
Inferring Ideal Amino Acid Interaction Forms From
Statistical Protein Contact Potentials
Piotr Pokarowski,1* Andrzej Kloczkowski,2 Robert L. Jernigan,2 Neha S. Kothari,2 Maria Pokarowska,3 and
Andrzej Kolinski4

1Institute of Applied Mathematics and Mechanics, Warsaw University, Warsaw, Poland
2Laurence H. Baker Center for Bioinformatics and Biological Statistics, Iowa State University, Ames, Iowa
3Faculty of Geodesy and Cartography, Warsaw University of Technology, Warsaw, Poland
4Laboratory of Theory of Biopolymers, Faculty of Chemistry, Warsaw University, Warsaw, Poland

ABSTRACT We have analyzed 29 different pub-
lished matrices of protein pairwise contact potentials
(CPs) between amino acids derived from different sets
of proteins, either crystallographic structures taken
from the Protein Data Bank (PDB) or computer-
generated decoys. Each of the CPs is similar to 1 of the
2 matrices derived in the work of Miyazawa and
Jernigan (Proteins 1999;34:49–68). The CP matrices of
the first class can be approximated with a correlation
of order 0.9 by the formula eij � hi � hj, 1 < i, j < 20,
where the residue-type dependent factor h is highly
correlated with the frequency of occurrence of a given
amino acid type inside proteins. Electrostatic interac-
tions for the potentials of this class are almost negli-
gible. In the potentials belonging to this class, the
major contribution to the potentials is the one-body
transfer energy of the amino acid from water to the
protein environment. Potentials belonging to the sec-
ond class can be approximated with a correlation of
0.9 by the formula eij � c0 � hihj � qiqj, where c0 is a
constant, h is highly correlated with the Kyte–Doolittle
hydrophobicity scale, and a new, less dominant, resi-
due-type dependent factor q is correlated (�0.9) with
amino acid isoelectric points pI. Including electro-
static interactions significantly improves the approxi-
mation for this class of potentials. While, the high
correlation between potentials of the first class and
the hydrophobic transfer energies is well known, the
fact that this approximation can work well also for the
second class of potentials is a new finding. We inter-
pret potentials of this class as representing energies
of contact of amino acid pairs within an average
protein environment. Proteins 2005;59:49–57.
© 2005 Wiley-Liss, Inc.
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INTRODUCTION

Statistical pairwise contact potentials (CPs) of protein
residues, have been derived either by using the quasi-
chemical approximation from databases of proteins having
known structures,1–23 or by fitting their values to optimize
the selection of the correct structures as the lowest energy

forms in comparisons against sets of misfolded structures
(decoys).24–30 CPs have been increasingly heavily used
over the last 20 years for ligand docking, fold recognition,
and protein structure prediction from amino acid sequence
(see review papers31–33). Analysis of results of the Critical
Assessment of Techniques for Protein Structure Predic-
tion (CASP) experiment shows that most of the successful
groups use statistical CPs in their force fields for threading
or ab initio protein structure prediction.34–41

Introducing the same level of coarse graining over
structures, as is considered in protein sequences, has a
major advantage for relating sequences to structures. It is
well known that coarse graining of structures removes
some of the specificity. For example, when the level of
structural representation is 1 point per amino acid, then
some of the details of backbone conformation are lost, but
most of the information regarding side conformations is
thrown away. Successful use of CPs coarse grained at this
level relies upon the underlying assumption that the terms
coming from the atomic details will be less important than
the placement of the residues within the structure overall.
While there has been no rigorous proof of this, there is now
a large body of evidence in support of this view coming
from the widespread use of the CPs.

