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INTRODUCTION

In analyses of amino acid (AA) sequences or protein struc-

tures researchers often use information that is written as a ma-

trix A 5 (aij), particularly for substitution matrices (SMs) and

contact potentials (CPs). The SMs carry information about the

likelihood of replacement of a given AA by another type as a

result of evolutionarily driven mutations, and are used in

assessments of sequence alignments or similarity searches. Sta-

tistical contact potentials contain information about contact

propensities among residues in native protein structures taken

from the Protein Data Bank (PDB) or within computer gener-

ated decoys. The CPs are used in many kinds of protein struc-

ture predictions: homology modeling, threading or ab initio

methods.

In the previous work1 we systematically studied CPs mostly

developed since 1995, and which were used by successful

groups in recent Critical Assessment of Techniques for Protein

Structure Prediction (CASP) experiments. Each of the CPs is

similar to one of two matrices derived by Miyazawa and Jerni-

gan.2 The CP matrices of the first class can be approximated

with a correlation of order 0.9 by formulas aij 5 xi 1 xj, 1 � i,

j � 20, where the residue-type-dependent factor (xi) is highly

correlated with the frequency of occurrence of a given AA type

within proteins. The major contribution to the potentials of

this class is the one-body transfer energy of the AA from water

to the protein environment. Potentials belonging to the second

class can be approximated with a correlation of 0.9 by the for-

mula aij 5 c0 2 xixj 1 yiyj, where c0 is a constant, with the

vector (xi) being strongly correlated with the Kyte-Doolittle

hydrophobicity scale,3 and a new, less dominant, residue-type-

dependent factor (yi) correlated (�0.9) with amino acid iso-
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ABSTRACT

We have analyzed 29 published substitution matrices

(SMs) and five statistical protein contact potentials

(CPs) for comparison. We find that popular, ‘classical’

SMs obtained mainly from sequence alignments of glob-

ular proteins are mostly correlated by at least a value

of 0.9. The BLOSUM62 is the central element of this

group. A second group includes SMs derived from align-

ments of remote homologs or transmembrane proteins.

These matrices correlate better with classical SMs (0.8)

than among themselves (0.7). A third group consists of

intermediate links between SMs and CPs - matrices

and potentials that exhibit mutual correlations of at

least 0.8. Next, we show that SMs can be approximated

with a correlation of 0.9 by expressions c0 1 xixj 1 yiyj
1 zizj, 1� i, j � 20, where c0 is a constant and the vec-

tors (xi), (yi), (zi) correlate highly with hydrophobicity,

molecular volume and coil preferences of amino acids,

respectively. The present paper is the continuation of

our work (Pokarowski et al., Proteins 2005;59:49–57),

where similar approximation were used to derive ideal

amino acid interaction forms from CPs. Both approxi-

mations allow us to understand general trends in

amino acid similarity and can help improve multiple

sequence alignments using the fast Fourier transform

(MAFFT), fast threading or another methods based on

alignments of physicochemical profiles of protein

sequences. The use of this approximation in sequence

alignments instead of a classical SM yields results that

differ by less than 5%. Intermediate links between SMs

and CPs, new formulas for approximating these matri-

ces, and the highly significant dependence of classical

SMs on coil preferences are new findings.
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electric points pI.4 We interpret potentials of this class as

representing energies of contacts between specific AA

pairs within an average protein environment. Both of

these ‘‘one-body’’ ideal AA interaction formulas, allow us

to comprehend different forces included in statistical

potentials. This approximation of CPs is more accurate

and universal than previous ones.5–7

In the present work we have analyzed 29 diverse pub-

lished substitution matrices derived from sequence or

structure alignments, physicochemical properties of AAs,

or optimization of alignments or threading force field pa-

rameters. We have also included five CP matrices for

comparison. We have found three different groups of

SMs. The first group of SMs consists of the most popu-

lar, ‘‘classical’’ matrices obtained mainly from sequence

alignments of globular proteins. These matrices are

mutually correlated by at least a value 0.9 and the BLO-

SUM62 matrix8 is the central member of this group.

Similar clusters were observed by others.9,10 The second

group is formed by matrices derived from transmem-

brane proteins and matrices obtained from alignments of

remote homologs. Interestingly matrices from this group

correlate better with SMs from the first group (0.8) than

among themselves (0.7). The third group of matrices

consists of intermediate links between SMs and CPs—

matrices and potentials that are mutually correlated by at

least 0.8. These similarities are reported here for the first

time.

