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The Protein Folding Problem: A Biophysical Enigma
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Abstract: Protein folding, the problem of how an amino acid sequence folds into a unique three-dimensional shape, has
been a long-standing problem in biology. The success of genome-wide sequencing efforts has increased the interest in
understanding the protein folding enigma, because realizing the value of the genomic sequences rests on the accuracy with
which the encoded gene products are understood. Although a complete understanding of the kinetics and thermodynamics
of protein folding has remained elusive, there has been considerable progress in techniques to predict protein structure
from amino acid sequences. The prediction techniques fall into three general classes: comparative modeling, threading
and ab initio folding. The current state of research in each of these three areas is reviewed here in detail. Efforts to apply
each method to proteome-wide analysis are reviewed, and some of the key technical hurdles that remain are presented.
Protein folding technologies, while not yet providing a full understanding of the protein folding process, have clearly
progressed to the point of being useful in enabling structure-based annotation of genomic sequences.

I. OVERVIEW OF THE PROTEIN FOLDING
PROBLEM

The protein folding problem was conceptualized with the
publication of the Anfinsen results in 1961 [1]. This set of
experiments showed that all the information necessary for a
protein to fold into its functional, three-dimensional shape is
contained in its primary amino acid sequence. These results
set the stage for years of research devoted to understanding
how the amino acid sequence, comprising a small set of 20
different amino acids, could encode the complex, three-
dimensional structure of a protein.

In 1968 Levinthal described what has come to be called
the “Levinthal paradox” [2]: the observation that it would be
impossible for a protein to fold at observed rates by
randomly searching all possible conformations of the
polypeptide chain. Even for a small protein of 100 amino
acids the number of conformations to be searched in folding
the backbone would be well in excess of 9'° and this
estimate does not take side chain conformations into
account. Zwanzig resolved the paradox in 1992 by showing
that even a slight bias in the folding potential would allow a
stable conformation to be found quickly [3], nevertheless the
kinetics and thermodynamics of folding remain an enigma.

Solving the protein folding problem has often been
compared in difficulty to “cracking the second genetic code”.
An understanding of this problem and a computational
solution to it would greatly enhance the ability to utilize the
enormous amount of data being generated by genome
sequencing projects. Researchers would no longer need to
rely on resource-intensive experimental methods for
determining protein structures, but could determine them
computationally. Important processes, such as drug

*Address correspondence to this author at GeneFormatics, Incorporated,
5830 Oberlin Drive, Suite 200, San Diego, CA 92121, USA; Tel: (858) 882-
5903; Fax: (858) 450-1138; E-mail: jacquefetrow@geneformatics.com

1389-2010/02 $35.00+.00

discovery, could be accelerated and greatly enhanced, saving
significant resources. However, the time scale of the process
complicates using computation to solve the enigma of
protein folding. Current methods of simulation by ab initio
protein folding are feasible and robust over a range of 10 to
100 ns on a Cray computer, but protein folding occurs on the
millisecond to minutes timescale [4]. This has led to the
development of partial solutions that seek to predict the
structure of proteins, rather than delineate the folding
pathway. Even this more narrowly defined problem presents
difficult challenges: What are good models for the potential
energy surface? How can native conformations be found and
recognized?

Computational solutions to the prediction of protein folds
are often divided into three main categories: comparative
modeling algorithms, threading algorithms and ab initio
folding algorithms. Comparative modeling tools are used to
build a model based on a previously determined structure of
a related sequence. To apply comparative modeling tools
successfully, the two proteins must be minimally related by
structural similarity. Usually, there is significant sequence
similarity between the two proteins and a sequence
alignment is used as a starting point. The second method,
threading, attempts to identify proteins that are structurally
similar to one another, even if sequence similarity is
negligible. Threading alignments may be used as starting
points for comparative modeling algorithms. Finally, ab
initio folding algorithms are used to fold the proteins
according to basic physico-chemical principles, without the
use of a structural template. Each of these methods will be
reviewed in this paper in detail.

Il. OVERVIEW OF COMPARATIVE MODELING
METHODOLOGIES

Comparative modeling procedures generate three-
dimensional models for amino acid sequences of unknown
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structure (probes) by comparison with similar sequences of
known structure (templates). This approach is possible
because small changes in protein sequence generally produce
only small changes in protein structure [5]. Conversely, since
protein structure is more highly conserved than protein
sequence [6], a discernible sequence similarity is a likely
indicator of structural similarity.

Comparative modeling procedures comprise four steps:
a) fold assignment by selection of structural templates, b)
alignment of the probe to the templates, c) construction of
the three-dimensional model and d) evaluation of the model.
To make comparative modeling feasible on a genome-wide
scale, these steps must be automated and integrated. This
section will review the techniques used in each of these steps
and discuss the application of comparative modeling on a
genome-wide scale.

a. Fold Assignment

Alignment methods are often used to select structural
templates. These methods fit into three categories: pairwise
sequence comparison methods that produce a separate
alignment for the probe with each template sequence (e.g.,
BLAST [7]), multiple sequence alignment methods that
produce a single alignment for the probe against a set of
template sequences (e.g., PSI-BLAST [8]) and threading
methods that use a structure-dependent score to optimize the
sequence-structure alignment of the probe with a library of
fold templates (e.g., PROSPECTOR [9]). The pairwise
sequence alignment methods are most successful when
sequence identity is greater than 30% although recent efforts
to derive improved amino acid interchange matrices from
structural superposition data show some promise in
improving the ability of pairwise methods to detect remote
homologues [10]. The multiple sequence alignment methods
have been shown to identify twice to thrice as many
homologues as the pairwise methods [11]. By relying on a
combination of sequence and structure comparison, the
threading methods are the most sensitive in detecting distant
homologues, and their success appears to be more directly
related to the level of structural similarity between template
and probe [12]. The disadvantage of the more sensitive
methods, particularly as more distant homologues are
detected, is the rapid increase in the false positive rate.

b. Alignment Optimization

The quality of a model generated by comparative
modeling depends significantly on the quality of the
alignment of the probe and its template. Sequence-only
alignments for the selection of templates are tuned to
recognize distant sequence similarity and may not be optimal
for model building. Before model building, it is usually
necessary to apply a method that optimizes the alignments
(e.g., CLUSTAL [13]). In cases for which sequence identity
between the probe and template sequences is above 30%,
alignment procedures are robust and comparative modeling
can produce models with accuracy approaching that of
structures determined at low resolution by crystallography or
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NMR spectroscopy [14]. The resulting models can be of the
quality required for use in docking and ligand-design
exercises [15, 16].

