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Abstract

Reduced computer modeling of proteins now has a history of about 30 years. In spite of the enormous increase in computing abilities,

reduced models are still very important tools for theoretical studies of protein structure, dynamics and thermodynamics. Very simple, highly

idealized lattice (and recently also off-lattice) models could be studied in great detail, providing valuable insight into the most general factors

governing structure stability, folding kinetics and interactions responsible for characteristic two-state behavior near the folding temperature.

More complex models now enable modeling of real proteins on the level of low to moderate resolution, allowing us to address more detailed

questions. Ab initio protein structure predictions, still being far from a routine task, have become feasible. When supported by evolutionary

information from multiple sequence alignments and potential local and/or global structural similarity to known structures, reduced modeling

opens up new areas of comparative modeling, thereby complementing contemporary structural genomics.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Proteins are fascinating molecular objects. In spite of a

very complex composition of 20 amino acids of various size

and shape, most proteins can adopt a unique, three

dimensional structure that is necessary for their biological

function [1]. The ability to achieve specific, on some levels

quite regular, packing of their side chains has been

developed during the course of evolution [2,3]. Indeed,

the vast majority of random copolymers of amino acids do

not behave as proteins; they do not collapse to a unique

native-like conformation. The sequences of natural poly-

peptides frequently look ‘almost’ random. Therefore, proteins

could be described as ‘edited’ (by evolution) random

copolymers. The free energetic stabilization of the folded

native structure of proteins in respect to the denatured states is

small—equivalent to the energy of a few hydrogen bonds [1].

However, the free energy barrier between the native state and

the manifold of denatured conformations is huge. Conse-

quently, the denaturation–renaturation process has many

properties of a first-order phase transition [4]. This is a very

striking feature of so small objects, composed of tens of

hundreds of atoms. The folding transition of single domain

globular proteins is highly cooperative [5] and is frequently

abbreviated as an all-or-none transition to avoid referring to

the first-order phase transition in the case where the

thermodynamic limit is certainly not satisfied. It is

postulated that the folded state of proteins corresponds to

the global minimum of their free energy. This hypothesis,

first articulated by Anfinsen [2,3], has been proven to be true

for the majority of proteins; however, there seem to be some

exceptions. The folding process, although slow, is much

faster than a random search of the enormous conformational

space of polypeptide chains. This so-called Levinthal’s [6,7]

‘paradox’ could be easily explained by a very rapid

sequential reduction of available conformational space—

for instance, via a loosely hierarchical formation of

elements of secondary [8 –14] (and supersecondary)

structure.

Various purely theoretical models of proteins [15–19]

are quite limited in their ability to explain the unique

properties of proteins. This is due to the complexity of

intramolecular interactions, sequence effects, and the

difficulty in separating the effects of physical forces from

the evolutionary selected specific patterns and regularities.

Consequently, computer modeling plays a very important
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role in understanding the nature of proteins. There are

various purposes of protein modeling, as outlined below.

Very important is to understand the basic physics of

protein dynamics and thermodynamics. In particular, the

elucidation of the various forces which drive the folding

process and determine the uniqueness and stability of the

native state. For this purpose, the models should be rather

simple to make the interpretation of computer experiments

feasible and as unambiguous as possible [20–26]. On the

other hand, too simple models may miss important aspects

of physics. A possible answer to this problem may come

from comparison of various models of increased fidelity

[22,27] (and consequently increasing complication).

Another reason for studying reduced models is to build

algorithms which could be used for protein structure

prediction [28–46] and possibly for prediction of the

protein folding pathways [47,48]. The second task seems

to be generally more difficult. While in many cases of close

homology modeling (or comparative modeling) the predic-

tion of protein structure may solely rely on the detailed

atomistic models [49], the reduced models seem to be

necessary tools for more challenging ab initio structure

predictions [28,34,35,39,40,42,46,50–55] or in structure

refinement from distant homology modeling or threading

based comparative modeling [55–57]. Reduced models

require the explicit treatment of much smaller numbers of

degrees of conformational freedom and usually have a less

rugged energy landscape then detailed atomic models

[58,59]. Therefore, the cost of computations decreases by

orders of magnitude, and the task of global minimization

[42,60,61] of the protein conformational energy becomes

tractable. The role of reduced models is probably even more

fundamental in the prediction of protein folding pathways

and the mechanism of protein–protein association [62–71].

It is still impractical (due to enormous computational cost)

to simulate a full folding process of even relatively small

proteins using detailed molecular models [72]. Related to ab

initio protein structure prediction is model building based on

fragmentary experimental data [73]—for example starting

from NMR assigned secondary structure (partial or complete)

and/or from a small number of known side chain contacts from

NMR [74–76] or other experiments [77] as crosslink walks or

tryptophan fluorescence. Building good molecular models

from electron microscopy still remains a big challenge and

may also benefit from the application of properly designed

reduced models in the near future.

The design and application of reduced protein models

have several, to some extent separable (and exchangeable

between the models), conceptual levels. The first is the

choice of the representation of the polypeptide chain. There

are at least two choices that have to be made at this stage.

