
Backbone Building from Quadrilaterals: A Fast
and Accurate Algorithm for Protein Backbone

Reconstruction from Alpha Carbon Coordinates

DOMINIK GRONT, SEBASTIAN KMIECIK, ANDRZEJ KOLINSKI
Faculty of Chemistry, Warsaw University, Pasteura 1 02-093, Warsaw

Received 16 August 2006; Revised 3 October 2006; Accepted 18 October 2006
DOI 10.1002/jcc.20624

Published online 6 March 2007 in Wiley InterScience (www.interscience.wiley.com).

Abstract: In this contribution, we present an algorithm for protein backbone reconstruction that comprises very high
computational efficiency with high accuracy. Reconstruction of the main chain atomic coordinates from the α carbon
trace is a common task in protein modeling, including de novo structure prediction, comparative modeling, and processing
experimental data. The method employed in this work follows the main idea of some earlier approaches to the problem. The
details and careful design of the present approach are new and lead to the algorithm that outperforms all commonly used
earlier applications. BBQ (Backbone Building from Quadrilaterals) program has been extensively tested both on native
structures as well as on near-native decoy models and compared with the different available existing methods. Obtained
results provide a comprehensive benchmark of existing tools and evaluate their applicability to a large scale modeling
using a reduced representation of protein conformational space. The BBQ package is available for downloading from our
website at http://biocomp.chem.uw.edu.pl/services/BBQ/. This webpage also provides a user manual that describes BBQ
functions in detail.
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Introduction

The successes of genomes sequencing projects and progress in pro-
tein structure prediction methods have led us to the next demanding
task of structural genomics to obtain three-dimensional structures of
all proteins. Although experimental structure determination meth-
ods are providing high resolution structure information, because of
their costly and time-consuming procedures, they cannot be utilized
on a large scale of entire genomes. For a considerable fraction of
sequences whose structures will not be determined experimentally,
computational methods provide valuable information.

Many theoretical prediction methods, especially purely de novo
folding computations, various comparative modeling techniques, or
hybrid methods utilizing different kinds of sparse experimental data
employ simplified protein representation. This is necessary to be
able to explore the vast conformational space of protein chains. Such
approaches, based on reduced protein representation,1 appeared to
be very efficient and placed among the most successful during the
last round of CASP (critical assessment of protein structure predic-
tion) community-wide experiment. Employing the coarse-grained
representation brings necessity of final models reconstruction to
the all atom representation compatible with the classical all-atom
modeling tools.

In the past few years, many groups have developed algorithms to
construct all the atomic coordinates of a protein backbone and the
side chains from known CA coordinates.2–12 Unfortunately, only a
few of them are available as a stand-alone application or as Inter-
net services. Most of these programs implement quite complicated
algorithms and cannot withstand large scale modeling experiments.
The aim of this work is to bring a new high-throughput method that
will be able to process as many as thousands of models in a reason-
able time. Moreover, the desired algorithm should be as accurate as
possible.

As in most of the previously proposed methods, we assume that
the problem of reconstruction of an all-atom chain from a CA trace
can be separated into two subsequent steps: (i) reconstruction of the
all-atom backbone, and (ii) reconstruction of the side-chain geome-
try for a given backbone. In this contribution, we deal only with the
first task, postponing the second step to the further work, which is
now in progress.
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Many of the approaches that have been proposed so far utilize
protein fragment libraries derived from known structures to locate
possible fragments that do not violate a specified CA trace. The most
favorable fragments to construct the entire backbone are selected
using energy-based, homology-based, or geometric criteria. In the
MaxSprout method,6 a series of 50 best-matching segments are gen-
erated for each residue junction and then a dynamic programming
algorithm is used to select the most compatible pairs of overlapping
segments. Another, very elaborated algorithm by Levitt,5 begins
with enumeration of 40 database segments, each 3–4 residues long,
which have a good crmsd fit to CA trace. Such segment sets are
built in the neighborhood of every residue. Each segment has an
effective energy that is defined as a weighted average of the crmsd
distance error and the nonbonded interaction energy between the
segment and its environment. Segments are combined by means
of Monte Carlo sampling. Averaging coordinates over the result-
ing low-energy ensemble generates an initial guess for the protein
backbone. These coordinates are refined in a subsequent energy
minimization step.