Below 30% sequence identity, the “twilight zone” of
sequence similarity, traditional sequence-only alignment
techniques may produce significant misalignment between
the probe and template sequences [14, 17]. Models built
from such alignments may have significant errors in
backbone structure. The application of threading algorithms
for sequence alignment has extended the reach of
comparative modeling into the twilight zone by using
structural data to guide the alignment [9, 12, 18-20]. For
example, optimizing the burial status of residues or
evaluating residue pair interactions may improve alignments.
Successful alignments in the twilight zone produced by
threading algorithms identify the overall fold but may still
have substantial uncertainty in loop conformations and in the
size and packing of secondary structure elements. Structural
similarity may be limited to only part of the structure while
the remainder of the structure is different from that of the
template [19]. A recently developed method termed
“generalized comparative modeling” [21] aims to refine
modeled structures derived from such alignments by
performing ab initio folding in the vicinity of the template
structure, in effect sampling a larger piece of conformational
space near the template structure and moving the modeled
structure closer to the native structure of the probe. In some
cases, these lower-quality models have even been used for
docking of small molecules [22].

¢. Model Building

Once an optimized probe-template alignment has been
generated by sequence alignment or by a threading program,
the next step in comparative modeling is to generate atomic
level structural details for the probe sequence. Methods for
model construction have recently been reviewed [23]. This
step comprises three areas: a) generation of coordinates for
the protein backbone from the aligned portions of the
templates, b) generation of coordinates for the unaligned
portions of the backbone and c) generation of coordinates for
the side chain atoms. One approach for modeling the aligned
segments of the probe sequence generates a framework for
the probe by averaging the Ca positions from the structurally
conserved regions of the aligned templates and adding the
remaining main chain atom positions for the conserved
regions by comparison with the template with the highest
sequence similarity to the probe sequence [24]. A second
approach identifies and assembles short, all-atom segments
from the probe sequence that “match” the atomic positions in
the template structures [25-28]. The segments are generated
by scanning known structures or by conformational search.
A third approach derives spatial constraints from the
template structure that are then used to generate a structure
for the probe sequence by distance geometry [29]. For
example, intramolecular distances between residues in the
aligned template structure can be used as restraints for
modeling the probe structure. The advantage of this approach
is that restraints can be added from sources other than the
original template alignment, such as NMR data.
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Approaches to the generation of loop conformations for
the non-aligned portions of the probe fall into two classes: ab
initio folding methods [21, 30-32] and database scanning
methods [5, 33-36]. The ab initio folding methods employ
conformational searches restrained by the structurally
conserved regions modeled in the first step. The database
scanning methods search protein structure databases for
segments that “fit” the structures already generated for the
aligned portions of the probe. The database scanning
methods are limited by the incomplete representation of loop
conformations in known protein structures.

Finally, after structurally conserved and structurally
unconserved regions have been modeled, side chains must be
added. Side chain conformations are modeled by comparison
to similar structures or derived from rotamer library
conformations, but the method used must take into account
the coupling between main chain and side chain
conformations [37-41]. Side chain conformations can deviate
significantly from rotamer conformations under the influence
of a rigid backbone. Likewise, side chains can cause
significant changes, even in regions of the backbone that
would otherwise be structurally conserved. At this time, it is
difficult to determine a priori if a side chain will move to
accommodate a rigid backbone, or if a backbone will move
to accommodate a side chain. These effects have been
recently reviewed [23].

d. Model Evaluation

Once models are created, they must be evaluated to be
sure one has produced a representative model. For
alignments above the twilight zone of sequence identity,
confidence in the correctness of the modeled fold is derived
from the high level of sequence similarity between probe and
template. For alignments within the twilight zone (generally
between 25-35% sequence identity), a combination of the
calculation of an energy-based Z score and the ability of
functional descriptors to identify the active site of the probe
can be used to assess confidence in the model [9, 21, 42-47].
A method such as PROCHECK can be used to evaluate the
basic stereochemistry of the model [48]. Models can also be
evaluated against statistical analyses of structural databases
for characteristics such as intramolecular packing, formation
of the hydrophobic core, solvent accessibility and
distribution of charged groups [23, 49-52]. For these models
produced from alignments in the twilight zone of sequence
identity, it can be difficult to determine absolutely whether
one has a representative model. Use of these knowledge-
based approaches can, however, improve the confidence in
the final model produced.

e. Genome-wide Comparative Modeling

Models from two methods for genomic-scale
comparative modeling, Modeller [53-55] and GEM
(published as GENECOMP [21]) were recently compared.
Modeller generates an objective function for a given probe
that comprises restraints derived from distances and dihedral
angles in the aligned templates and restraints that enforce
good stereochemistry. The function is then optimized in

Current Pharmaceutical Biotechnology, 2002, Vol. 3, No. 4 331

Cartesian space and a model generated. GEM uses threading
to select structural templates, then generates a structure for
the probe sequence by performing conformational searching
in the vicinity of the aligned templates for the aligned
segments and applying an ab initio folding method for the
unaligned segments (Fig. 1).

Modeller is less computationally intensive than GEM,
however GEM was found to produce, on average,
qualitatively better molecular models. For the comparison,
each method was used to generate models for 68 proteins
from the Fischer database, a standard benchmark. This data
set contains a variety of protein pairs of similar structure, but
low sequence identity. The starting point for both methods
was the same set of templates and alignments generated by
the threading program, PROSPECTOR. A comparison
between the model and the known structure for both methods
is shown in Fig. (2). When templates were very good
(allowing at least one method to build a model with a Ca
coordinate-root-mean-square-deviation (RMSD) to the
known structure of less than 3.5 A), the methods performed
comparably with one notable exception. For probe lonc, the
GEM model had an RMSD of 3.5 A while the Modeller
model had an RMSD of 5.14 A. As the sequence similarity
between the probe and template sequences decreases, the
GEM models are more similar to the experimentally
determined structures than the Modeller models. There were
14 probes for which at least one method produced a model
with a Ca coordinate RMSD to the known structure below 5
A. In seven of these cases, GEM produced the better model,
in two cases Modeller produced the better model and in five
cases the two methods performed equally well (Fig. 2). Both
cases in which Modeller performed better were for probe-
template pairs whose level of sequence identity is in the
upper portion of the twilight zone at approximately 21%
(2hip, 20.9%, and the A chain of 1chr, 21.1%). In both cases,
the Modeller models were only slightly better than the GEM
models (Ca RMSD to the known structure of 4.3 A for GEM
vs. 4.1 A for Modeller for 1hip, and 4.9 A for GEM vs. 4.6 A
for Modeller for the A chain of 1chr). Of the seven models
on which GEM performed better, three were created on
templates with a level of sequence identity to the probe deep
in the twilight zone, 1ten (1.5% sequence identity), 3chy
(4.6%) and 1mup (18.2%). GEM produced significantly
better models for these probes (Ca RMSDs to known
structures of 3.6, 4.4, and 4.4 A respectively) than did
Modeller (Ca RMSDs to known structures of 5.2, 6.2 and
4.9 A, respectively). Fig. (3a) is an example of a GEM
model for the probe, laba, superimposed on the known
structure. The probe-template pair has 24.5% sequence
identity and the overall Ca RMSD between the probe model
and known structure is 3.85 A. All secondary structure
elements (three helices and a pair of layered b sheets) have
been placed correctly, although the boundaries of the
secondary structural elements and the loops connecting them
show greater variation from the known structure.