The most important is the level of detail intended for

reproduction. The spectrum of explored possibilities is

large—from a single interaction center per residue (or even a

small number of residues treated as a single unit [37,78,79])

to several united atoms per residue. In the last case, various

choices are being made. In some models, all main chain

atoms are treated in an explicit way while in others single

united atoms replace the side groups. Sometimes, the main

chain could be replaced by the alpha-carbon trace and the

side chains partitioned (depending on their size) into several

interacting units. Models that use an all-atom representation

of the main chain and several united atoms per side group

are rare, because they are too close in the cost of

computations to the all-atom models and their advantages

become marginal. Nevertheless, applications exist which

employ the all-atom representation of the polypeptide

chains with a simplified, highly reduced force field and a

specific sampling scheme. The second important decision

that needs to be made during the design of a protein model is

the choice between a continuous space and a discretized

lattice representation of the conformational space. Continu-

ous models, as a more straightforward method, do not

require any general comment. As for the lattice-type

models, there are a variety of possibilities. Many studies

have been done for simple cubic lattice models and other

low coordination lattice models that highly idealize the

nature of proteins. However, it is possible to design quite

detailed lattice-confined polypeptide chains. The resolution

of lattice models [22,80,81] can vary from a very crude

shape of the main chain to a resolution similar to that of

good experimental structures [56]. Usually, the main chain

is restricted to a lattice. The side chain, if explicitly treated,

could be restricted to a lattice or could be allowed to occupy

off-lattice positions. It is possible to reverse the situation—

restricting the positions of the side chains to a lattice and

allowing off-lattice positions of the main chain atoms. The

main disadvantages of the lattice models are related to

distortions of local geometry of polypeptide chains, the

limited resolution of the model, the possibility of anisotropy

effects (depending on the resolution of particular lattices),

some restrictions on the available selections of the sampling

methods and the necessity of discretization of the force field.

For high coordination lattice models, these apparent

disadvantages are negligible, and such models can achieve

significantly better performance than that of otherwise

equivalent continuous space models.

Strictly connected to the representation of protein

geometry is the range of available schemes for conformational

updating. The advantage of the continuous models is the

possibility of adaptation of various schemes typical for

classical molecular dynamics (MD). On the other hand, lattice

models allow for the easy design of local conformational

transitions that avoid local energy barriers, thereby increasing

sampling efficiency. Moreover, lattice models enable the

precalculation of entire sets of some conformational tran-

sitions and some elements of the force fields in the form of

‘prefabricated’ reference tables. This additionally speeds-up

the sampling, and the dynamics of the model system over a

period of time can be simulated.

It is obvious that the design of the model force field is to

some extent dictated by the choice of geometrical
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representation of the polypeptide chains. Having a single

interacting center per residue requires a potential function

that simultaneously accounts for a variety of physical

interactions including hydrogen bonds, averaged Van der

Waals interactions, hydrophobic effects, etc. When the main

chain is represented in a more explicit fashion, a directional

potential that mimics hydrogen bonds can be separated from

other interactions—for instance, from the pairwise inter-

actions between the side chains. The optimal shape of a

potential function also depends on the representation [82].

For continuous models, a Lennard–Jones type could be

appropriate [36]. On the contrary, for lattice models, the

bottom of the potential curve needs to be flat, with the width

adjusted to the lattice spacing. Otherwise, lattice anisotropy

artifacts could be severe [83].

The next and final stage of the model design is the choice of

a sampling or a conformational search scheme (or schemes).

Again, to some extent, it has to be a consequence of the selected

representation and the force field design. Obviously, classical

MD algorithms are not applicable to the lattice models.

The type of representation, design of the force field and

the sampling scheme employed determine the range of

applicability of a given reduced model. It would be non-

sensical to use cubic lattice chains to model the loops in

comparative modeling tasks. Similarly nonsensical would be

an attempt to enumerate all conformations of a polypeptide

restricted to a high coordination lattice with tens or hundreds

of possible orientations of the virtual bonds between the Cas.

The remainder of this review follows the line of the

above general remarks on the design of reduced models.

We start from a review of various representations of the

conformational space. This is followed by a discussion of

different methods of designing interaction schemes for

various models. Afterwards, various sampling techniques

are described. Finally, we outline some typical appli-

cations of reduced models and their meaning for the

theoretical and practical study of proteins.

Due to the very large number of publications on reduced

protein models, it is impossible to make references to all of

them in a short review. The main purpose of this contribution is

to cover as diverse as possible a spectrum of reduced models

and simulation techniques. Thus, for various approaches, we

have attempted to choose a representative set of references that

might not necessarily be proportional to the actual impact of

particular studies on protein science. We hope that some

techniques developed for studies of protein (and outlined here)

can also be useful in theoretical studies of polymers in general,

similar to the flow of ideas from polymer sciences into the

more specific field of protein theory.

2. Protein representation in reduced models

2.1. Simple lattice models of protein-like polypeptides

Probably the simplest models of protein-like systems

employ a simple cubic lattice (sc) representation of the

polypeptide chain. An example of a short lattice chain with

two types of residues is shown in Fig. 1A. Two types of

chain beads reflect a crude approximation of the two types

of residues: hydrophobic (H) and polar (P). This so called

HP model [84] has been extensively studied by Chan and

Dill [85–94], Sali and coworkers [95–97], Shakhnovich

and coworkers [27], Karplus and coworkers [21,96,97] and

many others [24,98–106]. Modifications of this model

include different codes for sequence [23,95,107–121] (from

a simple collapsing homopolymer to full twenty-residue

types of sequences [117,122]), more complex (and more

realistic) interaction schemes [23,25,114,116,118,122–128]

effects of other molecules [66,90,129–135] a simple lattice

representation of the side chains [62,128,133,136–140], and

modifications of the geometry of the HP model [98,141,

142]. An excellent review of earlier studies of this model

can be found in work of Dill et al. [20]. The simplicity of the

HP type models is an obvious advantage, making it possible

to study the model systems in great detail [20,143].