In the present work, we first compare 29 different CPs
currently used in computational biology. Each of these
potentials is similar to one of the 2 matrices defined by
Miyazawa and Jernigan.22 We then show that the actual
contribution of specific two-body interactions to CPs is
quite insignificant. The issue regarding higher body terms,
of course, remains open.42 Nonetheless, all the known
pairwise matrices of CPs can be surprisingly well approxi-
mated by simple functions of individual residue properties,
such as hydrophobicity and electrostatic properties (in pH
units given as isoelectric points pI),43–47 for each pair of
amino acids. We term such an approximation of the CP
matrices a one-body approximation. Hydrophobicity repre-
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sents the dominant factor in protein potentials, with other,
less important factors being the energy of demixing of
amino acids in a protein environment and electrostatic
interactions. As we will see, the accuracy of the one-body
approximation works significantly better for potentials
derived from the quasi-chemical principle than for the
potentials obtained from the optimization of the prediction
of the native structures among decoys. This calls into
question the quality of the decoys in general compared to
the known structures. It is quite interesting that the
frequencies of contacts between different amino acids can
also be successfully approximated with the present method.
Thus, hydrophobicity, demixing, and electrostatics are
identifiable as fundamental properties defining potentials
from the simple statistics of inter-residue pair contacts for
proteins in the Protein Data Bank (PDB). Furthermore, an
appropriate function form for combining these terms is
obtained in the present work.

The one-body approximation helps us to comprehend the
separation of the CPs into 2 classes. Potentials belonging
to the first class are dominated by the one-body energies of
transfer of amino acids from water to a protein environ-
ment. The matrices (eij), 1 � i, j � 20 representing this
class of CPs can be approximated with the formula eij � hi

� hj, where the residue-type dependent coefficient h
strongly correlates with the frequency of occurrence of a
given amino acid type inside proteins. Potentials belong-
ing to the second class represent mostly energies of
contacts of amino acids in a protein environment. The
second class of potentials can be approximated with a
correlation of order 0.9 by the formula eij � c0 � hihj � qiqj.
Here residue-type dependent factors h and q are highly
correlated (both with a correlation of order 0.9) with the
Kyte–Doolittle hydrophobicity scale and electrostatic prop-
erty pI, respectively, and c0 is a constant. The electrostatic
properties of an amino acid are represented by its isoelec-
tric point and measured in pH units. The electrostatic
interactions are quite important for the second class of
potentials but are completely negligible for the first class
of potentials.

The high correlation between potentials of the first class
and transfer energies is well known. It seems somewhat
surprising that the one-body approximation works well
also for the second class of potentials, because these
potentials have frequently been derived by excluding
hydrophobic interactions. It can be shown that the term
c0 � hihj (including hydrophobicity and energy of demix-
ing) describes the dominant property of amino acid interac-
tions in the protein environment leading to attraction
between hydrophobic/polar like-type residues and repul-
sion between unlike-type residues that gives the spatial
segregation between a protein’s hydrophobic interior and
polar surface. It is interesting that similar long-range
interactions come from our minimal model of protein
folding.48,49

The explicit inclusion of hydrophobic and electrostatic
interactions allows us to analyze and compare various
statistical potentials for proteins. On the other hand, a
statistical analysis of the frequencies of pairwise residue

contacts in protein structures leads to the derivation of
explicit forms, which can be correlated and compared
against various experimental scales of hydrophobicity and
pI. Validating the potential form in this way permits us to
comprehend these complex interactions.

METHODS

Because of the symmetry, we identify the matrix E �
(eij) of contact potentials with its upper diagonal part
(eij)i�j. Our aim is to find a simple function
Ẽ�h,q� � �ẽ�h,q�ij� of two 20-dimensional vectors h and q
(properties of the 20 amino acids) that minimizes the sum
of squares

�
i,j:i�j

�ei,j � ẽ�h,q�i,j�
2 3 min

h,q
. (1)

This defines the well known least squares problem.
Accuracy of the approximation is measured by the

correlation coefficient, the relative Euclidean distance and
the mean Euclidean distance between normalized matri-
ces E and Ẽ. Specifically, let us denote the scalar product of
vectors x and y as 	x, y
 and the norm of x as �x�
� �� x,x � . The normalization of x is given by the
vector xN � �x � x��/�x, where x� is the mean value of x and
�x is its standard deviation, respectively. The correlation
between vectors x and y is defined as

cor�x,y� �
� x � x� , y � y� �

n�x�y
�

� x � x� , y � y� �

�x � x� � �y � y� �
.