In contrast to the homology-based methods, approaches with no
reference to structural databases perform de novo construction of
the backbone and try to minimize its energy. Kazmierkiewicz et al.7

derived formulas describing energy for dipole–dipole interaction.
Optimal alignment of peptide-group dipoles is constructed by means
of Monte Carlo search. Payne8 derived a statistical potential to score
local conformations of the backbone. Global optimum is computed
with a dynamic programming approach.

BBQ program, introduced in this work, is very robust and
extremely efficient. Besides its computational efficiency, it provides
reasonable accuracy. The general idea we follow is not new. It was
originally invoked by Purisima and Scheraga11 and then used for
development of a method of reconstruction of protein backbone by
Milik et al.10 It has also been employed to all-atom reconstruction
from approximate positions of the side groups centers of mass.9

A part of this program (reconstruction of the main chain and side
chains from CA coordinates) has been implemented by Rotkiewicz
in his Pulchra program. In this approach, a four residue frag-
ment is described by three internal coordinates—distances between
CA atoms. These three distances form a three-dimensional grid in
which average positions of C, O, and N atoms measured in a local
coordinate system are acquired from the known PDB structures.

Materials and Methods

To derive a statistics for positions of backbone atoms, we took
a nonredundant protein database precomputed by the PISCES
server.13 The dataset contains 1259 protein chains with mutual pair-
wise sequence similarity not higher than 90%. Only high quality
structures were included in the training set: X-ray resolution not
worse than 1.6 Å and R-factor lower that 25.0. All these proteins
were deposited to the database PDB14 prior to April 2006. A differ-
ent set of proteins has been used in evaluation of existing methods
and the proposed here BBQ algorithm. We took all the protein
structures deposited to PDB between April 1, 2006 and July 22,
2006 and discarded the redundant entries. Finally, the testing set
contained 81 protein chains with mutual sequence similarity below
50%. The two sets did not contain any common or highly similar

Figure 1. Protein backbone reconstruction flowchart: (a) Definition of
the R-coordinates system. R-coordinates are computed as three distances
marked by red-dashed line. They are used to describe a quadrilateral
(black solid line and circles). (b) All quadrilaterals are stored in a look-up
table. Each of the R-coordinates is dicretized with the mesh size of 0.2 Å.
For each element of the grid average positions of N, C, and O, backbone
atoms are computed. (c) In the reconstruction step, for a given quadrilat-
eral composed of four CA atoms, local positions of the backbone atoms
that belong to the central peptide plate are retrieved from a proper ele-
ment of the grid, indexed by R-coordinates. [Color figure can be viewed
in the online issue, which is available at www.interscience.wiley.com.]

structures. Since the testing set contains only the newest structures,
which are not included in the libraries of fragments employed by
some methods, we eliminated any possible overfitting effects. All
the calculations performed in this work, i.e., database extraction,
structural calculations, and crmsd evaluations were done using the
recently developed BioShell15 software package.

First of all, we define two coordination systems (Fig. 1). The first
one (referred later as R-coordinates) is used to define a tetrapep-
tide, i.e., protein fragment of four amino acids. The second one
(L-coordinates) defines a local Cartesian coordinate system cen-
tered on a given CA atom. We treat CA atoms as points and use
them for all the geometric constructions. Each continuous fragment
of four CAs is called a quadrilateral. Protein sequence is ignored in
our algorithm.