Probably the main weakness of the model is related to the

lack of a clear notion of secondary structure [144]; however

some studies were done with a symbolically defined

secondary structure in simple cubic lattice chains [23–25,

41,144–148]. Secondary structure is an important feature of

proteins, enabling the fast partitioning of the conformational

Fig. 1. Examples of simple lattice and moderate resolution lattice models of

proteins. (A) Simple cubic lattice (a planar example) chain with two types

of residues. (B) Lattice chain restricted to the face centered cubic lattice

(fcc) with two types of residues (almost planar example, one residue in the

loop is placed out of plane). (C) ‘Chess knight’ 210 lattice model (24

possible orientations of the Ca-trace vectors) of polypeptide (planar

example of the main chain) where the side chain centers are also restricted

to the underlying cubic lattice and the side chain vectors are type of (^1,

^1, ^1). (D) ‘Hybrid’ 310 lattice model (90 possible orientations of the

Ca-trace vectors) with off-lattice side chains and multiple rotamers.
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space during the folding process [9,16]. Nevertheless, the

idea of hydrophobic collapse [116] certainly describes an

important aspect of protein folding. Indeed, studies by Go

et al. [136,149–153], Crippen [154] and others [155,156],

clearly show that even some overall geometrical resem-

blance to real proteins could be achieved.

Other simple lattices were employed in the modeling of

real proteins [141] (Dashevskii [157], Levitt et al [78],

Krigbaum and Lin [158], Reva et al [138]) as well as in

studies of protein like systems (Kolinski and Skolnick

[159–163], Sikorski and Skolnick [164–166]). Diamond,

body-centered-cubic (bcc) and face-centered-cubic (fcc)

lattices enable a somewhat better description of the local

geometry of polypeptides than was possible for sc-lattice

models. Consequently, it becomes possible to build helices

and b-sheets with a reasonable (but crude) similarity to the

patterns seen in real proteins. A qualitative account of the

hydrogen bonding is also feasible in this type of model. An

example of a short fcc-restricted polypeptide is schemati-

cally shown in Fig. 1B. Actually, the fcc lattice could be the

best choice among the simple regular lattices [26,141,167,

168]. This lattice describes relatively well the local packing

in folded proteins [169]. It is noteworthy that some models

do not follow a one-to-one correspondence between the

lattice beads and residues of modeled proteins [78,136,170].

For instance, Levitt and coworkers used diamond lattice

compact chains, with more than one residue per lattice unit

[78,170], to model decoys that were subject to further

analysis in their hierarchical methodology of ab initio

protein structure prediction [79,171].

2.2. Moderate resolution lattice models

It is possible to design relatively simple lattice models

that allow the moderate resolution modeling of the local

geometry of polypeptides while maintaining most of the

computational simplicity of the simple lattice models. One

such model is the three-dimensional ‘chess knight’ model

[9,172–174] illustrated in Fig. 1C. The main chain Ca trace

is represented by a chain of vectors type (^2, ^1, 0). The

number of such virtual Ca–Ca bonds is equal to 24 (4

permutations of the signs times six permutations of the

digits). The side chains of this model are also restricted to

the underlying cubic lattice and the centers of the side

chains are separated from the main chain vertices by

diamond lattice vector type of (^1, ^1, ^1). The side

chain vectors are selected to be as close as possible to the

orientation of average rotamers in the database. Of course,

the direction of the side chain is defined by the geometry and

orientation of the two corresponding main chain vectors.

The model allows a very simple control of excluded volume

and various contact interactions [172]. The lattice excluded

volume of a model residue included the Ca vertex, six

neighboring points of the underlying lattice and the three

closest lattice points to the center of the side chain (except

glycine, which lacks of side group). The ‘chess knight’

model enables the low resolution study of real proteins [9,

174,175] and a quite detailed (due to protein like geometry)

study of idealized protein-like geometrical motifs [173]

(helical bundles, complex topologies of b-type proteins and

mixed a/b motifs). Unfortunately, the ‘chess knight’ model

exhibits quite significant spatial anisotropy [83]. For

instance, acceptably regular helices propagate only along

a few directions of the lattice. Of course, the effect is much

less severe than for regular low coordination lattices [83].

For the purpose of studying real proteins, the chess-

knight model has been modified. Namely, in order to

breakdown the effect of anisotropy, additional possible main

chain vectors were added. The hybrid 210 model [28,176,

177] employs 56 basis vectors of the type (^1, ^1, ^1),

(^2, ^1,0) and (^2, ^1, ^1). The main chain excluded

volume is modeled in the same fashion as was done for the

‘chess knight’ model. This is one of the reasons why vectors

type (^2, 0, 0) are not included in the set of the allowed

Ca–Ca orientations. The side chains are spherical, off

lattice and represent the coarse-grained library of rotamers.

The best fit of the experimental structures to the 210 hybrid

lattice chains is obtained when the spacing of the underlying

sc-lattice is assumed to be equivalent to 1.7 Å. As a result,

the average fitting accuracy is better than 1.0 Å [83,178]. Of

course, this does not mean that the accuracy of structures

folded with this model is this good. The accumulation of

inaccuracies from various potentials (impossible to avoid in

lattice models [179]) significantly decrease the practical

fidelity of the model.

Using a similar philosophy, a higher resolution 310

hybrid lattice model [29,31–33,53,54,60,68,69,180–186]

with 90 basis vectors for the Ca–Ca trace was developed

and employed in several studies of protein stability,

dynamics and thermodynamics. The idea of this polypeptide

representation is depicted in Fig. 1D. Similar moderate

resolution models were later designed in several labora-

tories [124,187,188].