(2)

We define also the distance between normalized vectors
dist�x,y� � �yN � xN�/�n, where n is the dimensionality
of vectors x and y (210 in our case). Obviously dist(x, y) is
simply the root-mean-square difference between yN and
xN. In numerical analysis, it is popular to define the
relative error of approximation of the vector y by x as err(x,
y) � �y � x� / � y�.

It is worth noting that all of the above defined measures
of the quality of approximation (cor, dist, err) are invariant
to multiplication by a scalar and are optimized by the
solution of the least squares problem (Eq. 1).50 Addition-
ally it is easily seen that dist2(x, y) � 2 � 2cor(x, y).

To approximate E, we investigate the following 4 simple
functions:

ẽ�h�i,j � hi � hj (Hp) (3a)

ẽ�h�i,j � c0 � c1hihj (Hp.Dx) (3b)

ẽ�h,q�i,j � hi � hj � c0qiqj (Hp.pH) (3c)

ẽ�h,q�i,j � c0 � c1hihj � c2qiqj (Hp.Dx.pH). (3d)

The above approximations are related to each other as
follows:

(Hp) 3 (Hp.Dx) 3 (Hp.pH) 3 (Hp.Dx.pH) (4)

The relation (a) 3 (b) means that formula (b) is more
general than (a); the proof is given in the Appendix. The
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simplest additive approximation is given by the vector h,
which is often highly correlated with empirical hydropho-
bicities. Thus, we denote this approximation [Eq. 3(a)] by
(Hp). The solution of the least squares problem for this
case [Eq. 3(a)] leads to linear equations that can be solved
analytically:

hi � �si � c0�/�n � 2� (5)

with n � 20, si � �jei, j � eii and c0�(�ij:i�jei,j)/(n�1).
All the other approximations given by Eqs. (3b)–(3d) lead
to nonlinear least squares problems and require numerical
solutions. We used the free software R (www.r-project.org)
and Matlab with optimization toolbox (Mathworks, Inc;
www.mathworks.com) in our computations. Four vectors
were used as a starting solution for vector h: the vector
defined by Eq. (5), the diagonal (eii), the eigenvectors of E,
and the centered E (matrix obtained from E by subtracting
the mean value) corresponding to the dominant eigenval-
ues. As the starting solution for q we used isoelectric
points designated here by pH. To check the dependence of
solutions of Eq. (3c) on the starting points, we inter-
changed vectors h and q. This optimization is denoted as
(pH.Hp). Generally, there is no significant dependence on
starting vectors or the software used. The only exceptions
were for MJ3h, TEl, B4, B5, and MSBM. On the other
hand, for many CPs, the differences between solutions for
(Hp.pH) and (pH.Hp) are essential.

Let us note that Eq. (3b) can be written in the following
form:

ẽ�h,q�i,j � h�i � h�j � c2�hi � hj�
2/2, (6)

where hi� � c0/2 � c1hi � �c2/2�hi
2, as shown by Li et

al.51 Eq. (6) explains the physical nature of this approxima-
tion: The hydrophobic potential h� is supplemented by the
energy of demixing, well known from the Hildebrand
theory of solutions that favors structures with spatial
segregation of amino acids. Thus, we use the notation
(Hp.Dx) for approximation (3b). In the next approximation
[Eq. (3c)], the hydrophobicity is supplemented by electro-
static interactions, where electrostatics are linearly re-
lated to the experimental isoelectric points pI of amino
acids,43–47 measured in pH units. This describes the
abbreviation (Hp.pH) used for approximation (3c). The last
approximation, (3d) (Hp.Dx.pH), contains all 3 elements—
hydrophobicity, energy of demixing, and electrostatics—
and therefore actually gives the best results.

