76
1onc_ P-30 protein 104 a 1 b; RNase-like 7rsa 124
1stfI Inhibitor stefin B 95 a 1 b; cystatin-like 1molA 94
2hhmA Inositol monophosphatase 272 a 1 b; sugar phosphatases 1fbpA 316
2pna_ Phosphatidylinositol 3-kinase 104 a 1 b; SH2-like 1shaA 103
2sarA Ribonuclease SA 96 a 1 b; microbial ribonucleases 9rnt_ 104
5fd1_ Ferredoxin 106 a 1 b; ferredoxin-like small proteins; high-

potential iron protein (HIPIP)
2fxb_ 81

1hip_ Oxidized high-potential iron protein 85 2hipA 71
1isuA High-potential iron–sulfur protein 62 Small proteins; HIPIP 2hipA 71



TABLE III. Summary of Contact Prediction Results for the
Fischer Database

Name Nc
a d 5 0b d 5 1b d 5 2b d 5 3b d 5 4b

1aaj_ 84 0.64 0.8 0.92 0.94 0.99
1aba_ 59 0.53 0.68 0.76 0.88 0.9
1aep_ 18 0 0.06 0.22 0.5 0.67
1arb_ 11 0.36 0.82 0.82 0.91 1
1atnA 134 0.28 0.54 0.75 0.82 0.86
1bbhA 58 0.5 0.59 0.64 0.72 0.83
1bbt1 15 0.2 0.27 0.73 0.87 0.93
1bgeB 9 0.67 0.78 1 1 1
1c2rA 88 0.65 0.83 0.91 0.95 0.95
1cauB 94 0.56 0.74 0.83 0.9 0.93
1cewI 34 0.44 0.71 0.76 0.85 0.88
1chrA 279 0.52 0.77 0.89 0.95 0.98
1cid_ 36 0.42 0.56 0.72 0.83 0.89
1cpcL 54 0.07 0.37 0.48 0.57 0.69
1crl_ 67 0.28 0.42 0.57 0.72 0.81
1dsbA 21 0.29 0.43 0.57 0.62 0.71
1dxtB 132 0.67 0.81 0.83 0.95 0.98
1eaf_ 145 0.45 0.66 0.75 0.86 0.93
1fc1A 50 0.66 0.82 0.88 0.92 0.96
1fxiA 43 0.16 0.47 0.65 0.79 0.86
1gal_ 217 0.6 0.77 0.86 0.9 0.93
1gky_ 75 0.35 0.6 0.72 0.81 0.83
1gp1A 9 0 0.11 0.33 0.56 0.78
1hip_ 52 0.62 0.75 0.87 0.9 0.94
1hom_ 47 0.49 0.66 0.85 0.91 0.96
1hrhA 54 0.28 0.65 0.8 0.91 0.94
1isuA 31 0.26 0.61 0.9 0.94 0.94
1lgaA 145 0.62 0.82 0.86 0.95 0.97
1ltsD 31 0.16 0.45 0.77 0.87 0.9
1mdc_ 14 0.36 0.5 0.64 0.64 0.64
1mioC 178 0.54 0.78 0.86 0.9 0.96
1mup_ 98 0.57 0.8 0.91 0.97 0.98
1npx_ 237 0.62 0.74 0.86 0.93 0.95
1onc_ 99 0.68 0.85 0.92 0.95 0.96
1osa_ 116 0.43 0.53 0.62 0.67 0.68
1pfc_ 102 0.31 0.55 0.76 0.82 0.87
1rcb_ 41 0.46 0.66 0.78 0.85 0.98
1sacA 67 0.16 0.31 0.45 0.54 0.66
1stfI 22 0.45 0.45 0.64 0.77 0.82
1tahA 12 0.42 0.92 0.92 1 1
1ten_ 42 0.12 0.6 0.71 0.86 0.9
1tie_ 28 0.43 0.64 0.75 0.79 0.82
1tlk_ 65 0.74 0.83 0.94 0.97 0.98
2afnA 31 0.06 0.35 0.45 0.68 0.71
2ak3A 92 0.23 0.45 0.62 0.74 0.79
2azaA 105 0.15 0.28 0.53 0.6 0.7
2cmd_ 230 0.58 0.75 0.83 0.94 0.96
2fbjL 47 0.55 0.7 0.81 0.89 1
2gbp_ 72 0.58 0.79 0.89 0.96 0.97
2hhmA 47 0.4 0.66 0.77 0.83 0.96
2hpdA 87 0.48 0.74 0.84 0.91 0.92
2mnr_ 45 0.42 0.51 0.71 0.76 0.84
2mtaC 1 1 1 1 1 1
2omf_ 17 0.06 0.29 0.47 0.76 0.82
2pia_ 14 0.14 0.36 0.64 0.64 0.71
2pna_ 26 0.81 0.85 0.88 0.96 0.96
2sarA 39 0.31 0.72 0.9 0.97 0.97
2sas_ 155 0.43 0.62 0.7 0.77 0.84
2sga_ 0 0.43 0.62 0.7 0.77 0.84
2sim_ 10 0.4 0.6 0.6 0.7 0.9
2snv_ 30 0.33 0.6 0.7 0.83 0.93
3cd4_ 99 0.42 0.58 0.74 0.78 0.83
3chy_ 33 0.36 0.73 0.82 0.88 0.97
3hlaB 36 0.53 0.69 0.89 0.89 0.94
3rubL 53 0.06 0.28 0.58 0.77 0.85
4sbvA 58 0.36 0.64 0.84 0.88 0.9
5fd1_ 32 0.09 0.34 0.53 0.75 0.75
8i1b_ 59 0.46 0.73 0.85 0.92 0.95
average 0.41 0.61 0.75 0.83 0.88
aNc is the total number of predicted contacts.
bFraction of contacts correctly predicted within d 5 6 m residues.
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rectly places 61 of 68 pairs in the top position). We focus on
the correct probe–template pairs because the aim of this
article is to demonstrate the ability of the GENECOMP
algorithm to refine the initial alignments generated by
PROSPECTOR.