2.3. High coordination lattice models

The majority of reduced protein models assume that the

most convenient reference frame for the geometry of the

entire model is the main chain. Indeed, the main chain

segments in proteins exhibit higher regularity than the

mutual orientations of the side chains. On the other hand,

the interactions between the main chain units are, to a large

extent, generic—i.e. they do not depend too much on

sequence. The sequence specificity of intraprotein inter-

actions is much higher for the side chains. Packing of side

chains is probably the main factor responsible for the native

structure of a protein. Taking the above into consideration, a

model that focuses on the side chains has been developed

(see Fig. 2A). SICHO [71,74,81,189–192] (Side Chain

Only) uses an extremely simple representation in the form

of strings and beads chains connecting the centers of mass

of the side groups in their actual rotational isomeric
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conformations. The model allows a large number (646) of

possible virtual ‘bonds’ between side groups. The lengths of

these bonds cover a broad distribution of intraprotein

distances, from 3.8 Å between two consecutive glycines to

over 10 Å between centers of large side groups. The

distributions are controlled by appropriate statistical

potentials. Such a defined model is very flexible and easily

driven by the interactions between the side chains. The

positions of the Cas are defined in an approximate fashion,

using the positions of the three consecutive side groups. The

lattice spacing of the underlying cubic lattice is equal to

1.45 Å. Thus, the limit of accuracy is about 0.8 Å for the

cRMSD (coordinate root mean square deviation after the

best superimposition of the centers of mass of the side

groups). The test of spatial proximity of the interacting

groups is done via a local lattice search algorithm. Thus, the

algorithm scales nicely with the chain length. Consequently,

relatively large systems could be effectively simulated (a

few hundred of residues). Interestingly, the overall accuracy

of this model (including accuracy of the main chain) is

higher than the accuracy of the 310 hybrid lattice model, for

which the spacing of the lattice is equal to 1.22 Å. This

means that, due to statistical cancellation of errors, the

approximation of the Ca trace is actually more accurate than

the accuracy of the side chain positions. In other words, the

reconstruction of the main chain atoms from the known

positions of the centers of the side chains is a better defined

task than the reconstruction of the side groups from a given

main chain. Thus, the SICHO model is a valuable element

of multiscale simulation tools in molecular biology [193].

The actual fidelity of the SICHO model (due to square well

potentials used and other approximations in the interaction

scheme) is obviously lower and varies from 2 Å for small

proteins to 5–6 Å for larger ones. This is probably

satisfactory for ab initio fold prediction or refinement of a

low resolution threading models [34,35,55,57,73]. The

resolution is sometimes satisfactory for applications in

homology modeling [194]; however, when a high resolution

is necessary, a model of higher accuracy is needed.

The recently developed CABS (Ca–Cb–Side groups)

has three interaction centers per residue and 800 allowed

Ca–Ca vectors (see Fig. 2B) The positions of up to two

side chain united atoms are average rotameric states for a

given residue type and a given conformation of the main

chain fragment. This is probably a much better approxi-

mation than it might at first appear [38]. The lattice spacing

is equal to 0.61 Å. The resulting average cRMSD for the

Ca-trace of PDB structures fitted to this lattice is in the

range of 0.35 Å. The actual resolution of the model is in

the range of 1–2 Å depending on protein size, which makes

it an appropriate tool for fold refinement in comparative

modeling, fold assembly based on sparse NMR data (and

experimental data from other sources) and ab-initio folding

supported by evolutionary derived restraints. While the

algorithm is much less computationally demanding than

equivalent continuous space models, it is still too expensive

for purely ab initio folding of larger proteins, assuming the

force field would be adequate to the task, which at present, it

is not.

2.4. Continuous space models

Similar to the lattice models, continuous space models

employ various levels of generalization. The number of

structural details and the selection of explicitly treated

degrees of freedom differ significantly in various models.

There are two general classes of continuous space models

(similarly to the lattice models): idealized models of protein

like systems and reduced models of real proteins. The

idealized models resemble very much some lattice models

except they are sampled in a continuous space [195–203].

The majority of reduced continuous space models are

aimed at the study of real proteins of various levels of detail.

In the classic work of Levitt and Warshel [36,204] the

polypeptide chain has been reduced to the Ca trace and

spherical, single united atom, side chains (see Fig. 3A). The

planar angle was kept at a single fixed value for all residues.

This is probably an unnecessary simplification since the

distribution of this angle exhibits two well defined maxima

that correspond to compact (for instance helical) and

Fig. 2. Two types of high coordination lattice models. (A) Side CHain Only

(SICHO) model with the centers of side groups (SG) restricted to the

underlying cubic lattice. The number of possible SG-SG vectors is equal to

646 and covers the distribution observed in real proteins, with the

assumption that the lattice constant is equal to 1.45 Å. The broken lines and

small black dots show an implicit (calculated from the position of the side

chains) Ca-trace (off-lattice). (B) CABS model (Ca–Cb–SG) with lattice

representation of the main chain trace (800 possible Ca–Ca vectors) and

the beta carbons and centers of mass of the side chains placed off-lattice.

Different rotamers are used for expanded and compact conformations of the

main chain and the lattice spacing is equal to 0.61 Å.
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expanded conformations (b-strands or expanded coil

fragments), respectively. On the other hand, it is a low

resolution model and somewhat adjusted dihedral angle

preferences employed in the model (and derived from

conformational analysis of representative dipeptides)

should correct for this approximation. This model and its

variants were subsequently used in other studies of protein

folding [205–208].

A completely different approach to protein chain

modeling in a continuous space is represented by the

model developed by Hoffmann and Knapp [209,210]. Here

(see Fig. 3B), the main chain is pictured as a string of rigid

peptide bond plates in their trans-conformations. Actually,

an independent unit of the chain consists of three successive

peptide bond plates. The authors have shown that there are

collective transformations of such units (involving simul-

taneous and coordinated changes of their F–C angles) that

leave unchanged the remaining (outside a 3-bond window)

portions of the chain. This led to an impressive speed-up of

the sampling process with respect to models with indepen-

dent, more local, conformational transitions. Interestingly,

such types of moves are typical for almost all of the more

complex lattice-confined models [22,81,183]. Thus, besides

other interesting results, the Hoffmann and Knapp work

provides a qualitative explanation for one of the aspects

responsible for much faster sampling of the lattice models.