In 3D space, four points have six internal degrees of freedom.
Assuming that the distance between neighboring atoms (denoted
as R12) is constant we have only three free variables left. The
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assumption is almost always true: the R12 distance is equal to 3.78 Å.
The only exeption is cis conformation of proline, where R12 = 3.2 Å.
For simplicity, we assumed for all the R12 distances a fixed value
of 3.78 Å. Three other distances were chosen as local coordinates:
R13 distance (between first and third CA atoms in a quadrilateral),
R24, and R14 (defined similarly to R13). Unfortunately, the set of
internal coordinates cannot distinguish between left-handed and
right-handed conformations. Therefore, we define R24 coordinate as
negative if the quadrilateral possesses the left-handed twist. Obvi-
ously, one can choose another set of three linearly independent vari-
ables to describe a quadrilateral, for instance, the two possible planar
angles and a torsional angle. Our choice is motivated mostly by the
computational efficiency requirements. For each quadrilateral, we
also define a L-coordinates system as simple linear combinations:

�vx = (�v12 + �v23)/ |�v12 + �v23|
�vy = (�v12 − �v23)/ |�v12 − �v23|
�vz = �vx × �vy (1)

where �vx , �vy, and �vz are the L-coordinates versors and �vij denotes a
versor pointing from ith to jth CA atom. The L-coordinates define
the local positions of the backbone atoms.

In some preliminary tests, we had withdrawn those quadrilater-
als for which R-factor was higher than the given threshold value.
Interestingly, the final results, accuracy of backbone reconstruction,
rather weakly depend on this parameter. Finally, we decided to keep
only these quadrilaterals with R-factor below 50 (we used, for this
purpose, the original values stored in PDB files) as a reasonable
compromise between the statistics and the amount of noise intro-
duced by the low-quality data. It is possible to create over 263,000
different quadrilaterals from our training data set.

For each of these quadrilaterals, we computed LCS coordi-
nates of atoms that form central peptide plate (between the sec-
ond and third CA atoms). We also computed R-coordinates. The
R-coordinates were divided by 0.2 and rounded down to the nearest
integer. This defined indices pointing to certain bins in a three-
dimensional array. In this way, the continuous space described by
R-coordinates has been discretized. We allow R24 and R13 distances
vary from 4.0 Å to 7.6 Å, distance R14 in the range of 4.0–11 Å
(or −11.0 Å to −4.0 Å for the left-handed conformations). The
resulting three dimensional look-up table can hold 22,680 different
quadrilaterals. In practice, the set of 263,000 quadrilaterals creates
only 5148 discrete states. For every one of these states, we computed
average positions for the N, C, and O atoms.

To reconstruct backbone atoms CA trace R-coordinates are cal-
culated for subsequent quadrilaterals and a proper set of local
coordinates for N, C, and O atoms are retrieved from the look-up
table. In some rare cases, a specific combination of R-coordinates
cannot be found in any protein observed from the training set. In
such cases, program inspects the neighborhood of a given element
of the grid, i.e., the 26 adjacent matrix elements. When all of them
are empty, the program checks all quadrilaterals in the database
and the entry, which minimizes the distance rQD (see eq. (2))
between R-coordinates of the query (Q) and a element from training
database (D):

rQD =
√(

RQ
13 − RD

13

)2 + (
RQ

24 − RD
24

)2 + (
RQ

14 − RD
14

)2
(2)

Again, such situations, when a proper quadrilateral cannot be
found are very rare. For example, in the test performed for 81 native
proteins (18,651 total quadrilaterals), only in 0.35%, a grid neighbor
was inserted. For 0.12% of all the cases, the all-grid neighbors
were also empty and the best quadrilateral was found via the error
minimization search.

Results

Although many methods have been proposed for backbone recon-
struction, only a few are available as a stand-alone program or an
Internet server. We compared our method with two currently avail-
able programs that are free for academic use (BB,12 MaxSprout6),
and Pulchra.9 The version of Pulchra using CA traces as the input
was kindly provided by Dr. Rotkiewicz. We also tested an algorithm
by Claessens et al.4 as implemented in SYBYL/Biopolymer com-
mercial software from TRIPOS (St. Louis, MO). During the tests,
we compared robustness, accuracy, and computational efficiency of
these algorithms with those of BBQ.