The numerical experiments performed for a variety of
known CPs have shown that more complex approxima-
tions are not necessary, and the inclusion of higher order
terms in the Taylor expansion of the function e(h,q) did not
in general lead to the significant increase of correlations
with E.

RESULTS AND DISCUSSION
Pairwise Contact Potentials Studied

In this article, we have studied mostly new potentials
developed since 1995, and used by groups that were the
most successful in predicting protein structures from the
amino acid sequence in recent CASP experiments. We

have included also a few older, historically important
potentials. The total number of potentials analyzed in this
work is 29, listed and abbreviated as follows:

● TS—the oldest statistical potential derived by Tanaka
and Scheraga.14 We also analyze the matrices N.TS �
(Nij) and lN.TS � [log (Nij)], where Nij is the number of
contacts between amino acids i and j.

● RO—the matrix developed by Robson and Osguthorpe.15

This potential has been applied by Bates and cowork-
ers52 for threading and used quite successfully in CASP5.

● BL—distance-dependent statistical potential proposed
by Bryant and Lawrence.3 We have used the energies
from the first bin only (contacts within 5 Å). Matrix BL
has been used for threading,37 and most recently by
Fang and Shortle35 in their ab initio method.

● TD—mixed quasi-optimization potential developed by
Thomas and Dill.26

● MS—optimization-based potential derived by Mirny
and Shakhnovich25 by the maximization of the har-
monic mean of Z scores for decoys.

● VD—effective optimization-based potential constructed
on the perceptron criterion proposed by Vendruscolo
and Domany28 The VD potential is based on the first
optimization-derived potential of Maiorov and Crip-
pen.24 The comparison of MS and VD is given in
Vendruscolo et al.29

● BFKV—effective optimization-derived potential that is
a modified version of VD.53

● MJ1, MJ1h, MJ2, MJ2h, MJ3, MJ3h—Miyazawa–
Jernigan potentials published in 1985,18 1996,21 and
1999.22 Each Miyazawa–Jernigan article contains a
derivation of 2 potentials: one including energy of
transfer of amino acids from water to the protein
environment (those are marked with the suffix “h”), and
another for interactions in an average buried environ-
ment. Because MJ1h has a correlation of 0.97 with
MJ2h, we have studied only MJ2h. A modified version of
MJ1h potential has been used by Liwo and coworkers in
the ab initio UNRES method.17,38 Because the last
potential has a correlation of 0.97 with MJ1h, we have
omitted it in the comparative analysis. Similarly, be-
cause potentials MJ2 and MJ3 are highly correlated
(0.994), we have studied the newest potential, MJ3,
only. It is worth mentioning that potentials MJ1h and
MJ2h are the most frequently analyzed, modified, and
used in protein structure predictions.5,12,16,19,20,51,54,55

Matrices N.MJ2 and lN.MJ2, with number of contacts
and logarithms of the number of contacts, will also be
investigated.

● BT—potential developed by Betancourt and Thirum-
alai,16 which is a modified version of MJ2h.

● TEl, TEs—effective optimization-derived potentials pro-
posed by Tobi et al.27 based on the mixed perceptron–Z-
score criterion. TEl and TEs are potentials obtained for
large and small sets of decoys, respectively.

● MJPL, HLPL—potentials developed by Park and Lev-
itt.5 MJPL is a modified version of MJ1h, while HLPL is
an improvement of an earlier potential of Hinds and
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Levitt.2 These CPs are part of a hierarchical method of
ab initio protein structure prediction.41

● GKS—quasi-chemical statistical potential of Godzik et
al.4

● SJKG, SKOa, SKOb—quasi-chemical CPs of Skolnick
et al.8,11

● Qa, Qm, Qp—new quasi-chemical potentials developed
by Kolinski and coworkers,13 which depend on the

Fig. 1. Graphical illustration of correlations among different protein potentials. Coloring scheme is the same
as in Table I.