f. Outlook for the Future
As the number of protein folds is finite (estimated at

2,000-4,000 folds [56]) and knowledge of fold space is
increasing rapidly, the success rate of comparative modeling
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Fig. (1). Modules of GEM Comparative Modeling Process: Near and distant sequence profiles guide the initial probe-sequence to template-
structure alignment from which a starting set of predicted pair interactions is calculated. Consensus interactions are pooled and converted
into a potential of mean force used in subsequent rounds of threading. For the aligned segments, REMC is used to explore conformational
space for a lattice representation of the probe in the vicinity of the template backbone. For the unaligned segments ab initio folding generates
backbone structures. The ensemble of results from the conformational search is clustered and an all-atom model of the probe is generated for

the average structure from each cluster.

techniques is expected to grow. A recent effort to describe a
strategy for optimizing information return from structural
genomics efforts estimates there are about 8,000 protein
domain families and a minimum of 16,000 structure
determinations will be necessary to permit non-twilight zone
comparative modeling of 90% of protein structural space
[57]. Such a goal can be achieved in as little as a decade but
could also take three times as long if proteins for structure
determinations are chosen randomly [57].

Improvements in modeling methods to recognize
homology in the twilight zone will also expand the
applicability of comparative modeling. A hard lower limit
for comparative modeling of 10% sequence identity arises
from the observation that, at that level of similarity, accuracy
of pairwise alignments is indistinguishable from chance [10].
Nevertheless, lowering the threshold of the twilight zone

from 30% to 20% sequence identity would cut in half the
minimum number of structure determinations necessary to
allow comparative modeling of 90% of protein structural
space [57]. The use of threading to generate alignments for
comparative modeling (as in GEM) is already moving in this
direction. Comparative modeling methods will become more
successful as alignment techniques, side chain and loop
model building and model evaluation are improved.

I1l. OVERVIEW OF THREADING TECHNIQUES

The goal of threading is to find the closest matching
structure in a library of known folds for a given probe
sequence [58, 59]. In principle, if not in practice, accurate
construction of such alignments should extend comparative
modeling techniques. For example, threading should be able
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Fig. (2). Histogram of Ca RMSD between model and known structure for GEM and Modeller models. For 68 probes in the Fischer database
decoy set, the Ca RMSD in the aligned region between the model and known structure is shown for the models built with GEM (light) and
Modeller (dark). Each pair of bars is labeled with the PDB name of the probe and the percent sequence identity between the probe and the
template. Each pair of models was built from the same template alignment generated by PROSPECTOR. For 14 probes for which at least one
model RMSD was < 5 A, in seven cases GEM produced the better model, in two cases Modeller produced the better model and in five cases

the difference in performance of the two methods was insignificant.

to recognize not only distantly related (homologous or
evolutionarily related) proteins, but also analogous folds
where the proteins are evolutionarily unrelated, but have
converged to the same fold. This is complicated by the fact
that analogous proteins may share a common structural core
over a fraction of their sequences with the remainder
adopting a significantly different fold.

Key characteristics of threading algorithms include: a)
the kind of scoring function or “energy” used to assess the
probe sequence-template structure fitness, b) the level of
detail describing the protein (side chains, backbone, Cas,
etc.) and c) if multibody interactions are included, the kind
of optimization algorithm used.

a. Scoring Functions

Among the terms that have been used in scoring
functions for describing the compatibility of the probe
sequence to the specified template are the burial status of
residues, secondary structure propensities and/or predicted
secondary structure, additional penalty terms [60, 61] (e.g., a
penalty that depends on the difference in the length of the
probe and template sequences), and pair or higher order
interactions between side chains. When the scoring function
contains more than one term, their relative weights must be
established. The best scoring functions also include an
evolutionary component related to the sequence similarity
between the template and the probe [19]. This term signi-
ficantly improves both the fold recognition and alignment
ability of a threading algorithm [61-65]. In a structure-based
approach, such terms should not be required as chemistry
and structural information should be enough to define the
fold; unfortunately, in practice they are quite important.

b. Representation of the Protein
When pair interactions are considered, the type of

interaction center must be selected. Among the standard
choices are the backbone atoms [66, 67], the alpha carbons

[68, 69], side chain centers of mass, other interaction centers
[58, 70], or any side chain heavy atom [71]. Given a set of
interaction centers, the functional form of their interactions
must be specified. These include contact potentials [71, 72],
distance-dependent potentials [68, 73], and interaction
environments [20].

c. Optimization Methods

Having specified the scoring function and protein
representation, the optimal alignment between the probe
sequence and each structural template must be generated.
Dynamic programming [74] is the best approach when the
scoring function is purely local. When a non-local scoring
function is used (e.g., pair interactions), the situation is more
complicated. As part of structure optimization, the
interactions in the template structure should utilize the actual
partners present in the probe sequence, but in dynamic
programming, these specific partners are unknown. To retain
speed (essential if entire genomes are to be scanned), among
the approximations made is the use of dynamic programming
with the “frozen” approximation where the interaction
partners or local environmental preferences are taken from
the template protein [71, 75]. Then, iterative updating is
done [20, 71, 76]. Others use double dynamic programming,
where a subset of interactions recognized as being the most
important in the first pass of the dynamic programming
algorithm [68] are updated. There are also more
computationally intensive, but exact approaches which fully
evaluate the non-local scoring function and search for the
optimal probe-template alignment by Monte Carlo [70] or
branch-and-bound approaches [58].

d. Challenges and
Algorithms

Improvements in Threading

Threading follows a similar paradigm to comparative
modeling: a) choosing the structural template, b) generating
an alignment and c¢) constructing a model. As such, its
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Fig. (3a).

Fig. (3b).

Figs. (3a) and (3b). GEM model for the probe, laba, a glutaredoxin mutant. Figure 3a shows a ribbon representation of the GEM model
(dark) superimposed on the known structure (light). The Ca RMSD between the model and known structure is 3.85 A. The template for this
model, 1ego, has 24.5% sequence identity to the probe. The threading Z score for alignment of the template to the probe is 7.4. Figure 3b
shows the key residues of the functional site identified by the FFF in space-filling models (model in dark gray, known structure in light gray).
The FFF identifies the functional site as a disulfide oxidoreductase catalytic site.

limitations are similar to those of comparative modeling. the model depends on the extent of structural similarity
First, an example of the probe’s structure must have been between the probe and template structure. Third, while
solved already or the method will fail. Second, the quality of alignment quality improved from CASP1 (Critical
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Assessment of Protein Structure) to CASP3 [77] and now
CASP4, it nevertheless remains problematic, and until
recently, the alignment could not be adjusted to fix errors
[78].