A very elegant UNRES (UNited RESidues) model

developed by Liwo, Scheraga and coworkers (see Fig. 3C)

assumes only two centers of interaction per residue. One is

located in the center of the peptide bond; the second is an

ellipsoidal side chain. Due to the asymmetry of the united

atoms, and asymmetry or/and directionality of their

interactions, the model accounts surprisingly well for most

of the physical interactions observed in proteins [41,211,

212] and allows for high geometrical fidelity. The concept

of ellipsoidal side chains was also explored by others [208].

Frequently, the main chain is modeled on the all-atom

level, while a reduced representation is assumed for the side

groups [144,213–216]. An example of this is the model

studied by Sun [217,218] (Fig. 3D), with a single sphere

approximation of the side chains.

A separate class of reduced models of proteins are the

continuous space, off-lattice models in which some degrees

of freedom are locally discretized [219–222]. Usually, the

purpose of such a discretization is related to the discretiza-

tion of potentials or/and is aimed at achieving better

computational efficiency [221,223].

Finally, there are models that employ an all atom

representation of the conformational space; however their

force fields are simplified [224–228]. Such models should

probably be also considered as reduced models. The most

well known works focus on protein structure assembly from

polypeptide fragments excised from the experimentally

solved protein structures [50]. The ROSETTA algorithm of

Baker and coworkers [37,46,51], being one of the most

innovative and successful methods of ab initio structure

prediction, is a good example of such an approach to protein

modeling.

3. Interaction schemes in reduced models

The level of detail in the design of a force field strongly

depends on the complexity of protein representation in

reduced models. In simple lattice models, there is always

some simplified potential of the long range interactions.

Numerous studies have been done with the binary code for

residues as in the HP model of Chan and Dill [20], where H

are hydrophobic residues and P are polar, hydrophilic

residues. They interact via a contact potential (nearest

nonbonded lattice neighbors) with different strengths of

interactions for HH, PP and HP pairs [20]. In other simple

lattice models, a Go [149–151] type potential is used, and

only the residues that are ‘in contact’ in the assumed

‘native’ conformation interact. In various modifications of

the HP-type models, the pairwise long-range potentials were

expanded, accounting for more than two types of residues

[23] (up to 20 amino acids [122]) or a protein like

distribution of the strength of binary interactions was

assumed (as in the random energy model [114]). In some

studies of simple lattice models, knowledge-based, statisti-

cal potentials were applied in order to generate low

Fig. 3. Examples of continuous space reduced models of polypeptide

chains. (A) Model proposed by Levitt and Warshel. Two united atoms per

residue, with the center of a side chain equivalent to the center of mass of its

most probable rotamer. The planar angle for the Ca-trace assumed

constant. (B) Model proposed by Hoffmann and Knapp with rigid peptide

bond plates moving in a collective fashion (three plates has to be rotated

simultaneously). (C) UNRES (UNited RESidues) model of Liwo, Scheraga

and co-workers. Two centers of interactions per residue; center of peptide

bond (open ellipsoids) and centers of side chains. Ellipsoids symbolize

asymmetric character of interactions. (D) A model with all atom

representation of the main chain and reduced representation of the side

chains.
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resolution (cartoon) folds of real proteins [155,156,158]. In

the majority of studies, the short range conformational

propensities were ignored [155], or enforced via some

patterns of the low energy contacts along the chain [229]. A

significant contribution to understanding some aspects of

the folding mechanism comes from the random energy

model [230] (REM) applied to the simple cubic lattice

representation of the protein [114,231,232].

A more complex, and perhaps more realistic, interaction

scheme was also explored in the framework of simple lattice

models (sc, bcc, diamond and fcc lattices). First, it is

relatively easy to reproduce the characteristic interplay

between the short (between residues close in sequence) and

long range interactions, especially for lattices that have

geometry somewhat similar to the geometry of polypeptide

chains. For instance, on the diamond lattice one can mimic

‘helical’ turns via the gauche conformations of the three

consecutive chain links and expanded conformations via the

trans conformation [160,161,164–166,233,234]. A more

complex fcc lattice enables a cartoon-type representation of

all structural classes of real proteins [26], with a clear

definition of right-handed helices. It is also possible to

mimic the directional effect of hydrogen bonds in these

simplified models, thereby accounting for the three main

classes of interactions: long range pairwise interactions

(with implicitly averaged hydrophobic effect), short range

conformational propensities and hydrogen bonding [23,235]

that provides a bias towards secondary structure ordering.

Based on the results of several recent studies, it is apparent

that the presence of these short range and directional

contributions [235,236] is necessary for modeling the basic

physics of proteins. Of course, the details may vary. For

instance, the short range conformational propensities may

be, to some extent, replaced by a more complex (than two

letter) code for the long range pairwise interactions [23].

A very similar ‘minimal’ force field has proven very

effective (in the sense of reproducing the basic physics of

protein folding) in application to the somewhat more

complex chess-knight model of Kolinski and Skolnick

[172,173]. The interaction scheme designed for this type of

model by Hao and Scheraga [237 – 239] had three

contributions; pairwise interactions with a three letter

code (polar, nonpolar, and inert residues), local preferences

towards expanded conformations of the putative b-strands

and directional interactions of the model Ca–Ca bonds

mimicking the effect of hydrogen bonds.

Similar designs of the force fields of continuous idealized

protein like systems also enabled us to address more specific

problems of protein folding, dynamics and thermodyn-

amics. In the model studied by Klimov and Thirumalai [240,

241], a quite detailed force field was proposed for the model

with just two united atoms per residue; the first correspond-

ing to the Ca and the second to the spherical side chain.