TABLE I. Correlations between CPs for Lower Triangular Part and Distances Between Normalized Potentials for Upper
Triangular Part, for a Convenience of Easy Comparison the Results are Multiplied by Factor 100 and the Coloring Scheme

Explained Below the Table is Used. Potentials Derived by Optimization are Marked in Blue.
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relative orientation of side-chains of 2 contacting resi-
dues. Three different possible mutual orientations of
the interacting side groups (a, antiparallel; m, interme-
diate; p, parallel) were considered.13 Qa, Qm, and Qp
potentials were used in TOUCHSTONE, one of the most
effective methods for structure prediction, as proven
during the CASP5 experiment.40 Additionally, such
environment-dependent potentials may include both
the group orientation and the two-state (compact/
extended) main-chain conformation information.23 Since
it leads to 40  40 matrices QaS, QmS, and QpS, these
generalized potentials are not included here in the
comparative analysis.

● B1,…,B5—the newest version of quasi-chemical poten-
tial developed in the research group of Baker. Earlier
versions of this potential were discussed in Simons et
al.9,10 The potential is distance dependent: Distance
bins are denoted by increasing integer numbers. The
potentials are a part of ROSETTA, currently the most
successful protocol for ab initio prediction of protein
structure from sequence.34,39

● MSBM—optimization-derived potential developed by
Micheletti et al.30

Comparative Analysis of One-Body Approximation
for Pairwise Contact Potentials

Table I shows the results of calculations performed for
all of the 29 potentials and matrices with numbers of
contacts. The entries below the diagonal show correlation
coefficients (cor) between potentials, while the entries
above the diagonal list the mean Euclidean distances
between the normalized potentials (dist). Potentials devel-
oped by the optimization methods are marked in blue.
Figure 1 graphically illustrates the results from Table I.
Each of the 28 potentials listed is represented by a node of
the graph. (MSBM, N.TS, lN.TS, N.MJ2 and lN.MJ2 are
not included because of their small correlations with other
potentials.) All the strongest correlations of the order
0.9–1.0 are visualized as graph edges. Lower correlations
have not been shown for reasons of clarity, since, often, if
cor(a,b) � 0.9 and cor(b,c) � 0.9, then cor(a,c) � 0.8. In the
case where a given node (potential) is not correlated with
other nodes by at least a value of 0.9, we show the first 2–4
edges connecting to nodes with the highest correlation (we
use colors to indicate the different ranges of correlation).
Table I and Figure 1 show that CPs can be clustered into 2
groups. The first cluster is centered on MJ3h and SJKG,
and the second one around MJ3. Using a rule, that each
potential in the group has to be correlated at the level of at
least 0.9 with a neighbor, the following 2 sets clearly arise:
{TS, MJ2h, MJ3h, MJPL, SJKG, SKOa, SKOb, HLPL, Qp,
Qa, Qm, BT}, {MJ3, MJ1, MS, GKS, B1, B2}. Potentials in
the second set (except MS) were designed to diminish the
influence of hydrophobic interactions, by considering con-
tacts for buried residues only, and by a proper definition of
the reference state.

Table II shows cor, dist, and err between analyzed
potentials and their one-body approximations. By compar-
ing columns (Hp) with (Hp.Dx) and (Hp.pH) with (Hp-