Almost all threading approaches freeze the template
structure (i.e., the frozen approximation) and do not allow it
to adjust to the probe sequence. For close homology
modeling, this is a good approximation, but as sequence
identity between the probe and template sequences moves
into the twilight zone of sequence identity, or if the two
proteins are analogous rather than homologous, substantial
backbone rearrangements may be ignored. The ability to
recognize analogous structures is precisely the realm where
threading should be the most valuable as compared to pure
sequence-based methods, thus it is clear that the frozen
approximation introduces a severe limitation.

Because threading uses structure, it should be superior to
one-dimensional sequence-based approaches that assess the
evolutionary relationship between sequences by inferring a
structural relationship, such as PSI-BLAST, which has been
used for genome-wide modeling exercises. In practice,
however, many of the successful fold-recognition approaches
in CASP3 and CASP4 were pseudo one-dimensional and
used evolutionary information that contributed a significant
fraction of the selectivity [79]. The Jones [80] and Koretke
groups [65], among others, employed this type of approach.
The Nishikawa group [81] also employed a hierarchy of
local scoring functions to describe hydration, secondary
structure, hydrogen bonding and side chain packing.

Successful approaches in CASP3 where structure played
a more prominent role included that of the Sippl group [82].
They employed a burial energy and the frozen approximation
to evaluate pair interactions, but used a single sequence
rather than a sequence profile; thus all interactions are
pseudo one-dimensional.

The Bryant group [83] explicitly treated pair interactions
within a structural core identified using the conservation of
structure across each protein family. This approach has three
limitations: a) the core identification required by this method
limits applicability to protein families where a number of
structures in the family have been solved, b) a BLAST
sequence-profile component is used, which weights
sequence similarity and evolutionary relationships heavily
and c) since the method uses a non-local scoring function
and a Monte Carlo search procedure to find the best probe-
template score, these calculations are very CPU intensive,
thereby precluding its application on a genomic scale.

The general consensus is that CASP3 saw some progress
in threading, with alignment quality improving from CASP2
[77, 79, 84]. Nevertheless, threading does better on distant
homology sequence pairs than on analogous pairs. A similar
conclusion was reached for CASP4. Thus, threading
techniques to address structurally similar, but non-
homologous, pairs of proteins are still required.

These observations motivated the development of a new
threading algorithm called PROSPECTOR (PROtein
Structure Predictor Employing Combined Threading to
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Optimize Results). PROSPECTOR is both hierarchical and
iterative. In the first stage, a sequence profile [85-87] is used
to generate an initial probe sequence to template structure
alignment. Then, this alignment is used to calculate the
partners for the evaluation of the pair interactions known as
partly defrosted approximation. Both near and distant
sequence profiles are used for a total of four scoring
functions. The consensus contacts found in at least weakly
scoring structures are pooled, converted into a potential of
mean force and used in a subsequent round of threading. The
process is repeated and a third round of threading is done.

The method was tested on a standard benchmark, the
Fischer database [61] comprised of 68 probe sequences and
301 template structures. In 59 cases, the top scoring match
from PROSPECTOR aligned the probe protein to the correct
template structure [9]. It is superior to earlier efforts
including the alternative hybrid method [88], BLAST [7] and
PSI-BLAST [8, 87]. It might be argued that since
PROSPECTOR uses four scoring functions, and the hybrid
method only uses three, this is not a strictly fair comparison.
If the results obtained from one scoring method, such as the
“distant” sequence-profiles, are eliminated then 58 correct
matches in the top scoring position are identified, as
compared to 52 alignments identified by Gonnet with a
pairwise sequence alignment method that includes predicted
secondary structure [9]. Then, in a second pass of
PROSECTOR that uses predicted contacts from the first
pass, 61 proteins are identified in the top scoring position®.

e. Genome-wide Threading

Following benchmarking on the Fischer database,
PROSPECTOR was applied on a genome-wide scale. The
first genome considered was Mycoplasma genitalium,
consisting of 480 open reading frames (ORFs) [89]. The first
pass of PROSPECTOR assigns 230 proteins to a structure in
the Protein Databank when a minimum Z score of 7 is used
as a cutoff. The second pass assigns 260, and the third pass
assigns 300, again with a Z score of 7. All assignments are
made using an automated protocol based on the score
significance. In contrast, Fischer and Eisenberg [90]
assigned the folds of 103 of 468 proteins using their
threading algorithm. Gerstein reported identification of 211
proteins using BLAST [91, 92] while Genethreader assigns
200 proteins, but 15 appear to be incorrect [18] as assessed
by a consensus of Gerstein’s results (http://biocinfo.mbb.yale.
edu/genome/MG/) and three-pass PROSPECTOR results.

PROSPECTOR was also applied to additional genomes.
The Escherichia coli genome contains 4,289 ORFs [93], for
which three-pass PROSPECTOR assigns 2,611 ORFs to
structures in the Protein Data Bank. Similarly, three-pass
PROSPECTOR assigns 2071 of 4101 ORFS in the Bacillus
subtilis genome and 972 ORFS of 1,530 ORFs in the Aquifex
aeolicus genome to known protein structures. Thus, for a
typical small genome, over 50% of the structures can be
assigned to folds with some degree of confidence. All

1.]. Skolnick and coworkers, unpublished results.
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assignments had threading Z scores greater than 7. Note that
fold and function assignment are not the same; in only about
50% of the cases are fold and function degenerate,
presenting significant challenges for threading algorithms
[94].

IV. OVERVIEW OF AB INITIO FOLDING METHODS

Proteins fold in milliseconds to minutes [4]. Classical
molecular mechanics simulations (with all atomic details
treated in an explicit way) of a protein [95, 96] submerged in
an appropriate number of water molecules over such a long
time are currently impractical [97, 98]. Consequently, for the
purpose of ab initio protein folding, the problem needs to be
simplified. Simplification can be achieved by reducing the
number of explicitly treated degrees of freedom [99] of the
polypeptide chain and by simplifying the model force field
[100]. Simplification can also include treating solvent in an
implicit fashion. In simplified protein models, groups of
atoms are replaced by single “united atoms” [101, 102].
Internal degrees of freedom for these united atoms are
ignored or treated in a pre-averaged fashion. A simplified
representation of the polypeptide chain conformation leads
to a simplified interaction scheme [103]. The complexity of
the resulting energy landscape of the model is significantly
reduced in comparison to the detailed atomic models. Using
some or all of these simplifications, the search for the lowest
energy conformation (the native protein fold according to
Anfinsen’s postulate [104]) becomes more feasible. The
following sections review these various methods of
simplifying the ab initio folding problem.

a. Continuous Reduced Models

The first non-trivial reduced models were proposed about
25 years ago. For example, the model studied by Levitt and
Warshel [101, 102] assumed two centers of interaction per
residue: one representing the main chain segment centered
on the alpha carbon, and one representing the side chain. A
single degree of freedom per amino acid was assumed,
rotation around the Ca-Ca virtual bond, while the planar
angles for the reduced backbone were assumed to be
constant. A knowledge-based statistical potential controlled
the short-range conformational propensities, while the side
chains interacted via a Lennard-Jones potential. With this
model, molecular dynamics simulations of the small protein,
bovine pancreatic trypsin inhibitor, sometimes produced a
native-like fold of low resolution. The best structures had a
RMSD from native in the range of 6.5 A.