Accuracy of Threading-Based Contact Prediction

Table III presents the results of our threading-based
approach to contact prediction. On average, 41% of the
contacts are correctly predicted and 75% are correctly
predicted within 62 residues of a correct contact. Since
contacts are predicted on an iterative basis, when the
fraction of contacts is an appreciable fraction of the entire
structure, it is quite likely that the probe–template align-
ment is significant. This is confirmed in Figure 2, where
the ratio Rc of the number of contacts to the number of
residues exceeds 50%. In 16 of 19 cases, the RMSD of the
aligned regions is ,8 Å and for 9 cases it is ,5 Å. Thus, one
can be reasonably confident of a good starting model when
Rc is .0.5.

Optimization of the SICHO Lattice Model by the
Replica Exchange Monte Carlo Method

Table IV presents the properties of the starting struc-
tures. As shown in column three, although correct tem-
plates are used in the initial threading, the threading
alignments do not always cover a large portion of the probe
proteins. Indeed, for some cases, this coverage drops
around 50%. This is why the RMSD of the aligned region
from the native structure and that of the whole protein
sometimes differ significantly.

The simulation results are summarized in Table V. We
have shown both the lowest-energy structure and the
smallest RMSD structure (i.e. the best possible prediction)
in the table but, in what follows, the results of the
lowest-energy structures are reported unless otherwise
indicated, because in general there is no way to guess what
the lowest RMSD structure is in a blind prediction. A total
of 31 out of 68 targets resulted in structures whose RMSD
(whole protein) is ,10 Å from the native structures. If only
the targets with good threading results (those with ,10 Å
RMSD from the native are shown with asterisks in Table
V) are counted, 29 of 31 remain ,10 Å RMSD (exceptions
are 1ltsD, which is 10.25 Å and 2sgaA, which is 12.00 Å
from native, respectively) and 21 resulted in structures
whose RMSD from native is ,6 Å.

The dependence of the results on the quality of the
initial threading alignment is shown in Figure 3A,B.
Figure 3A compares the RMSD of the aligned region
obtained from threading with the RMSD of the same
region in the lowest-energy structure extracted from the
simulations. Here the slope of the best fitting line is 0.96;
and some of the lower initial RMSD structures exhibit the
most dramatic improvement (lower left-hand corner). Fig-
ure 3B plots the RMSD of the entire initial structure
versus the RMSD of the entire final structure that is
extracted from the clustering algorithm. This is well
described by a line with a slope of 1.03 and an intercept of
21.56. This curve provides a crude estimate of the likely

global RMSD after refinement. On average, the structures
improve, as evidenced by the average of the ratio of the
final RMSD to the initial RMSD that is 0.86. For those
targets with .10 Å RMSD starting structures, 26 out of 37
(70.3%) showed an improvement in terms of the RMSD of
the whole protein. By contrast, for targets with ,10 Å
RMSD starting structures, 27 out of 31 (87.1%) showed
some improvement. Especially, 15 of the 16 targets whose
RMSD of the starting structure lies between 6 Å and 10 Å
showed a positive improvement, and 6 out of 16 improved
by .2 Å. Generally, it may be stated that a significant
improvement occurs when the threading result is rather
poor but not so bad as to be nonsensical. If the initial
threading result is very accurate, there is no significant
room for improvement. Another important thing that
should be noted here is that in almost all cases, the
resulting structure has either improved, or when this is
not the case, then the level of deterioration is very small.
This observation also holds for the aligned region of the
proteins, which are never .1 Å worse than their threading
results (Fig. 3A). This degradation of structure quality is
insignificant and recoverable by the clustering or DG
procedure. In this sense, these simulations do no harm to
the threading-based structure and can be applied to all
situations with impunity.

Figure 4A–C presents typical examples of trajectories of
the three classes of targets. When the threading result is
good as in Figure 4A (1tlk_), then both the RMSD and
energy do not change much during the simulation. Basi-
cally the structure fluctuates near the initial structure. In
the case of 2azaA, (Fig. 4B), whose threading result lies in
the intermediate range of RMSD, a reduction of both
RMSD and energy are observed in the early time steps and
the RMSD gradually continues to reduce. Generally, this
drop of RMSD in the early stage of the simulation corre-
sponds to the relaxation of the initial structure including
that of the unaligned region of the threading template. For
1cid_ (Fig. 4C), which has poor initial threading results,

Fig. 2. Root-mean-square deviation (RMSD) of the aligned template
region with respect to the probe native structure is plotted as a function of
the ratio of the number of predicted contacts to the number of residues in
the protein.
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TABLE IV. Initial Properties*

Target
protein

No. of aligned
residues

Alignment
coverage

(%)
RMSD from threading
result (aligned region)