Rebuilding Native Structures

In the first test, we attempted to rebuild backbone in carefully
selected native structures. The results, summarized in the Table 1,
show that the two methods employing protein fragments (Sybyl
and MaxSprout) for some cases produced incomplete structures.
They were unable to find a well-fitting fragment in their databases.
Therefore, in columns 4, 5, and 6, we provide the results averaged

Table 1. Summary of the Results From the Reconstruction of Backbone in a Set of 81 Native Protein
Structures.

Results for 35 proteins rebuilt by all methods

Rebuilt Average crmsd Average running
Method structures (%) on backbone � Correlation � Correlation time per protein (s)

MaxSprout 46.25 0.47 0.75 0.82 1.71
BB 100 0.64 0.52 0.65 56.98
Pulchra 100 0.59 0.65 0.78 1.06
Sybyl 91.25 0.39 0.77 0.86 172.6
BBQ 100 0.42 0.81 0.84 0.37
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over 35 proteins for which all the four methods rebuilt success-
fully the entire backbones. For those methods that succeeded to
rebuild all the proteins in our test set: BB, Pulchra and BBQ, an
average crmsd computed for 81 structures are very close to the cor-
responding values for 35 models (column 3): 0.65, 0.62, and 0.42
Å, respectively. According to Table 1, Sybyl and BBQ programs are
the most accurate when the average crmsd as well as the correla-
tion coefficients between the experimental and predicted dihedral
angles � and �, are considered. However, Sybyl managed to con-
struct only 91.25% of complete structures. Moreover, it is on average
∼460 times slower than BBQ. Interestingly, BBQ algorithm is able
to rebuild correctly backbone atoms in cis-proline. It is a result of a
unique set of distances for proline in the quadrilateral data base.

Rebuilding Near-Native Decoys

The test described earlier provides a quantitative comparison of cur-
rently available methods for backbone reconstruction. Since native
structures used in the test are known, various aspects of backbone
modeling may be evaluated. However, from a practical point of view,
this is not the most interesting situation. Only in very specific sit-
uations, the CA trace from a native structure needs the backbone
reconstruction. The main goal for reconstructing algorithms is to
provide a full-atom protein model starting from its reduced repre-
sentation obtained in various modeling procedures. Therefore, we
also assessed the quality of the reconstruction algorithms on a large
set of near-native decoys.

Seven proteins from the testing set were selected for a decoy-
building procedure: 2CJPA, 2CKLA, 2CL4X, 2GMKA, 2GR8A,
2GRRB, and 2GU3A. These structures are representative in respect
to their chain length and secondary structure type. None of them
has homologues structures in Sybyl or MaxSprout databases. We
performed long Monte Carlo simulation with CABS model16 to gen-
erate protein-like near-native decoys with crmsd 0.35–3.0 Å from
the native. For each protein ∼800 decoys were randomly selected
from a large set (60,000–150,000 structures, depending on a protein)
using a uniform distribution of crmsd from the native as a criterion
of the selection.

Figure 2 illustrates the dependence between the crmsd measured
on the all backbone atoms after reconstruction and the CA crmsd
of the input decoys. The plot was prepared from over 5500 decoys
reconstructed by the two best-performing methods: BBQ and Sybyl
(Figs. 2a and 2b, respectively). The dependence is almost linear
because during the reconstruction process the CA trace does not
change significantly. Adding three additional atoms in the neigh-
borhood of each CA has a very little effect on the crmsd values
measured on the whole structure. The most interesting part of
the plot is in the range of low crmsd values (see inserts in the
diagrams). On average, crmsds for reconstructed backbones are
somewhat worse than crmsds for the corresponding initial CA mod-
els. Nevertheless, the actual values depend on a method used for
reconstruction. Sybyl implements a fragment-based approach. This
creates an opportunity for the backbone structure improvement for a
high accuracy models (better than 1.5 Å). This is because of the fact
that the fragments of existing proteins are usually more accurate than
the average geometry derived from the database. Obviously, only
the local geometry of a backbone can be improved with fragment
inserting procedures.