.Dx.pH), we can estimate demixing energies, while the
comparison of columns (Hp) with (Hp.pH) and (pH.Hp),
and (Hp.Dx) with (Hp.Dx.pH) enables the evaluation of the
strength of electrostatics in the protein potentials. Col-
umns 17–19 contain errors of approximation by the for-
mula (Hp.Dx.pH) for suboptimal solutions (h,q) that have
significant correlations with hydrophobicity (Hp) and iso-
electric points (pH). Column 20 of Table II shows correla-
tions between approximating vectors h from the formula
(Hp.Dx.pH) and the closest hydrophobicity scale (with
negative sign). Forty hydrophobicity scales with correla-
tions greater than 0.68 compared to the Kyte–Doolittle
scale were selected from literature. Column 21 contains
identifying numbers of the closest hydrophobicity scales.
All numerical data and detailed references are available as
Supplementary Materials to this article, which can be
found at http://www.mimuw.edu.pl/�pokar. The last col-
umn in Table II displays correlations between vectors q
and isoelectric points of amino acids pI (pH).43–47 The
major conclusions from the analysis of Table II are as
follows:

● All potentials (except TEl, TEs, VD, B4, and MSBM) can
be quite well approximated by simple functions of
one-body factors h and q that are highly correlated with
hydrophobicities and isoelectric points of amino acids.
Indeed, a correlation between approximating vectors h
and the closest hydrophobic scale is roughly 0.9, which
is more than a mean correlation between 2 different
hydrophobic scales. Because of this we may interpret
vectors h as statistical hydrophobicity scales. Hydropho-
bicity is the most dominant factor in protein potentials,
much more important than electrostatics or demixing
energy.

● By comparing rows in Table II, we may group together
potentials having similar characteristics, similar to
what was done earlier with Table I. The first group of
potentials (rows Qa–BFKV) is dominated by the one-
body transfer energy. Indeed, the correlation coeffi-
cients with the simplest approximation (Hp) are mostly
above 0.9, values only slightly smaller than the correla-
tions with (Hp.Dx.pH). The contributions from demix-
ing and electrostatics are negligible. The nearest hydro-
phobicity scale to the vectors h from this group is the
Wertz–Scheraga frequency of occurrence for a given
type residue inside proteins (scale no. 26). The second
group of potentials (rows MS–B5) is poorly approxi-
mated by the (Hp) formula (correlation coefficient range
is from 0.2 to 0.3, except 0.5 for GKS). Using the (Hp.Dx)
formula, the correlation increases to about 0.8, and to
about 0.9 for the (Hp.Dx.pH) formula. In the last
formula the c1 coefficients are negative, while the c2

coefficients have positive values. Thus, the (Hp.Dx.pH)
formula can be written in simplified form as

ẽ�h,q�i, j � c0 � hihj � qiqj. (7)

The large contributions of the demixing term means
that the c0 � hihj term describes the effects of interac-
tions already present within the protein environment,
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where similar residues (hydrophobic or polar) are pair-
wise attractive, while the interactions between polar
and hydrophobic residues are repulsive. Interestingly,
similar interactions are necessary for proteinlike fold-
ing thermodynamics in our minimal model of pro-
teins.48,49 The most correlated hydrophobicity scale
with solutions for this group of potentials is the popular
Kyte–Doolittle scale (scale no. 1).

● Potentials developed by optimization methods have
significantly less hydrophobic character than do the
quasichemical potentials, and additionally are less sta-
bilizing. The only exceptions are MS (with correlation
0.97 with MJ1) and BFKV (with correlation of order 0.8
with MJ3h, MJPL and SJKG). Optimization-based ap-
proaches may additionally lead to many surprising
counterintuitive results. For example, in the MSBM
potential, the energy of the contact TRP-MET exceeds
more than 20 times all other contact energies. That may
be a reason that such potentials are seldom used with
much success for fold recognition, prediction of protein
structure, or docking.

● Let us take a closer look at the potentials MJ3h, MJ3
and SJKG, which are centers of the groups. Potential
MJ3h was derived by using the formula eij � � log(Nij/
Cij) � hi � hj, where Nij denotes the number of observed
contacts and Cij the number of expected contacts be-
tween residues i and j, while hi is a one-body potential
highly correlated with hydrophobicity (“h” in the name
of the potential refers to its hydrophobicity-driven na-
ture). On the other hand, potential MJ3 has been
derived from the formula eij � � log(Nij/Cij), that could
allow us to estimate the influence of h terms on the
one-body approximation. Interestingly, the potential
MJ3 have a relatively negligible correlation with the
Wertz–Scheraga scale, however, the results of our ap-
proximation show that hydrophobicity still remains, in
a form highly correlated with the Kyte–Doolittle scale.