The model proposed by Levitt and Warshel [101]
inspired other analogous simplifications of protein
representation. Kuntz et al. [105, 106], Hagler and Honig
[107], and Wilson and Doniach [108] studied somewhat
similar continuous models, with results of a comparable
quality.

Reduced continuous-space models with more structural
details have also been proposed. Sun designed a model with
an all-atom representation of the main chain and a single
united atom representation of the side groups [109].
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Knowledge-based statistical potentials controlled the
interactions between the side groups, and a genetic algorithm
was employed as a sampling tool. For small peptides, quite
accurate structures were predicted whose RMSD from the
native structure ranged from 1.66 A to 4.5 A, depending on
peptide size. A similar model was studied by Wallgvist and
Ullner [103]. More accurate representation of the side chains
(two united atoms per side chain for larger amino acids)
resulted in slightly more accurate structural predictions.

A very different approach to protein structure prediction
was proposed by Pedersen and Moult [110]. They assumed
an all-heavy atom representation of the protein with
knowledge-based potentials describing interactions between
these atoms. A combination of Monte Carlo and genetic
algorithms was employed as a sampling tool; and a set of
trial structures generated by means of the Monte Carlo
method provided the starting population for the genetic
algorithm. Approximate structures have been successfully
predicted by this method for a number of small proteins.

Very recently, Osguthorpe applied a continuous model
and molecular dynamics simulated annealing to structure
prediction [111]. The very flexible chain geometry of the
model enabled efficient sampling in spite of the detailed
representation of the proteins. A force field for the model
was derived from statistics of known protein structures. This
method was tested during the CASP3 experiment [77], and
large fragments of the attempted probe were correctly
predicted. For one of the difficult probes, this method
produced the most accurate prediction.

A method developed by Scheraga and coworkers enabled
exceptionally good predictions for a fraction of CASP3
probes [112]. This off-lattice protein model has a united
atom representation of the alpha carbons, side chains and
peptide bond, with fixed bond lengths and variable bond
angles. The interaction potentials between united atoms
describe the mean free energy of interactions and account in
an implicit way for the average solvent effect and
cooperativity of the hydrogen bonds [113]. The lowest
energy models (obtained via the Conformational Space
Annealing technique [112, 114]) can be converted into all-
atom models and optimized by electrostatically driven
Monte Carlo simulations [115].

b. Lattice Models

To further increase sampling efficiency and to allow
treatment of larger proteins, discrete or lattice models were
proposed and explored. Early studies of the lattice-based
protein models, pioneered by Go, et al. [116-118] and then
followed by Krigbaum and Lin, [119, 120] Skolnick and
Kolinski [121-127], Sikorski and Skolnick [128-131], Chan
and Dill [132-134], Dill et al. [135, 136], Sali et al. [137,
138], Shakhnovich et al. [139-145], and others [146-148]
focused not on structure prediction but rather on basic
aspects of protein folding thermodynamics and mechanism.
This work has contributed significantly to a general
understanding of the forces controlling protein folding, the
reasons and requirements for the uniqueness of the native
state [149], an explanation of the mechanism of the folding
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process and the nature of its cooperativity [150]. In addition,
the early studies of very simplified models of proteins
provided the knowledge necessary for the subsequent
application of lattice models to protein structure (and even
function) prediction.

Probably the first attempt at ab initio prediction of
protein fold via lattice modeling was done by Dashevskii
[151]. In his work, the polypeptide conformations were
restricted to a diamond lattice. Compact structures
resembling native folds of small polypeptides were
generated by means of a chain-growth algorithm controlled
by a simple force field.

Covell investigated a simple cubic lattice model of
proteins [152]. The interaction scheme consisted entirely of
long-range interactions that included a pairwise, knowledge-
based potential, a surface term and a potential that corrects
the local packing of the model chain. Interestingly, the
quality of crude folds generated by this method was
comparable to the quality of folds obtained using early
continuous models.

Covell and Jernigan [153] enumerated all possible
compact conformations of a body-centered cubic lattice
chain representing small globular proteins, and a simple
knowledge-based interaction scheme was used to rank-order
these compact conformations [152, 153]. The closest to
native conformation could always be found within the top
2% of the lowest energy structures.

An interesting lattice representation of proteins was
proposed by Hinds and Levitt [154, 155], where a single
lattice vertex of the diamond lattice corresponded to several
residues of a real protein. A complex statistical potential was
employed to mimic the mean interactions between such
fragments of the model protein chain. Frequently,
qualitatively correct folds of low resolution were generated
by this model.

Kolinski and Skolnick [127, 156-174] developed a series
of increasing resolution lattice models of globular proteins.
High coordination number lattices were employed to mimic
the conformation of the Ca-trace of proteins. In the later
models a single sphere, multiple rotamer representation of
the side chains was assumed. The force field consisted of
several terms mimicking the short-range interactions;
explicitly cooperative hydrogen bonds; and one body,
pairwise and multibody long-range interactions with an
implicit averaged effect of the solvent water. For several
small globular proteins and simple multimeric molecular
assemblies such models generated folds of low- to moderate-
accuracy (high-accuracy in the case of leucine zippers [175,
176]) [162-164, 173, 174]. Monte Carlo simulated annealing
was used as a sampling method.

c. Hierarchical Approaches to Structure Prediction

More recently, a number of new approaches to ab initio
protein structure prediction were developed that combine
various modeling and fold selection procedures. Very
innovative is the ROSETTA method proposed by Baker and
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coworkers [177]. The fold prediction procedure consists of
several steps. First, a prediction of secondary structure is
made using the PHD server based on Rost and Sander’s
method [178-180]. Subsequently, the predicted secondary
structure and multiple sequence alignments guide the
selection (from the PDB) of the most plausible 3- to 9-
residue structural fragments for the protein of interest. Next,
a Monte Carlo algorithm builds a large number of structures
from the set of predefined fragments, which are screened
with a scoring function containing a hydrophobic burial
term, elements of electrostatics, a disulfide bond bias and a
sequence-independent term that evaluates the packing of
secondary structure elements. The top scoring structures
frequently contain the proper fold. The best structures are
chosen in a somewhat arbitrary fashion using compactness of
the hydrophobic core as a selection criterion. Nevertheless,
for eighteen probes of the CASP3 experiment, four
predictions were globally correct (with an RMSD range of 4-
6 A from the native structure [181]), and the majority of the
predictions contained significant fragments of structure that
were qualitatively correct. In a later version of the method,
fold selection is done by clustering a very large number of
trial structures. A somewhat similar method based on
predefined fragments and the Monte Carlo method was
earlier investigated by Jones [80].