RMSD of initial
structure

(aligned region)

RMSD of initial
structure

(whole protein)

1aaj_ 87 82.86 6.74 8.57 13.37
1aba_ 79 90.81 6.52 6.89 7.09
1aep_ 98 64.05 18.36 18.73 18.13
1arb_ 213 80.99 16.32 16.55 17.93
1atnA 280 75.27 12.42 12.40 14.13
1bbhA 123 93.89 2.74 2.99 3.34
1bbt1 207 97.18 12.73 10.92 10.82
1bgeB 110 62.86 8.50 6.02 10.29
1c2rA 99 85.35 4.35 4.77 5.91
1cauB 147 89.63 5.18 4.33 4.92
1cewI 76 70.37 4.85 5.77 9.59
1chrA 344 92.97 3.50 4.91 5.76
1cid_ 99 55.93 19.76 19.99 20.55
1cpcL 140 81.40 15.71 15.27 15.20
1crl_ 255 47.75 20.01 20.43 23.04
1dsbA 94 51.65 12.46 11.77 15.39
1dxtB 136 92.52 2.74 2.97 3.62
1eaf_ 175 78.13 13.25 11.29 11.37
1fc1A 200 96.62 12.99 13.07 13.08
1fxiA 59 61.46 10.94 11.34 11.84
1gal_ 430 74.01 15.03 12.45 14.59
1gky_ 159 85.48 6.68 6.70 7.86
1gp1A 104 52.79 8.03 8.31 13.63
1hip_ 68 80.00 3.55 3.71 4.92
1hom_ 43 97.73 5.56 2.92 2.94
1hrhA 117 86.03 6.59 5.26 8.12
1isuA 59 95.16 6.06 6.32 6.29
1lgaA 246 77.60 12.45 10.49 14.87
1ltsD 59 59.00 9.99 10.29 12.65
1mdc_ 128 96.97 2.62 3.17 3.27
1mioC 464 88.38 14.48 14.57 16.07
1mup_ 147 93.63 5.56 5.53 5.84
1npx_ 412 92.17 14.56 14.59 14.42
1onc_ 102 98.08 3.81 3.85 4.00
1osa_ 104 70.27 16.84 17.86 20.81
1pfc_ 91 89.22 3.84 5.51 6.51
1rcb_ 92 71.32 6.28 6.13 7.17
1sacA 156 76.47 18.13 17.89 18.93
1stfI 75 76.53 6.66 5.55 8.52
1tahA 181 56.92 19.00 19.36 19.93
1ten_ 84 93.33 5.60 4.70 4.79
1tie_ 103 59.88 10.85 10.97 12.49
1tlk_ 92 95.83 4.61 4.36 4.37
2afnA 299 95.83 25.27 23.56 23.60
2ak3A 162 78.26 15.63 19.83 19.49
2azaA 81 62.79 7.605 8.78 11.00
2cmd_ 299 95.83 5.016 5.24 5.43
2fbjL 201 94.37 10.30 10.59 10.68
2gbp_ 242 80.94 10.72 10.57 12.23
2hhmA 195 71.69 15.26 15.81 20.24
2hpdA 378 85.33 6.44 6.11 7.44
2mnr_ 341 95.52 14.92 15.06 15.27
2mtaC 96 65.31 14.35 14.53 15.68
2omf_ 279 82.06 23.61 23.69 23.47
2pia_ 255 79.44 15.72 15.88 18.03
2pna_ 27 46.55 10.69 9.19 10.50
2sarA 88 91.67 6.36 6.51 6.94
2sas_ 160 86.49 6.45 6.88 7.56
2sga_ 179 98.90 11.02 10.92 11.78
2sim_ 252 66.14 17.74 22.18 22.29
2snv_ 127 84.11 14.28 13.64 14.70
3cd4_ 90 92.78 7.02 6.97 7.49
3chy_ 111 86.72 6.07 6.20 6.70
3hlaB 74 83.15 10.30 10.02 9.88
3rubL 315 66.04 24.19 23.93 24.45
4sbvA 194 97.49 18.68 18.82 18.75
5fd1_ 59 55.66 10.95 11.03 13.80
8i1b_ 108 73.97 11.31 12.44 13.44

*All root-mean-square deviation (RMSD) values are in Ångstroms.
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the structure did not improve much during the simulation,
although the drop of energy in the early stage is still
observed. In this particular case, the energy terms describ-
ing the generic stiffness, amino acid pair potential, hydro-
gen bond and amino acid burial (for a detailed explanation
of these energy terms, see, for example, the previous
article23) are reduced, but this was not enough to drive the
structure in the correct direction.

We have also investigated the influence of other possible
factors on the simulation results. The first question is
whether some structural types of proteins are easier to
refine (Table II). It may be worth mentioning that 22 out of
27 b proteins achieved some improvement regardless of
the quality of the threading results. Looking at the trajec-
tories of those proteins that exhibited some improvement
in spite of a bad initial threading alignment, the RMSD of
the final structures were better because of the regulariza-

TABLE V. Results of Lattice Simulations

Target
proteina

Lowest-energy structure Smallest RMSD structure

RMSD
(whole
protein)

RMSD
(aligned region)

RMSD
(whole
protein)

RMSD
(aligned region)