● By comparing potentials SJKG, SKOa, and SKOb, one
may notice that the composition corrected potential
(SKOb) that was derived to increase its specificity is
actually less specific than the simplest quasi-chemical
potential obtained from the same set of protein struc-

TABLE II. One-Body Approximations to Protein Contact Potentials (CPs)

Columns 2–16 contain values of optimal cor, dist, and err between particular CPs and their approximations. Columns 17–19 contain values of cor,
dist, and err for suboptimal solutions (h,q), which have significant correlations with hydrophobicity (column 20) and isoelectric points pI (column
22). Column 21 contains numbers designating the closest hydrophobicity scales (details explained in the text). The scaling factor and the coloring
scheme are the same as in Table I.

54 P. POKAROWSKI ET AL.



tures (SJKG), though, of course, it could be more
effective for the prediction of protein structure. We
define here the specificity of CPs, through low correla-
tions with their one-body approximations. We may
notice that potentials SKOb and Qa are roughly equiva-
lent, which means that an antiparallel orientation does
not add to the specificity. The specificity of two-body
interaction is, however, increased for parallel orienta-
tions (compare SKOb with Qp). Also, the inclusion of the
backbone geometry characteristics increases specificity
of the potential (data not shown).

The last four rows of Table II show the correlation
between the number of contacts N or as log N and one-body
approximations for potentials TS and MJ2. It is seen that
the frequency of contacts of amino acids can be well
approximated by hydrophobicity and electrostatic proper-
ties. Note that hydrophobicity and electrostatics in the
CPs result not from sophisticated manipulations of the
reference state (extensively studied in the past in the
literature) but simply from the frequencies of contacts in
protein structures. Interestingly, vectors h approximating
N or log N correlate less with hydrophobicity than vectors
h approximating CPs. To the contrary, vectors q approxi-
mating N or log N correlate more strongly with pI (pH)
than do the corresponding vectors approximating CPs.
Comparison of columns (Hp.Dx) and (Hp.Dx.pH) shows
that electrostatic interactions are almost negligible.

Approximation of the CPs by one-body amino acid
functions was studied earlier by Godzik et al.4 and by Li et
al.51 The present results are, however, stronger and more
universal. The main point of the work of Godzik et al.4 was
to compare known potentials and to discover their relation-
ships with hydrophobicity (Table II). Their second aim,
namely, the derivation of the excess part of the potential
eij

excess � eij � eij
ideal, where ei, j

ideal � �eii � ejj�/2 was not
completed, as can be seen clearly from our present results.
The authors found that the correlation of GKS with ei, j

ideal is
only 0.21, and that led to their mistaken conclusion that
their potential was more specific than, for example, the TS
potential having a correlation 0.98. The reason for this
poor correlation lies in the formulation of the ideal values.
Indeed, our Table II shows that GKS potential can be well
approximated by one-body functions by including both
hydrophobicity and electrostatics.

The major advantage of the work of Li et al.51 was the
derivation of a better (in general) approximating vector
than (eii) and a richer approximating formula (Hp.Dx). The
approximating vector they used was the eigenvector of the
dominant eigenvalue of the matrix obtained from the
matrix of the potential with the mean value subtracted.
However, such an approximation can sometimes be signifi-
cantly worse than the optimal one (e.g., for MSBM, we
obtain in this way cor � 0.66 instead of 0.997, which was
found with the optimization formula Hp.Dx.pH).