Figure 2. The dependence between crmsd computed for CA atoms
of initial model and crmsd computed for all backbone atoms after
reconstruction. Each circle represents a single decoy structure. The
two plots in this figure: top and bottom correspond to the results from
BBQ and Sybyl programs, respectively. In general, a linear dependence
can be observed. The two methods slightly differ in their accuracy for
high-resolution decoys (see the insets).

Detailed analysis of the results obtained in this work shows that
the reconstruction accuracy depends on the secondary structure con-
tent. For all the methods, 2GRRB, all-α protein, was the easiest
case among the seven proteins in our decoy set. Sybyl and Pul-
chra methods performed very well also on the 2GR8A set. This
can be explained by the fact that almost 70% of 2GR8A residues
buids a highly regular seven-stranded β-sheet. Most of the methods
compared in this work, Sybyl, MaxSprout, BB, and Pulchra, alter
somewhat positions of the CA atoms. The change of crmsd mea-
sured on CA atoms of the decoys in respect to the native structure
is order of 0.01 Å.

Summary

In this work, we present the results of comprehensive evaluation of
performance of the BBQ, presented in this work (Tables 1 and 2), and
four older methods for backbone reconstruction that are available
as a stand-alone application. It can be clearly seen from our results
that Claessens et al.4 method employing longer fragments’ inser-
tions performs slightly better in the case of high accuracy models
(resolution higher than 1.5 Å) than the methods that utilize short
fragments (such as MaxSprout and BB) or averaged knowledge
about backbone geometry (BBQ and Pulchra).

There is a wide range of applications of protein structure mod-
els, depending on their accuracy.17 The accuracy of a comparative
model is related to the percentage of sequence identity with the struc-
tural template (templates) on which it is based and it can be easily
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Table 2. Summary of the Results From the Near-Native Decoys
Reconstruction.

Average running time for 2CJPA
Method Rebuilt decoys (%) decoy (320 residues) (s)

MaxSprout 70 2.6
BB 97 90
Pulchra 100 1.4
Sybyl 99 537
BBQ 100 0.48

estimated according to the prediction method. High accuracy mod-
els (better than 1.5 Å) can be expected from comparative modeling
based on more than 30% sequence identity. Currently known pro-
tein structures allow to model about the half of all sequences
deposited to SwissProt/TrEMBL database.18 However, only 10%
of the sequences are modeled on the basis of >30% sequence iden-
tity,19 according to MODBASE.20 This statistics shows that in a
typical situation high-resolution models are not accessible because
of the lack of suitable templates. In a daily practice, usually medium
and low-resolution comparative models are created.

BBQ, when compared with Sybyl, is extremely fast. If we con-
sider reconstruction for a set of 1000 protein models (2CJPA from
the decoys testing set, which has 320 residues) on a standard PC
workstation, it takes ∼8 min by BBQ and 149 h (almost a week) by
Sybyl. It is also about three times faster than Pulchra. In summary,
the proposed here BBQ algorithm is as accurate as the most accurate,
but computationally very demanding methods. The exceptions are
the very high resolution initial models rebuilt by Sybyl. This is how-
ever a very costly approach and of a limited practical applicability
(as explained in the text earlier). The existing fast algorithms are sig-
nificantly less accurate than the BBQ. Moreover, the BBQ performs
rebuilding for entire structures, regardless the level of uniqueness of
the encountered fragments. Therefore, BBQ seems be a method of
choice for many typical procedures of protein modeling. Obviously,
structures from BBQ (when it is needed) could be subject to a refine-
ment procedure using more elaborate methods, what would lower
significantly the computational cost of a high-resolution structure
modeling.
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