*1aaj_ 8.42 6.17 6.15 4.92
*1aba_ 5.58 5.62 3.55 3.31
1aep_ 18.34 19.23 18.32 17.98
1arb_ 17.30 16.62 15.78 15.78
1atnA 13.33 12.06 12.00 11.22
*1bbhA 3.65 3.38 2.71 2.53
1bbt1 10.81 10.92 9.57 9.33
*1bgeB 6.27 6.02 5.04 4.93
*1c2rA 5.37 4.77 4.31 3.85
*1cauB 5.69 4.47 4.04 3.63
*1cewI 7.35 4.35 4.10 3.54
*1chrA 5.11 3.79 3.77 3.36
1cid_ 18.64 18.57 14.05 13.55
1cpcL 13.15 13.02 12.30 12.25
1crl_ 24.21 20.13 21.35 19.67
1dsbA 15.94 13.01 11.58 8.13
*1dxtB 3.53 3.15 2.91 2.60
1eaf_ 10.09 12.65 9.27 12.06
1fc1A 12.89 12.97 12.43 12.50
1fxiA 10.28 10.80 8.53 9.20
1gal_ 17.00 14.44 14.05 11.58
*1gky_ 7.76 6.27 6.13 5.75
1gp1A 14.75 8.98 9.08 9.63
*1hip_ 4.86 4.40 3.92 3.33
*1hom_ 5.00 4.48 1.50 2.82
*1hrhA 5.50 5.11 4.90 4.25
*1isuA 4.23 4.31 3.20 3.19
1lgaA 17.13 12.51 13.10 11.81
*1ltsD 10.25 9.95 8.11 7.79
*1mdc_ 3.12 2.95 2.55 2.51
1mioC 15.19 14.35 14.05 13.57
*1mup_ 4.46 4.55 4.14 4.20
1npx_ 13.75 13.97 13.61 13.76
*1onc_ 3.53 3.29 3.08 3.01
1osa_ 17.57 17.34 16.56 16.18
*1pfc_ 4.48 4.25 3.81 3.63
*1rcb_ 5.52 5.06 3.91 3.50
1sacA 18.21 17.43 16.89 15.51
*1stfI 7.38 4.84 4.97 4.40
1tahA 21.60 18.57 18.90 18.28
*1ten_ 3.96 4.01 3.16 3.17
1tie_ 12.88 12.82 10.74 10.73
*1tlk_ 3.19 3.33 2.35 2.35
2afnA 23.23 24.83 22.60 24.20
2ak3A 15.51 15.44 14.65 14.57
*2azaA 8.40 6.85 6.33 5.70
*2cmd_ 4.74 4.72 4.22 4.19
2fbjL 8.67 8.67 7.77 7.52
2gbp_ 10.46 9.64 9.50 8.96
2hhmA 17.09 14.98 15.22 13.30
*2hpdA 6.07 5.48 5.41 5.14
2mnr_ 14.07 13.98 13.55 13.55
2mtaC 15.84 13.98 14.04 12.84
2omf_ 23.51 23.06 21.82 21.99
2pia_ 17.29 15.25 15.64 14.47
2pna_ 11.31 9.52 7.27 7.80
*2sarA 5.93 5.70 4.88 4.77
*2sas_ 5.78 5.75 5.51 5.31
*2sga_ 11.87 12.00 9.78 10.68
2sim_ 19.79 17.06 16.52 15.50
2snv_ 13.72 13.23 12.78 12.09
*3cd4_ 7.26 6.93 5.98 5.63
*3chy_ 4.53 4.53 3.58 3.30
3hlaB 8.96 9.18 4.72 4.59
3rubL 24.19 23.72 22.26 21.73
4sbvA 18.12 18.19 17.73 17.75
5fd1_ 11.64 10.52 10.70 9.34
8i1b_ 12.58 12.01 10.77 10.59

*Asterisk (*) indicates those proteins for which the lowest-energy
structure has an RMSD of ,10 Å from native. All root-mean-square
deviation (RMSD) values are in Ångstroms.

Fig. 3. A: Comparison of the root-mean-square deviation (RMSD) of
the initial aligned region with the template with respect to the native
structure versus the RMSD with respect to native of this same region in
the lowest-energy structure. B: Comparison of the RMSD with respect to
native of the entire initial structure with the RMSD with respect to native of
the average structure extracted from clustering.
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tion of b-strands and sheets and because they are compact.
The number of targets with good results (,10 Å RMSD)
for each structural type can be readily explained by the
fact that most have good initial threading results. There
is a weak correlation between the length of the target
chain and the final RMSD (the correlation coefficient
between protein size and the whole protein RMSD is
0.53). But this is the same range as the correlation
between the chain length and RMSD of the initial
threading results (0.52). Finally, we observed that there
was no correlation between the number of secondary or
tertiary restraints used and the improvement in the
RMSD during the simulation.

Figure 5A–E compares the initial, final (DG based
structures), as well as the Modeller structures (see below)
for 1aba_, 1rcb_, 1ten_, and 3chy_. In all five cases, the
RMSD of the final structure is lower than that of the initial
model, and Modeller is found to perform significantly
poorer in this limited set; we return to this point below.
Interestingly, sometimes even for rather good initial struc-
tures (e.g., 1onc_) the structures can improve somewhat.
Other times, such as in 1rcb_, the improvement is minor,
but there are cases, such as 1aba_, 1ten_, and 3chy_,

where the improvement in the backbone RMSD is on the
order of 2 Å.