Particular components of the force field modeled the bond

angle potential, dihedral angle potential, pairwise long

range interactions of both types of united atoms and a model

of hydrogen bonds [242,243].

The lack of some directional interactions mimicking

intraprotein hydrogen bonds might be the main reason for

the relatively low predictive power in early continuous

reduced models of real proteins. More advanced force fields

in reduced continuous models (such as that of Klimov and

Thirumalai [243]) try to model hydrogen bonds in a more

explicit fashion. Also, a very good example is the UNRES

force field [40–42,211,212], where the interactions between

the united atoms located in the centers of peptide bonds are

of a complex form that mimics the directional character of

hydrogen bonds. In contrast to the majority of force field

designs in reduced models, the UNRES interaction scheme

is carefully derived from physical principles, and a great

deal of effort has been made to clearly separate various

contributions [41,211,212]. For this purpose, higher order

multibody potentials were introduced. As a result, the

derived force field has its global minimum of potential

energy at the native (or, more precisely, a near-native)

conformation of a significant fraction of small, topologically

simple globular proteins.

Perhaps some interesting features are included in force

fields for high coordination lattice models. The force field of

the SICHO model [189] is an example of a relatively

complex, knowledge based interaction scheme [74]. A very

important part of this force field consists of a number of

protein sequence independent biases that provide protein-

like conformational stiffness of the model chain. The

generic SICHO chain is extremely flexible due to the

large number of allowed orientations and bond lengths of

the virtual ‘bonds’ connecting the side chain centers of mass

[189]. Thus, the local geometry has to be restricted to the

ranges of distances and angles that are observed in real

proteins. For instance, too narrow (or completely open)

planar angles are forbidden. Additionally, regular protein-

like (helical, b-strands) conformations of short fragments

(from three bond to five bonds) are energetically rewarded.

As a result, the observed distributions of the short range

distances and angles become similar to average distributions

extracted from protein structures [189]. Sequence depen-

dent secondary structure propensities are encoded in several

statistical potentials controlling the distances between ith

and i þ 1; i þ 2; i þ 3 and i þ 4th residues. The three-bond

term is chiral. The idea is very similar to the concept of

reduced backbone dihedral potentials used in several other

models [10,244]. All short-range potentials depend on the

identity of two residues. Main chain hydrogen bonds are

modeled as a directional potential between Ca atoms.

Pairwise interactions of the side groups also depend on the

mutual orientation of the fragments involved [34,35,56].

Statistical potential describing these interactions was

derived for three types of side chain contacts: parallel,

intermediate and antiparallel. Contacts are parallel when the

angle between the bisectors of the two corresponding two-

bond virtual chain vectors is smaller than 608. This feature
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of the pairwise potential is very important. For instance, the

statistical potential for two oppositely charged residues has

a large negative value for the parallel contact and a large

positive value for antiparallel contacts [56]. This reflects the

fact that when charged residues are close to each other, they

are almost always located on the surface of protein;

therefore, their side chains point in the same direction.

Such a design of the knowledge-based potential provides

strong an average force for segregation of surface and

buried residues in the model chain. Finally, the SICHO

force field contains a couple of terms mimicking the

averaged hydrophobic effect in form of single amino acid

dependent potentials controlling number and types of

contacts and location of a residue in respect to the center

of mass of the model structure [56].

Multibody potentials seem to play an important role in

more complex reduced models [28,41,211,245,246]. An

extreme example is to use a neural network to evaluate

structure packing based on large fragments of the side-chain

contact map [184,185,247].

Various terms in the force fields designed for reduced

models usually account for an averaged effect of several types

of actual physical interactions in real systems. Consequently, it

is usually unclear what should be the weighting of particular

model potentials. An optimization of the force field becomes

necessary [124,187,248–252]. Frequently, force fields are

optimized to recognize a selected native-like (or near native)

state from all other conformations of the model protein and to

ensure fast folding [253]. A very interesting optimization

procedure has been proposed recently by Liwo and coworkers

[42,211,212]. By dividing the conformational space according

to a certain measure of the ‘distance’ from the native structure,

they actually optimized the free-energy landscape, biasing it

towards a funnel-like shape.

4. Sampling conformational space of reduced models

The method of sampling depends on the complexity of a

model and on the purpose of studies [250,254]. For very

simple discrete models, all conformations could be

enumerated [20,76,96,141,255–260] and an exact analysis

of the model thermodynamics performed [20,261]. Struc-

ture and thermodynamics of more complex models are

studied via classical molecular dynamics [262–267] (MD),

Monte Carlo (MC) methods [26,109,129,158–160,167,168,

237,239,268–274], genetic algorithms and hybrid combi-

nations of these methods [275]. The dynamics of continuous

reduced models could be studied via classical MD [36,201,

204,265–267,276,277] or its variants [263] (for instance,

Brownian dynamics [265,278]), but also via various MC

schemes [209,210] or combinations of various methods of

global minimization [275]. Long time dynamics of discrete

models could be studied using Monte Carlo dynamics (MCD)

schemes [22,60,69,146,163,166,172–175,233,268,279]. The

simplest example is application of Verdier–Stockmayer

algorithm [280] to the cubic lattice models. It should be

noted, however that this algorithm is not ergodic (except for

very short chains), and therefore, the results of such studies

need to be carefully analyzed. With decreasing symmetry of

discrete models, the problem of ergodicity disappears. A

properly designed MCD scheme provides a numerical solution

of a stochastic equation of motion (Master Equation) and for

time intervals significantly larger than the elementary jump (a

local conformational change) time coincides with MD of

equivalent continuous models. When the only purpose is to

find the lowest energy conformation various ‘multicopy’

methods seem be the most effective [168,273]. The most

typical examples are: Replica Exchange Monte Carlo

(REMC) method [281], genetic algorithms [217,282–285],

Conformational Space Annealing (CSA)—a combination of

genetic algorithm (GA) with local minimization [42], or

hybrid algorithms combining GA and MC [286,287]. Very

powerful in study of thermodynamics of protein models are

methods based on multicanonical or generalized ensembles

approaches [61,237–239,288–291].