CONCLUSIONS
It has been shown that all analyzed CPs can be divided

into two groups, regardless of having completely different
derivation origin. Most of these knowledge-based statisti-

cal potentials could be well approximated by appropriate
combinations of one-body components. The one body ap-
proximation suggests the two following ideal amino acid
interaction forms:

● Let h be a vector composed of the normalized Wertz–
Scheraga interior frequency coefficients with negative
signs. Then the formula eij � hi � hj gives a potential
that belongs to the first group (e.g., correlation with
MJ2h and TS are 0.90 and 0.88, respectively).

● Let h be a vector composed of the normalized Kyte–
Doolittle coefficients with negative signs and q be the
normalized isoelectric point (pH) vector. Then the poten-
tial eij � �hihj � 0.5 qiqj correlates moderately well
with members of the second group of CPs (cor � 0.66,
0.60, and 0.59 for MJ3, MJ1, and B2, respectively).

From a practical point of view, the accurate one-body
approximations of CPs provided in this work could be very
useful is some applications, especially for 3-dimensional
threading algorithms. On the other hand the lack of
“excess” contributions to the pairwise potentials (that
cannot be approximated by the one-body component)
strongly suggests that an efficient structure-specific, knowl-
edge-based pairwise potential is still to be designed. This
means that there are opportunities to develop different
further types of potentials (perhaps multibody).
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APPENDIX

1. In order to prove the relation (Hp) 3 (Hp.Dx), let us
first notice that (Hp.Dx) is equivalent to the following
formula:

a0 � a1�hi� � hj�� � a2hi�hj�. (Hp.Dx.2) (A1)

Obviously (Hp.Dx.2) can be transformed to (Hp.Dx)
with a0 :� c0, a1 :� 0, a2 :� c1, h�:� h. To obtain the
inverse transformation (Hp.Dx) to (Hp.Dx.2) let us
denote:
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c0 :� a0 � a1
2/a2, c1 :� a2, c2 :� �a1/a2, hi� :� hi� � c2.

(A2)
Then:

c0 � c1hihj � c0 � c1�hi� � c2��hj� � c2�

� a0 � a1
2/a2 � a2�hi� � a1/a2��hj� � a1/a2�

� a0 � a1
2/a2 � a2hi�hj� � a1�hi� � hj�� � a1

2/a2

� a0 � a1�hi� � hj�� � a2hi�hj�. (A3)

For any given vector h� and coefficients a0, a1, and a2,
expression (Hp.Dx.2) can be written as (Hp.Dx), with h,
c0, and c1 given by A2. Now it is enough to show that
(Hp)3 (Hp.Dx.2). In expressions (Hp.Dx) and (Hp.Dx.2)
coefficients c1 and a2 are nonzero, taking the limit a23
0 and substituting hi : � a0/2 � a1hi�, we obtain from
(Hp.Dx.2) an expression that is infinitely close to (Hp).

2. Now let us assume that we have the solution of (Hp.Dx)
for c0 � c1hihj. Making substitutions hi� : � c0/2, c0� :
� c1, and qi� : � hi, we can transform Eq. (3b) to the
(Hp.pH) form hi � hj � c0qiqj. This proves the relation
(Hp.Dx)3 (Hp.pH).

3. The relation (Hp.pH)3 (Hp.Dx.pH) is derived similarly
as (Hp) 3 (Hp.Dx) by proving first that (Hp.Dx.pH) is
equivalent to the following formula:

a0 � a1�hi� � hj�� � a2hi�hj� � a3�qi� � qj�� � a4qi�qj�.

(A4)
Assuming that c0 :� a0�a1

2/a2�a3
2/a4, c1 :� a2, c3 :

� a4, c2 :� �a1/a2, c4 :� �a3/a4, hi :� hi��c2, and
qi :� qi��c4, and transforming (Hp.Dx.pH) similarly,
as in A1–A3, we obtain A4. In the limit a13 0, a33 0,
we obtain from A4 an expression that is infinitely
close to (Hp.pH).

INFERRING IDEAL AMINO ACID INTERACTION FORMS 57