Turning once again to Table V, none of the lowest-energy
structures corresponds to the smallest RMSD structure.
Thus, the potential energy needs to be improved. But in
the meanwhile, a practical way to get the best possible
structure out of the pool of structures generated by the
series of simulations is needed. The following structure
refinement procedures were undertaken to achieve this
aim.

Selection of Structures by Distance Geometry

As shown in Table VI, application of distance geom-
etry (DG) with the protocol outlined in the Methods
section usually leads to a better structure selection than
the structure of lowest conformational energy. In 53 of
68 cases, the structures have a lower RMSD from the
native structure after the application of DG. Usually the
improvement is small, in the range of 0.3 Å. However, in
a number of cases, it is quite significant; in 10 cases the
improvement is .1.0 Å and in 4 cases, it is .2.0 Å. Only
in two cases were the structures after DG significantly

Fig. 4. Representative lattice simulation trajectories. A: The case of 1tlk_ whose initial threading result is 4.61 Å root-mean-square deviation (RMSD)
from the native structure. A-1: The RMSD from native structure. The red line is whole protein RMSD and the green line is template region RMSD. A-2:
The energy is shown for the same simulation shown in A-1. B: A case of 1tie_. RMSD of the threading result is 7.88 Å. C: A case of 1cid_. RMSD of the
threading result is 19.8 Å. The trajectory that contains the lowest-energy structure is shown for these three targets.
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worse than the lowest-energy structures (difference of
.1.0 Å).

Results of Clustering

In general, comparison of the best centroid with the
lowest-energy structure showed only marginal improve-
ment. As shown in Table VI, for the 68 structures, the
centroid RMSD improved on average by ;0.3 Å over the
lowest-energy structures. Even though the centroids in
most cases were similar in quality to the lowest-energy
structures, only in a few cases were the centroids worse
than the lowest-energy structures; however, in many cases
the centroids were significantly better. In 52 of 68 cases,
the structure generated by clustering has a lower RMSD
from native than the lowest-energy structure. Two cen-
troids (1stfI and 1aep) were worse by .1 Å as compared
with the lowest-energy structures, while eight centroids
(2fbjL, 1ltsD, 1fc1A, 1aba, 1cid, 1rcb, 3hlaB, 2azaA) were
.1 Å better than the lowest-energy structures. Clustering
is clearly the better procedure than distance geometry, as
it generates (sometimes only slightly) better structures in
38 cases than distance geometry does, while distance
geometry is better in 30 cases. Considering that clustering
performs significantly better in ab initio folding, we will
employ clustering in future work.

Comparison With Modeller

Several comparative modeling tools were recently devel-
oped. One of the most widely used is Modeller, developed
by Sali and colleagues2,3,34,35 Modeller allows for the
high-throughput modeling of protein structures on a
genomic scale.3 Since the method presented here is more
complex and more CPU intensive, (but high-throughput
simulations are certainly possible), the key question is
whether GENECOMP performs sufficiently better to jus-
tify the increased computational cost. To answer this
question, we compared the structures generated by
GENECOMP with Modeller in Table VII. Both procedures
started from exactly the same templates and the same
alignments generated by PROSPECTOR. If all models are
considered, then GENECOMP performs better than Mod-
eller in 53 cases, worse in 13 cases, and the same in two
cases. Considering only templates whose RMSD is ,10 Å,
then GENECOMP performs better in 29 cases, Modeller
performs better in 5 cases, and they perform the same in
one case. However, when Modeller does perform better,
the two structures differ by a small amount. In many cases
of very good (or good) templates, the two methods generate
models of similar quality. The situation changes when the
level of homology becomes weaker and when, conse-
quently, the threading models are more distant from the
probe structure. Here, the models generated by
GENECOMP are almost always of noticeably better accu-
racy. We can most likely ignore those cases when both
methods lead to very bad models. As can easily be seen
from the data compiled in Table VII within the range of
4–8 Å RMSD, GENECOMP almost always generated
better models than Modeller. The typical difference is 1–2
Å; however, in a few cases it is as much as 4–5 Å. Thus, on
average the proposed method leads to qualitatively better
molecular models that will have significant consequences
for structure-based protein function prediction and other
aspects of proteomics.

DISCUSSION

In this article, we present a refined generalized compara-
tive modeling method, GENECOMP, designed to improve
the quality of moderate-resolution threading models. The
basic idea of the approach is to perform ab initio folding
using a lattice protein model, SICHO,23 in the vicinity of
an alignment to a template provided by the threading
algorithm PROSPECTOR.9 PROSPECTOR also provides
predicted contacts and secondary structure not only for the
template-aligned regions but also possibly for the un-
aligned regions by garnering additional information from
other structures. This information is incorporated into the
refinement algorithm and can therefore improve the un-
aligned regions as well. Since the lowest-energy structure
generated by the simulations does not necessarily have the
lowest RMSD from the native structure, we employed two
structure selection protocols: Distance Geometry31 and
clustering.30 Clustering is found to generate somewhat
better quality structures in 38 of 68 cases. The resulting
structures can also be converted to atomic detail models.
In general, when applied to the Fischer database25 we

Figure 4. (Continued.)

GENERALIZED COMPARATIVE MODELING (GENECOMP) 145



have found that the protocol does no harm and in a signifi-
cant number of cases improves upon the initial threading
model, sometimes dramatically. The procedure is readily
automated and can be implemented on a genomic scale.