5. Some applications of reduced models

5.1. Study of dynamics and thermodynamics of idealized

protein-like systems

Go and coworkers did very early studies of protein like

lattice systems. They addressed the role of various types of

interactions on stability and folding mechanism of idealized

model systems [149–153].

Highly idealized protein models, as in the HP model of

Chan and Dill [84–89,292] or the random energy model

of Shakhnovich [114], are usually studied from the point of

view of the most basic physical properties that could be

common for a large subset of proteins [20,92,93]. An

important virtue of these models is that they could be treated

in an exact fashion, or in an almost exact fashion. It is even

possible to enumerate all compact conformations of such

models [96,255]. Recently, a very sophisticated method for

such enumerations has been developed [256–259]. Some-

times the enumeration of conformational states could be

extended onto somewhat more complex models [76,141].

The problems addressed in the context of ‘simple exact’

[20] models include: the fundamentals of hydrophobic

collapse [293] and some elements of folding kinetics [115,

145–147,232,255,294–298], design of foldable sequences

with a unique ground state and the requirements of the two-

state cooperativity of the folding process [23–25,299,300].

Recently it has been shown that in order to have a true all-

or-none folding transition [25] within these simple models,

it is important to allow for some degeneracy of the ground

state of the model [24,100], an account for secondary

structure and hydrogen bonds and perhaps more than a two

letter code for the sequence [23,248]. The presence of even

a cartoon side chain may also increase cooperativity of the
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folding process [63,139]. For somewhat more complex

diamond lattice models, it has been shown that when the

degeneracy of the ground state is allowed, even homo-

polymeric chain with short range interactions simulating

protein-like stiffness undergo a first-order collapse tran-

sition [159,271]. Therefore the interplay between the long-

range (long range distance along the chain) contact

interactions and the local conformational stiffness seems

be one of the simplest and probably most fundamental

requirements for protein-like cooperative folding. The

structural uniqueness of the folded state in these idealized

diamond lattice models could be achieved by introducing a

proper sequence with differentiated long range interactions

(polar and nonpolar residues) and differentiated short range

interactions along the chain [161 – 166,233,234,279].

Increasing complexity of the idealized lattice models [22,

172,173,176] leads to a larger number of allowed confor-

mations and, consequently, complicates the interaction

scheme required for protein-like folding [167,168,

237–239,249]. Recently, it has been shown that in order

to fold a Greek-key six-member b-barrel restricted to the fcc

lattice in a cooperative fashion, the following properly

balanced interactions are necessary [26]: the sequence

dependent secondary structure propensities (a two letter

code—expanded and flexible loop), a proper pattern of polar

and nonpolar residues, and orientation-dependent inter-

actions between the polar residues. The last could be

considered as an ersatz of the ordering effect of hydrogen

bonds. Probably such a type of model [26] constitutes a

minimalist system that exhibits the most characteristic

features of proteins—a well defined, however geometrically

degenerate, ground state of a relatively complex topology,

fast folding with two-state thermodynamics, a clearly

defined, but simplified notion of secondary structure and a

funnel-like energy landscape.

In parallel, significant work has been done with simple

continuous space models [242,301,302]. These focused on

dynamics and thermodynamics of idealized protein motifs,

as single helices [243], small helical bundles [10,11,276,

278,303,304], small b-sheets [240,241,277], b-barrels [197,

203,305], and idealized models of real proteins [306,307].

These studies contributed significantly to our understanding

of the role of various interactions in polypeptides [196,199,

243,275,303], the origin of the two-state folding transition,

the folding pathways and nucleation of the process [264,

305], and also effects of external restraints [241,308],

including models of chaperone–protein systems [309,310]

on the protein folding mechanism. Possibly, such simplified

models could also provide a guideline for the design of

artificial proteins [276,304].

5.2. Low resolution modeling of real proteins

Probably one of the very first attempts to model real

proteins using a reduced representation was done by Levitt

and Warshel [204]. The model had two centers of

interaction per residue (Ca and side-group united atom), a

simple interaction scheme for short-range and long-range

interactions, and conformational space was explored by

means of conventional MD technique [36,311]. The main

purpose was to predict the three-dimensional native

structure from the sequence of amino acids alone. The

folding of a small globular protein, bovine pancreatic

trypsin inhibitor (BPTI) led in some runs to conformations

resembling the crystallographic structure, with a cRMSD in

the range of 6.5 Å. Other studies of similar models with

various modifications of the interaction scheme and

sampling techniques did not improve prediction quality

[205–207,312]. Nevertheless, taking into consideration the

enormous size of the conformational space to be searched,

these models certainly catch some fundamental properties

of proteins. Significantly better accuracy of predicted

structures was achieved later using related continuous

space models [214,217,275], however, with a more exact

representation of the side chains and statistical potentials

derived from the analysis of structural regularities in known

protein structures [217,313–315].

Interestingly, there seems be little difference in predic-

tion accuracy (overall fidelity of fold, not local geometry)

between the continuous space models and simple lattice

models of real proteins [76,155–158]. It could also be

demonstrated that the long time dynamics of continuous

space reduced models and properly designed lattice models

are also very similar [314,315].