Ortiz et al. [182-185] used a combination of sequence
analysis and lattice Monte Carlo simulations for ab initio
prediction of native-like protein structures. A multiple
sequence alignment was used for secondary structure
prediction and for prediction of a fraction of long-range side
chain contacts via the correlated mutations analysis [186,
187]. These predictions guided the fold assembly. A high
coordination lattice model developed by Kolinski and
Skolnick [166-171] was used for the protein representation.
Monte Carlo simulations started from random expanded
conformations and the lowest energy conformations were
selected from the large number of final structures from the
simulated annealing experiments. This method performed
well in test predictions and was capable of assembling low-
resolution novel folds during the CASP3 experiment [185].

An interesting hierarchical procedure has been developed
by Samudrala, et al. [188]. First, the very simple lattice
model of Hinds and Levitt [154] (described above) was used
to enumerate all compact conformations of the protein of
interest. The lowest energy structures were then selected for
further consideration. For these, the all-atom structures were
reconstructed by fitting the predicted secondary structure
fragments to the lattice models. Next, these distorted all-
atom structures were subjected to energy minimization using
an all-atom force field with spatial restraints taken from the
original lattice models, and the optimized structures were
rank-ordered according to a combination of all-atom and
residue-based knowledge-based potentials. Subsequently, the
consensus model obtained via distance geometry was
regularized and minimized. Final predictions were made
according to conformational energy ranking within a set of
structures obtained in this procedure. A number of
qualitatively correct protein fragments of significant size
were correctly predicted by this method during the CASP3
exercise. This combination of sequence methods, lattice
simulations, distance geometry and off-lattice refinement
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appears to be very robust. The very crude and low-accuracy
model employed for the generation of the initial compact
conformations is probably a weak point of this approach.

Recently, Kolinski, Skolnick and coworkers developed a
unified approach to structure prediction (Fig. 4) [189]. This
method is termed “unified” for two reasons. First, the
method constitutes a well defined hierarchy of sequence
analysis techniques; threading; lattice Monte Carlo
modeling; fold selection via a combination of distance
geometry clustering; off-lattice refinement and minimization
and all-atom reconstruction of the final molecular model (or
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models). Second, the methodology is essentially the same
regardless of the level of homology that might be detected
between the probe and the protein sequences from the
structural database. In other words, the same (automated)
methodology is applied to cases that could be classified as
suitable for distant homology modeling, threading and ab
initio (or novel fold) structure prediction. A multiple
sequence alignment is used in the derivation of protein-
dependent statistical short-range potentials, orientation-
dependent pairwise side chain potentials [190], and
secondary structure predictions. Predicted secondary
structure provides a weak bias for short-range

Unified Approach to Protein Structure Prediction
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Fig. (4). Unified approach to protein structure prediction. The unified method generates protein models by applying a well-defined hierarchy
of sequence analysis tools: threading, lattice Monte Carlo conformational searching, clustering and refinement in a well-defined, automatable
process. The methodology is essentially the same regardless of the level of homology that might be detected between the probe sequence and
the sequences in the template library. A multiple sequence alignment is used in the derivation of protein-dependent statistical short-range
potentials, orientation dependent pairwise side group potentials, and secondary structure predictions. Predicted secondary structure provides
a weak bias for short-range conformational propensities and some weak restrictions on the hydrogen bond network for the lattice simulations.
Threading provides a prediction of the short-range distances, and prediction of the long-range side chain contacts. When PROSPECTOR
finds a homologous protein with a significant similarity score, the resulting structural template is used as an additional source of spatial

restraints for the lattice folding simulations.
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conformational propensities and some weak restrictions on
the hydrogen bond network for the lattice simulations. These
parameters are first used in the recently developed threading
algorithm (PROSPECTOR [9]). Threading provides a
prediction of the short-range distances (an additional source
of restraints for the folding stage), and prediction of the
long-range side chain contacts (that are on average 70%
correct within a limit of 1 or %2 residues). When
PROSPECTOR finds a homologous protein with a
significant similarity score, the resulting structural template
is used as an additional source of spatial restraints for the
lattice folding simulations. Folding is carried out by means
of Monte Carlo simulations using the SICHO (Slde CHain
Only) lattice representation of polypeptide chains [78, 191,
192] and REMC (Replica Exchange Monte Carlo) sampling
technique [193]. SICHO is a lattice model of 1.45 A
resolution that emphasizes side chain packing instead of the
commonly employed Ca reduced representation. In SICHO
side chains are modeled as clusters of lattice knots on the
underlying simple cubic lattice, and the polypeptide model is
a chain of virtual bonds connecting centers of mass of the
side chains in their actual rotational isomeric states. Thus,
several degrees of freedom of a single residue in a
polypeptide are reduced to a single degree of freedom in the
model, leading to a significant increase in sampling
efficiency and allowing simulation of much longer chains.
Folding simulations start from 20-50 random lattice chains
(replicas) and a large number of simulations is performed. In
the cases when a structural template is provided by
PROSPECTOR, the starting chains are built in the spatial
proximity of the template chain (for example within GEM,
[21] Generalized Comparative Modeling, described above).
Otherwise, the entire procedure does not depend on the level
of similarity of the probe sequence to the sequences of the
known structures. Subsequently, a large number of structures
obtained from lattice REMC simulations are subjected to a
clustering algorithm [194] that contains elements of distance
geometry [195]. The best (in respect to conformational
energy) cluster centroids are subject to off lattice refinement
and all-atom reconstruction [196]. In test folding
experiments for a set of small proteins this procedure
produces correct folds for about 80% of the cases. A
significant fraction (ca. 25%) of predictions lead to structures
whose accuracy is close to experimental quality [197].
During the CASP4 experiment, a preliminary and incomplete
version of this methodology was used. The method
performed well: in two cases the best models in the
competition were obtained using this method [198].

d. Methods for Sampling Conformational Space

The enormous conformational space [2, 3] of proteins
defines a very complex energy landscape, and the problem of
finding the global energy minimum in this landscape is very
difficult [199-201], even for reduced, but not trivial, models.
Thus the choice of algorithm that searches conformational
space is (almost) as important as the model design and the
quality of the force field used. For continuous models,
variants of Molecular Dynamics could be used; however this
is rarely the optimal choice. Other sampling schemes,
including a variety of Monte Carlo methods [193, 202-209],
genetic algorithms [210-213], and combinations of these
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methods could be applied to continuous as well as to the
discrete (or lattice) models. We focus here on the Monte
Carlo schemes, since they form the majority of the present
approaches to ab initio structure prediction.