The question is why and when this method would work.
Clearly the quality of the results depends of the initial
alignment quality, with initial template alignments within
the range of ,10 Å, likely to see some improvement in the
template alignment. Since the method also has the capac-
ity of improving the quality of unaligned regions if these
are not too long or if there are predicted contacts that are

reasonably accurate then improvement in these regions
can be expected. As in ab initio folding, for sufficiently
large inserted regions in general the quality of the model is
intimately tied to the quality of the predicted contacts.
However, since the lattice model has a resolution of ;3 Å
RMSD from native (due to deficiencies in the force field;
note that the geometric resolution of the SICHO model is
;0.8 Å), templates below this RMSD cannot be effectively
treated. Also we do not differ between good and poor
templates; clearly this needs to be done. That is if one has a
very good template, one would want to tightly bind the

Fig. 5. Representative initial, final and Modeller structures for 1aba_(A), 1rcb_(B), 1ten_(C), and 3chy_(D). The native structure is shown in the thin
tube, and the predicted structure is in the thick tube.
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probe sequence to it, whereas if the template is poor, then
it should be loosely bound. Efforts are now underway to
incorporate this feature into GENECOMP. Thus, there are
a number of features of this protocol that demand improve-
ment. Because the quality of the initial models depends on
the initial alignment, threading algorithms that generate
better alignments are required. Furthermore, a better
procedure for the selection of lower RMSD structures
needs to be developed. One promising way is to rebuild
atomic models and then select the structure using heavy
atom knowledge-based potentials.

In spite of its inadequacies, the existing procedure repre-
sents a significant step toward the development of tech-
niques that refine moderate resolution threading models.
Such a protocol is required to enhance the yield of true
positives for structure-based functional annotation. Active
site descriptors such as the FFF developed by Fetrow and
Skolnick1,16–19,36 require that the active site residues be
more or less correctly positioned (the backbone RMSD in the
vicinity of the active site should be ;4–5 Å). If not, a
false-negative will result. The current protocols offer the
promise of improving the quality of the alignment and of

Figure 5. (Continued.)
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TABLE VI. Comparison of Lowest Energy, Distance
Geometry-Generated, Cluster-Based and Best Possible

Structures*

Target Lowest energy DG Clustering Best structure

1aaj_ 8.42 9.37 9.04 6.15
1aba_ 5.58 4.75 3.95 3.55
1aep_ 18.34 21.45 22.38 18.32
1arb_ 17.30 17.46 17.80 15.78
1atnA 13.33 13.16 13.26 12.00
1bbhA 3.65 3.07 2.99 2.71
1bbt1 10.81 10.70 10.80 9.57
1bgeB 6.27 5.45 5.71 5.04
1c2rA 5.37 5.34 5.30 4.31
1cauB 5.69 5.45 5.41 4.04
1cewI 7.35 7.79 7.85 4.10
1chrA 5.11 4.90 4.78 3.77
1cid_ 18.64 18.44 17.36 14.05
1cpcL 13.15 13.58 13.19 12.30
1crl_ 24.21 24.09 24.93 21.35
1dsbA 15.94 16.47 15.90 11.58
1dxtB 3.53 3.01 3.08 2.91
1eaf_ 10.09 10.32 10.10 9.27
1fc1A 12.89 13.12 13.01 12.43
1fxiA 10.28 10.18 10.22 8.53
1gal_ 17.00 17.80 17.38 14.05
1gky_ 7.76 6.36 8.94 6.13
1gp1A 14.75 13.74 15.06 9.08
1hip_ 4.86 4.26 4.13 3.92
1hom_ 5.00 1.57 1.70 1.50
1hrhA 5.50 5.07 5.07 4.25
1isuA 4.23 5.07 4.09 3.20
1lgaA 17.13 15.59 16.58 13.10
1ltsD 10.25 10.21 9.52 8.11
1mdc_ 3.12 2.66 2.65 2.55
1mioC 15.19 14.71 14.94 14.05
1mup_ 4.46 4.38 4.51 4.14
1npx_ 13.75 14.12 14.10 13.61
1onc_ 3.53 3.51 3.29 3.08
1osa_ 17.57 17.90 17.85 16.56
1pfc_ 4.48 4.28 4.46 3.81
1rcb_ 5.52 6.09 4.30 3.91
1sacA 18.21 18.81 19.16 16.89
1stfI 7.38 7.07 8.11 4.97
1tahA 21.60 21.51 21.47 18.90
1ten_ 3.96 3.62 3.49 3.16
1tie_ 12.88 12.98 12.55 10.74
1tlk_ 3.19 3.42 3.32 2.35
2afnA 23.23 25.05 23.55 22.60
2ak3A 15.51 15.46 15.29 14.65
2azaA 8.40 7.87 7.27 6.33
2cmd_ 4.74 4.44 4.49 4.22
2fbjL 8.67 8.78 8.71 7.77
2gbp_ 10.46 10.07 10.37 9.50
2hhmA 17.09 17.57 17.31 15.22
2hpdA 6.07 5.83 5.81 5.41
2mnr_ 14.07 14.28 14.27 13.55
2mtaC 15.84 16.49 16.64 14.04
2omf_ 23.51 23.45 24.29 21.82
2pia_ 17.29 16.77 18.41 15.64
2pna_ 11.31 8.92 10.90 7.27
2sarA 5.93 5.76 5.85 4.88
2sas_ 5.78 6.11 5.95 5.51
2sga_ 11.87 10.49 11.94 9.78
2sim_ 19.79 18.57 17.47 16.52
2snv_ 13.72 13.84 13.38 12.78
3cd4_ 7.26 7.15 7.05 5.98
3chy_ 4.53 4.36 4.59 3.58
3hlaB 8.96 8.63 8.66 4.72
3rubL 24.19 24.15 23.71 22.26
4sbvA 18.12 18.53 18.99 17.73
5fd1_ 11.64 11.99 11.75 10.70
8i1b_ 12.58 12.88 12.82 10.77

*All root-mean-square deviation (RMSD) values are in Ångstroms.