Simple lattice and off lattice models of real proteins were

studied not only for the sake of test structure predictions but

also to elucidate effects of various interactions on protein

folding dynamics [9,174] and thermodynamics [136,266] or

the role of structural restraints on the modeled structures

[76].

5.3. Applications of moderate resolution and ‘high

resolution’ reduced models in the study of protein structure,

dynamics and thermodynamics

The level of actual resolution of reduced models depends

on two major factors: the accuracy of the geometrical

representation [22,27,80,219,220] and the design of the

interaction scheme [22,81,124,211,221,224,245,251,252,

254,316].

Probably the most common aim of high resolution

reduced models is the prediction of protein three dimen-

sional structure from sequence of amino acids [52]. It is

hoped that with sufficiently accurate geometry, a fast and

efficient sampling technique and sufficiently specific

interaction scheme, one can fold proteins ‘in silico’. Indeed,

it has been demonstrated by many that higher resolution

reduced models can indeed find conformations close to the

native one, at least for small and topologically simple single

domain proteins [28,29,40,42,177,211,217,254,275,287,

289,291,307,317]. For very small systems, approaches that

use an all-atom representation of the protein structure and
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dynamics and simplified (and therefore computationally

efficient) force field [227,228,285,318] could be quite

successful.

The most successful ab initio protein structure prediction

methods could be roughly divided onto two broad

categories. In the first category could be placed various

approaches that start from random conformations and

simulate the folding process or minimize the conformational

energy. Typical examples for this kind of approach are high

coordination lattice based methods developed by Kolinski

and Skolnick and coworkers [56,74,81,189,273,316,319]

(the previously described SICHO and CABS models) and

continuous space models [208], where a good example is the

UNRES model of Scheraga and coworkers [42,133,212].

The high coordination lattice models heavily rely on

knowledge-based statistical potentials [316] (that generalize

structural regularities seen in real proteins) while the

UNRES force field was designed and optimized basing on

more rigorous physical principles [41,42,133,212]. A

successful application of the above mentioned lattice

models to the nontrivial cases of protein structure predic-

tions requires substantial support from threading that

provides a prediction of some fraction of native side chain

contacts and short range native distances along the

polypeptide chain [34,35,55–57,273,316,319]. The best

known example of the second category of ab initio folding

approaches is the ROSETTA method [43–46,75,77] devel-

oped by Baker et al. This method (and related methods

[320–322]) employs protein fragments excised from the

structural database [50,321,323]. These fragments are then

used in an iterative process of query structure assembly that

is controlled by a set of simplified potentials, knowledge

based biases [46] and structure regularizing filters [14,45].

Methods exist that combine these two types of

approaches. A very interesting hierarchical ‘bootstrapped’

strategy of fold prediction has been proposed by Levitt et al

[37,79,171]. In the first stage, a large number of compact

lattice polymers are generated. The diamond lattice is used,

and a single lattice unit can correspond to more than one

protein residue [78]. Subsequently, the fragments excised

from the database of known structures are fitted to the lattice

chains with a bias superimposed towards predicted

secondary structure. The best structures are selected basing

on a simplified interaction scheme and finally refined using

molecular mechanics for all-atom structures.

Other applications of reduced models of real proteins (or

peptides) include the study of folding mechanisms [191,192,

295,324–327] and thermodynamics [27,60,191,219], in

silico protein design [185,304] and redesign [182,326,328,

329], assembly of protein structures based on sparse

experimental data [73–77,330–333], force-induced unfold-

ing [126,334,335] effects of spatial confinement on the

protein behavior [241], and structure prediction using

restraints derived from template (templates) structures

identified via sequence based alignments or by threading

methods [30–33,55–57,186,317,319]. The last application,

providing medium to high resolution structures [34,35,55,

57], opens the possibility of a genomic scale distant

homology comparative modeling [35] with a large potential

impact on structural genomics [336]. The reduced models

could be effectively refined by all-atom reconstruction and

subsequent energy minimization [337].

6. Summary

Conformational space and the associated energy land-

scape of detailed atomistic models of proteins are of

enormous complexity. Only small peptides could be

effectively simulated over the time period corresponding

to the longest relaxation time of such a system, or the time

corresponding to the time required for folding into a

relatively unique native state from an arbitrary random coil

conformation. Thereby, the protein representation or the

model of interactions (or both) needs to be simplified in

order to make computational study practical. In this short

review, we attempted to outline some approaches to this

problem. Various levels of generalization are assumed in

reduced protein models. Levels of detail in geometrical

representation vary from a single degree of freedom per

amino acid residue (although some models were studied

with more than one residue per explicitly treated degree of

freedom) through two or three degrees of freedom per

residue up to the full atom representation, with simplified

models of motion and/or a reduced interaction scheme. On a

different level, reduced models could be divided onto

continuous space models, continuous space models with

discretized internal coordinates and lattice models. Lattice

models span a broad range from idealized simple lattice

chains to high coordination lattice discretization of the

conformational space.

The range of applications of reduced models depends on

their complexity and the level of structural detail. Simple

exact model could be studied in great detail, providing

insight into the most general aspects of protein folding

dynamics and thermodynamics. More complex models

allow the study of more subtle effects and provide a more

complete picture. Particular physical interactions and their

effect on protein behavior could be modeled and analyzed in

more straightforward way. The most complex models

become complementary to detailed atomistic models and

enable a moderate resolution study of proteins dynamics,

thermodynamics and (with still a lot of limitations)

theoretical predictions of protein three-dimensional

structure.

Very likely, future applications of reduced models will

address more complex problems of interactions between

proteins and small molecules, protein–protein interactions

and interactions with other types of biomolecules, especially

DNA and biological membranes. This field of biomolecular

research with reduced molecular models is now emerging,

as signalized several times in this short review.
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