Recently, significant progress in Monte Carlo techniques
has been achieved. There are two key characteristics defining
the Monte Carlo schemes: first, the method of confor-
mational updating, and second, the choice of acceptance
criteria to some extent resulting from the assumed statistical
ensemble.

Conformational updates [214] can be global or local.
Global updates are employed in the chain growth algorithms,
where the sample consists of uncorrelated chains built from
scratch. Other algorithms employ pivot moves of a large part
of the model chain. Usually, the trial modifications are local,
involving only a small portion of the chain, or a small
distance displacement of a larger part of the chain. Finally,
the local and global modifications can be combined in the
same algorithm. The choice of updating strategy in Monte
Carlo algorithms (also in genetic algorithms and in hybrid
minimization/optimization algorithms) depends on the aim
of the studies. Different strategies are needed for the study of
protein folding dynamics and thermodynamics than are
suitable for those procedures that aim to find the lowest
energy conformation. With a proper selection of local
updates, an isothermal Monte Carlo simulation with a simple
Metropolis [215] acceptance scheme could be considered a
numerical solution of a stochastic equation of motion. For
sufficiently long time intervals, trajectories from such Monte
Carlo simulations mimic trajectories from Molecular
Dynamics or Brownian Dynamics. Consequently, properly
designed Monte Carlo algorithms can be used in studies of
protein long-time dynamics and folding pathways [216-218].

For finding the lowest energy state, the traditional
simulated annealing Metropolis scheme might not be the best
choice. There are several Monte Carlo schemes that could be
much more efficient. Monte Carlo with local minimization
could be more efficient for a higher resolution models than a
simple Metropolis scheme. For example, multicanonical
ensemble methods [219, 220] (one of the variants is known
as Entropy Sampling Monte Carlo, ESMC [221-223]) more
easily surmount local energy barriers and are quasi-
deterministic in the sense that a subsequent simulation uses
information from the preceding simulations and (on average)
improves the previous results. Moreover, when converged
such simulations provide not only a good guess for the
lowest energy conformation but also a full thermodynamic
description of the model system in a wide range of
temperatures. A disadvantage of these methods (sometimes
very serious) is their high computational cost.

The REMC technique [193, 224] (or its variants [213])
may be a method of choice for an efficient search for the
global minimum of the conformational energy. In the REMC
method a number of copies of the model system, placed at
various temperatures, are simulated by means of a standard
Metropolis scheme. The range of temperatures should cover
the region of denatured and folded states of the model
protein. At high temperatures, the energy barriers can be
surmounted easily. Occasionally, the replicas are exchanged
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between various temperatures according to a criterion that
depends on temperature difference and energy difference.
Consequently, low-energy conformations at a higher
temperature have a chance to be moved to a lower
temperature. At low temperatures they search a narrower
window of the conformational space “looking” for deep
minima. Thus, the copies of the system sample not only the
conformational space but also move between various
temperatures. In spite of the necessity to maintain several
copies (replicas) of the model system, the REMC method
seems to be qualitatively more efficient (and faster) in
finding the lowest energy state than the previously
mentioned Monte Carlo schemes [225]. Moreover, a
reasonably accurate full (conformational energy and entropy
from the same simulation) thermodynamic description can
be extracted from relatively inexpensive simulations [226].
Recently, the REMC method was successfully employed in
several studies of proteins and protein-like systems [204-
206, 225, 226] and also used in protein structure prediction
procedures [21, 197, 198].

V. ROLE OF STRUCTURE PREDICTION IN THE
GENOMIC ERA

a. Genome-wide Protein Folding Studies of All Sequences
from a Genome

To date, several groups have attempted computational
protein folding on a genome-wide scale. These efforts
include modeling of the yeast genome [227], analysis of
folds in the worm genome [228], and modeling of a number
of bacterial genomes [229, 230]. Yokoyama and colleagues
have initiated a search for all “natively-folded” proteins on a
large scale [231], and Baker and colleagues have
accomplished a proof-of-concept for ab initio folding [232],
but neither of these has yet been applied to a complete
genome. The Sali, Gerstein and Godzik efforts have utilized
some kind of alignment algorithm, either PSI-BLAST or
threading alignment methods, to obtain alignments between
the genome sequences and known structures. Comparative
modeling programs have then been used to build three-
dimensional models from the alignments. Using this
approach, Sali was able to build models for 1,071 yeast
proteins, 17% of the proteome [227]. Gerstein was able to
match 250 known folds to 8,000 domains in 4,500 ORFs in
the worm genome [228]. In H. pylori, Godzik was able to
recognize over 40% of the proteins encoded by that genome
[229].

As all of these methods start with alignments to known
structures, the results are necessarily limited to the structures
that are found in the current structural database. Baker’s ab
initio proof-of-concept project [232] is interesting, in that it
is a first attempt to propose an ab initio approach to large
scale protein folding. Such methods have the advantage of
not relying on known protein folds, but have the
disadvantage of being limited to smaller proteins. An
analysis of several genomes that have been sequenced
indicates that this method could be applied to 15-25% of
proteins in a number of genomes (Table 1). These methods
could be extended to more ORFs in any given genome by
applying them selectively to independently folded domains
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Table 1.  Percentage of Protein ORFs Containing Less Than
150 Amino Acids
Genome Percentage
Homo sapiens (Build 22) 16%
Drosophila melanogaster 15%
Escherichia coli 21%
Saccharomyces cerevisiae 17%
Mycobacterium tuberculosis (h37rv) 19%

Bacillus subtilis 25%
Ureaplasma urealyticum 21%
Mycoplasma genitalium 17%

Mycoplasma pneumoniaem (129) 20%
Average 19%

within larger proteins. However, such approaches are
computationally intensive and results on a genome-wide
scale have not yet been published.

Using Approximate Models in Functional Site
Identification and Small Molecule Screening

Are the models that come from today’s state-of-the-art
folding algorithms sufficient to identify functional sites,
including enzyme active sites, co-factor and small molecule
binding sites and site of protein interactions? Sali suggested
that the functional sites in his homology models were better
predicted than the remainder of the protein [227]. Fetrow and
coworkers made a similar observation for a set of proteins
folded by ab initio methods [42]. This suggests the
appropriate structural descriptors might indeed be useful for
function identification. Clearly, such descriptors cannot rely
on the atomic detail that would be found in a typical
structure determined by x-ray or NMR techniques. Structural
motifs called Fuzzy Functional Forms™ (FFFs) were
designed to meet this need [45]. FFFs have been shown to be
very successful in identifying functional sites in genomes
(Fig. 3b) folded by today’s threading and comparative
modeling algorithms [43] suggesting that, indeed, these
approximate models are useful, at least for biochemical
function determination.