TABLE VII. Comparison of Generalized Comparative
Modeling with Modeller*

Probe GENECOMP 1 DG Modeller

1aaj_ 9.37 10.13
1aba_ 4.75 6.66
1aep_ 21.45 21.56
1arb_ 17.46 18.56
1atnA 13.16 15.61
1bbhA 3.07 3.02
1bbt1 10.7 10.21
1bgeB 5.45 10.34
1c2rA 5.34 5.84
1cauB 5.45 5.93
1cewI 7.79 8.47
1chrA 4.9 4.57
1cid_ 18.44 20.19
1cpcL 13.58 15.62
1crl_ 24.09 25.89
1dsbA 16.47 16.37
1dxtB 3.01 3.05
1eaf_ 10.32 10.82
1fc1A 13.12 15.02
1fxiA 10.18 11.27
1gal_ 17.8 18.86
1gky_ 6.36 11.82
1gp1A 13.74 15.22
1hip_ 4.26 4.06
1hom_ 1.57 1.73
1hrhA 5.07 6.95
1isuA 5.07 5.84
1lgaA 15.59 14.72
1ltsD 10.21 10.88
1mdc_ 2.66 2.66
1mioC 14.71 16.78
1mup_ 4.38 4.93
1npx_ 14.12 14.48
1onc_ 3.51 5.14
1osa_ 17.9 16.89
1pfc_ 4.28 4.39
1rcb_ 6.09 8.55
1sacA 18.81 18.78
1stfI 7.07 12.76
1tahA 21.51 23.47
1ten_ 3.62 5.2
1tie_ 8.6 9.3
1tlk_ 3.42 4.31
2afnA 25.05 25.67
2ak3A 15.46 19.89
2azaA 7.87 9.48
2cmd_ 4.44 5.13
2fbjL 8.78 11.47
2gbp_ 10.07 10.5
2hhmA 17.57 21.08
2hpdA 5.83 6.96
2mnr_ 14.28 14.5
2mtaC 16.49 17.9
2omf_ 23.45 25.34
2pia_ 16.77 16.56
2pna_ 8.92 10.64
2sarA 5.76 6.59
2sas_ 6.11 6.97
2sga_ 10.49 13.45
2sim_ 18.57 14.43
2snv_ 13.84 12.95
3cd4_ 7.15 7.25
3chy_ 4.36 6.18
3hlaB 8.63 9.6
3rubL 24.15 25.6
4sbvA 18.53 18.93
5fd1_ 11.99 15.03
8i1b_ 12.88 13.76

*All root-mean-square deviation (RMSD) values are in Ångstroms.
The same alignments (see Table IV) were used as starting templates
for GENECOMP and for Modeller.
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increasing the yield of true positives in biochemical function
prediction.

Currently we are applying this methodology to refine the
set of threading-based structures in the M. genitalium
genome.26 Here all structures with a threading Z-score of
.1 will be subjected to GENECOMP, and all predicted
models will be provided on the web. This is but a first effort
at genomic-scale threading model refinement; an effort
that will receive increased emphasis in the next few years.

REFERENCES

1. Skolnick J, Fetrow JS, Kolinski A. Structural genomics and its
importance for gene function analysis. Nature Biotechnol 2000;18:
283–287.

2. Sanchez R, Sali A. Evaluation of comparative protein structure
modeling by MODELLER-3. Proteins 1997;Suppl 1:50–58.

3. Sanchez R, Pieper U, Mirkovic N, de Bakker PI, Wittenstein E,
Sali A. MODBASE, a database of annotated comparative protein
structure models. Nucleic Acids Res 2000;28:250–253.

4. Sternberg MJ, Bates PA, Kelley LA, MacCallum RM. Progress in
protein structure prediction: assessment of CASP3. Curr Opin
Struct Biol 1999;9:368–373.

5. Alwyn Jones T, Kleywegt GJ. CASP3 comparative modeling
evaluation. Proteins 1999;Suppl 3:30–46.

6. Bryant SH. Evaluation of threading specificity and accuracy.
Proteins 1996;26:172–185.

7. Jones DT. GenTHREADER: an efficient and reliable protein fold
recognition method for genomic sequences. J Mol Biol 1999;287:
797–815.

8. Wilmanns M, Eisenberg D. Inverse protein folding by the residue
pair preference profile method. Protein Eng 1995;8:626–639.

9. Skolnick J, Kihara D. Defrosting the frozen approximation: PROS-
PECTOR: a new approach to threading. Proteins 2001;42:319–
331.

10. Panchenko AR, Marchler-Bauer A, Bryant SH. Combination of
threading potentials and sequence profiles improves fold recogni-
tion. J Mol Biol 2000;296:1319–1331.

11. Panchenko A, Marchler-Bauer A, Bryant SH. Threading with
explicit models for evolutionary conservation of structure and
sequence. Proteins 1999;Suppl 3:133–140.

12. Lee J, Liwo A, Ripoll DR, Pillardy J, Scheraga HA. Calculation of
protein conformation by global optimization of a potential energy
function. Proteins 1999;Suppl 3:204–208.

13. Ortiz A, Kolinski A, Rotkiewicz P, Ilkowski B, Skolnick J. Ab initio
folding of proteins using restraints derived from evolutionary
information. Proteins 1999;(suppl 3):177–185.

14. Simons KT, Bonneau R, Ruczinski I, Baker D. Ab initio protein
structure prediction of CASP III targets using ROSETTA. Pro-
teins 1999;37(suppl 3):171–176.

15. Orengo CA, Bray JE, Hubbard T, LoConte L, Sillitoe I. Analysis
and assessment of ab initio three-dimensional prediction, second-
ary structure, and contacts prediction. Proteins 1999;37:149–170.

16. Fetrow JS, Skolnick J. Method for prediction of protein function
from sequence using the sequence-to-structure-to-function para-
digm with application to glutaredoxins/thioredoxins and T1 ribo-
nucleases. J Mol Biol 1998;281:949–968.

17. Fetrow JS, Godzik A, Skolnick J. Functional analysis of the
Escherichia coli genome using the sequence-to-structure-to-

function paradigm: identification of proteins exhibiting the glutare-
doxin/thioredoxin disulfide oxidoreductase activity. J Mol Biol
1998;282:703–711.

18. Skolnick J, Fetrow J. From genes to protein structure and
function: novel applications of computational approaches in the
genomic era. TIBTECH 2000;18:34–39.

19. Zhang L, Godzik A, Skolnick J, Fetrow JS. Functional analysis of
the Escherichia coli genome for members of the alpha/beta
hydrolase family. Fold Des 1998;3:535–548.

20. Gerstein M. Patterns of protein-fold usage in eight microbial
genomes: a comprehensive structural census. Proteins 1998;33:
518–534.

21. Hegyi H, Gerstein M. The relationship between protein structure
and function: a comprehensive survey with application to the
yeast genome. J Mol Biol 1999;288:147–164.

22. Kelley LA, MacCallum RM, Sternberg MJ. Enhanced genome
annotation using structural profiles in the program 3D- PSSM. J
Mol Biol 2000;299:499–520.

23. Kolinski A, Rotkiewicz P, Ilkowski B, Skolnick J. A method for
improvement of threading based models. Proteins 1999;37:592–
610.

24. Skolnick J, Kolinski A. A unified approach to the prediction of
protein structure and function. Adv Chem Phys 2001;in press.

25. Fischer D, Elofsson A, Rice D, Eisenberg D. Assessing the
performance of fold recognition methods by means of a comprehen-
sive benchmark. Pacific Symp Biocomput 1996;300–318.

26. Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA,
Fleischmann RD, Bult CJ, Kerlavage AR, Sutton G, Kelley JM, et
al. The minimal gene complement of Mycoplasma genitalium.
Science 1995;270:397–403.

27. Kolinski A, Skolnick J. Assembly of protein structure from sparse
experimental data: an efficient Monte Carlo model. Proteins
1998;32:475–494.

28. Swendsen RH, Wang JS. Replica Monte Carlo simulation of spin
glasses. Phys Rev Lett 1986;57:2607–2609.

29. Gront D, Kolinski A, Skolnick J. Comparison of three Monte Carlo
search strategies for a proteinlike homopolymer model: folding
thermodynamics and identification of low energy structures.
J Chem Phys 2000;113:5065–5071.

30. Betancourt M, Skolnick J. Finding the needle in a haystack:
Educing protein native folds from ambiguous ab initio folding
predictions. J Comp Chem 2001;22:339–353.

31. Huang ES, Samudrala R, Ponder JW. Ab initio fold prediction of
small helical proteins using distance geometry and knowledge-
based scoring functions. J Mol Biol 1999;290:267–281.

32. Skolnick J, Kolinski A, Ortiz A. Derivation of protein-specific pair
potentials based on weak sequence fragment similarity. Proteins
2000;38:3–16.

33. Feig M, Rotkiewicz P, Kolinski A, Skolnick J, Brooks CL III.
Accurate reconstruction of all-atom protein representations from
side-chain-based low-resolution models. Proteins 2000;41:86–97.

34. Sali A, Blundell TL. Comparative protein modelling by satisfac-
tion of spatial restraints. J Mol Biol 1993;234:779–815.

35. Sali A, Potterton L, Yuan F, van Vlijmen H, Karplus M. Evalua-
tion of comparative protein modeling by MODELLER. Proteins
1995;23:318–326.

36. Fetrow JS, Siew N, Skolnick J. Structure-based functional motif
identifies a potential disulfide oxidoreductase active site in the
serine/threonine protein phosphatase-1 subfamily. FASEB J 1999;
13:1866–1874.

GENERALIZED COMPARATIVE MODELING (GENECOMP) 149


	INTRODUCTION
	METHODS
	Fig. 1.
	TABLE I.
	TABLE II.
	TABLE III.
	Fig. 2.
	TABLE IV.
	TABLE V.
	Fig. 3.
	Fig. 4.
	Figure 4. (Continued.)

	DISCUSSION
	Fig. 5.
	Figure 5. (Continued.)
	TABLE VI.
	TABLE VII.

	REFERENCES