Are the approximate models good enough to be used for
ligand or lead identification? As with functional site
identification, today’s standard methods, e.g., DOCK [22],
rely on the structural quality found in experimentally
determined structures. Clearly a different approach is
required for identifying ligands that bind to approximate
models produced by protein folding algorithms, given the
lack of atomic detail. Recently, two groups have developed
different types of approaches to this problem. Hoffman and
coworkers have developed a method that uses the FFF
fingerprint of functional sites to screen large libraries of
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small molecules®. This is a profiles approach that does not
utilize docking methodologies, so it is significantly faster
computationally than standard docking methods. As such, it
would be appropriate for initial very high throughput
screening of large, small-molecule libraries. Skolnick and
coworkers have also created a “fuzzy docking” approach,
which is applicable to computational models, for the predic-
tion of the conformation of receptor-small ligand complexes
[22]. This approach uses only approximate, discretized
models of both protein and small molecule, and identifies
steric and quasi-chemical complementarity between a ligand
and the receptor. In the application of this method to test
cases from the Protein Data Bank, not only is the localization
of the binding site on the receptor surface correctly
identified, but also the proper orientation of the bound ligand
is reasonably well reproduced within the level of accuracy of
the modeled receptor itself®. To maximize use of the compu-
tational models that come from the large scale structural
proteomics projects, these types of approaches to small
molecule screening and docking must be further developed.

VI. OUTLOOK FOR FUTURE PROGRESS

These methodologies for protein structure prediction,
while partially successful, need further improvement. An
outstanding problem is the need to develop potentials where
the native state is the lowest in energy. At present, the native
state is often one of the low energy answers (in itself major
progress), but in general, it is not the best-scoring solution.
Similarly, global conformational search schemes need
improvement so larger proteins can be treated and the
problem of quaternary structure prediction addressed. There
have been few studies that predict quaternary structure from
sequence alone; this problem too must be addressed.

The future will likely see a confluence of homology
modeling, threading and ab initio approaches. Already, the
methods of Baker [177] and Skolnick [197, 198] are
proceeding along this direction. Such methods must be
applied and tested on a genomic scale to demonstrate their
applicability. Homology modeling [53] and threading
methods [18] have been applied to screen entire genomes,
and ab initio folding approaches are not far behind.

Turning to threading, better integration of sequence- and
structure-based approaches needs to be developed. The
problem of alignment quality, even when the topology is
correctly identified, is not yet solved. For tractability,
perhaps an intermediate step where explicit interactions are
considered but the backbone is frozen might be undertaken
once a significant scoring template is identified. Since the
resulting starting structure will be closer to the native state,
this might increase the convergence of generalized
comparative modeling methods [21]. Efforts to accomplish
this intermediate refinement step are underway.

For ab initio folding, a better means of fold selection is
needed. As mentioned above, quite often the folding

B, Hoffman, unpublished results.
3J. Skolnick and coworkers, unpublished results.
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simulations produce a fraction of very good, low-to-
moderate resolution structures. Unfortunately, the force field
does not always recognize these as being lowest in energy.
Perhaps fold generation and selection should be done
separately. One promising possibility is to generate the
structures using a reduced model for computational
tractability and then to select the resulting structures using a
detailed atomic model [197].

Does more compute power solve the problem?
Researchers at IBM believe that significantly more
computing power could help solve the protein folding
enigma and have begun working on Blue Gene, a massively
parallel computing machine that could be applied to the
study of the protein folding problem [233]. This ambitious
project requires the development of machine architecture,
programming models, and algorithmic  techniques
customized to protein folding by researchers at IBM. Only
after this development can the machine’s compute cycles be
applied to studying the protein folding algorithm. Blue Gene
will allow simulations that are orders of magnitude larger
than can be accomplished with current technology. Such an
advance would allow researchers to explore protein folding
over significant time intervals, calculating large numbers of
trajectories, with different atomic potentials. The increased
computational power will allow researchers to collect
meaningful statistics, a goal that is limited with today’s
available compute power. Even if Blue Gene does not
“solve” the protein folding problem, data obtained from the
effort will be quite useful to further understanding of the
problems and issues surrounding this problem.

Sparse experimental data could be used to extend the
range of applicability of threading and ab initio folding.
Some examples of NMR-based experimental data include
secondary structure, sparse tertiary restraints, and residual
dipolar coupling information. Fluorescence data, double
mutagenesis data or crosslinking experiments could also
provide some information about side chain contacts.
Mutation experiments or NMR methods can help identify
residues that are involved with ligand binding. Information
about the spatial arrangement of these residues could be
easily incorporated into the folding algorithm. Alternatively,
since ab initio folding often provides a few folds,
experiments could be designed to select among these few
possible structures. Such methods are currently being
implemented in our laboratories.

The large scale prediction of the biochemical function of
a protein using a structure-based approach requires an
extensive active site library. Once available, the assignment
of biochemical function can be done with a far smaller false
positive rate than alternative sequence-based approaches [42,
234]. While three-dimensional active site descriptors can be
built by hand, this is very time consuming, and automated
approaches are needed. Among these is the use of PDB
descriptors to assign active site residues [235]. Alternatively,
BLOCKS [236] or Pfam could be used to identify conserved
positions and then build a three-dimensional descriptor
[237]. Other functional sites, such as ligand co-factor
binding sites, might be built in the same way.
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To date, no large-scale refinement of the threading-
generated structures has been done. If the alignment is in
error with active site residues incorrectly aligned, then a
false negative will result. Thus, GEM [21] is being applied to
demonstrate the stability of correct alignments (i.e. true
positives do not become false negatives) as well as to
convert false negatives into true positives. The method is
being tested on the weakly significant alignments (Z score
>1) in both M. genitalium [89] and E. coli [93]. If the Fischer
data set is a guide, this will provide a set of better models for
a significant fraction of both genomes and allow the
biochemical function of additional proteins to be assigned.

In conclusion, while techniques for the prediction of low-
resolution structures have improved, structure prediction is
not yet routine. Nevertheless, the low-resolution structures
produced by contemporary algorithms are of considerable
utility both in the identification of biochemical function and
in ligand docking. Such efforts will have to be applied on a
genomic scale if structure-based approaches to function
prediction are to play a significant role in the post genomic
era. A number of such efforts are underway and undoubtedly
there will be more in the future. Thus, while the protein
folding problem is not yet solved, it is becoming less of an
enigma, and more of a practical approach to genomic scale,
structure-based function annotation.
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