Both SM and CP matrices are often defined in a simi-

lar way as the log-odds ratio between pij—the observed

frequency of aligned pairs of AAs i and j (or an i 2 j

contacts in protein structures), and qiqj—the expected

probability for a pair (i, j). Then for SMs we have aij 5
log(pij) 2 log(qi) 2 log(qj) and for CPs aij 5 2log(pij)

1 log(qi) 1 log(qj). To separate out the effects of

observed substitution or contact frequencies (pij) and the

definitions of expected probabilities (qiqj), we apply cen-

tering of the matrices, a standard method in statistical

data analysis, which reduces the dependence of aij on qiqj
and then allows us to explain basic differences among the

various matrices. For example, the main differences

among the three analyzed transmembrane SMs result

from different expected probabilities, because the center-

ing increases correlations from 0.66, 0.76, 0.92 to 0.88,

0.89, and 0.99, respectively. Similar operations were used

in Refs. 2 and 11.

We show that SMs can be approximated with a corre-

lation of 0.9 by the expression c0 1 xixj 1 yiyj 1 zizj,

where c0 is a constant and the vectors (xi), (yi), (zi) are

highly correlated with hydrophobicity, molecular volume,

and coil preferences of AAs, respectively. This result sug-

gests that polarity, side chain packing, and secondary

structures are the most conserved physicochemical prop-

erties during protein evolution. While the strong depend-

ence of SMs on hydrophobicity and volume of residues is

well known, a significant (thought not such high or uni-

versal) dependence of the exchangeability of AAs on coil

preferences is a new finding. The approximation for SMs

and CPs allows us to understand the general trends in

AA similarities. The new versions of the BLOSUM62 ma-

trix derived by Muller et al.,12 or Crooks and Brenner13

separate amino acids into six groups: aliphatic hydropho-

bic (I, L, M, V), aromatic hydrophobic (F, Y, W), polar

(D, E, H, K, N, Q, R), small (A, S, T, P), G and C. For

comparison, approximating vectors of the newer version

of Miyazawa-Jernigan potential2 contact potential MJ3

lead to the following partition of residues: positively

charged (K, R), negatively charged (D, E), neutral polar

(G, H, N, P, Q, S, T, Y), neutral hydrophobic (A, F, I, L,

M, W, V) and C. Instead of comparing covariance or dis-

tance matrices obtained from SMs and CPs by principal

component analysis11,14 or multidimensional scal-

ing,15,16 our present approach considers the approxi-

mating vectors directly. Our approximation of CPs is

more accurate than the one given by distance matrices

composed of triplets of AA indices.10

Our preliminary calculations have shown that the loss

in an alignment’s quality resulting from replacement of a

classical SM by its approximation is below 5%. Moreover,

these new approximate formulas, because of their form,

can be applied to improve fast threading17 or multiple

sequence alignments based on the fast Fourier transforms

(MAFFT).18,19 Let us take a closer look at the last prob-

lem. At the first stage of computations, for each pair of

sequences the algorithm MAFFT finds 20 maximal gap-

less alignments scored by the substitution matrix A 5
(hihj 1 vivj) where the vectors (hi) and (vi), are hydro-

phobicity and volume indices, respectively. The above

formula for the matrix A enables computation of values

of all gapless alignments using the fast Fourier transform.

Our approximation [formulas (3)–(4) below] enables a

deeper understanding of the MAFFT method for scoring

of alignments and allows us to adapt it for each specific

case. Indeed, (i) the matrix A correlates at 0.6–0.7 with

matrices from the first and the second group, therefore it

may be considered as an approximation of a certain sub-

stitution matrix; (ii) replacement of A by our approxima-

tions increases these correlations to the range 0.8–0.9.

For example, to align sequences of transmembrane pro-

teins we could start MAFFT from our approximation for

the transmembrane-specific SM derived by Mueller and

collaborators.20

METHODS

The method of approximation for matrices used here

is quite similar to the method used in our previous

work.1 Because these are symmetrical matrices A 5 (aij),

1 � i, j � n, n 5 20, we use only the upper diagonal

part. Our aim is to find the best approximation of A in

the form of a simple function of 1–3 vectors x 5 (xi),
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y 5 (yi), z 5 (zi), which will be called properties or indi-

ces of AAs. Specifically, we will investigate the following

four functions Ã 5 (ãij), where

~aij ¼ xi þ xj ð1Þ

~aij ¼ c0 þ c1xixj ð2Þ

~aij ¼ c0 þ c1xixj þ c2yiyj ð3Þ

~aij ¼ c0 þ c1xixj þ c2yiyj þ c3zizj ð4Þ

Vectors x, y, z and constants c0,. . .,c3 are obtained by the

least squares methodX
ij:i�j

ðaij � ~aijÞ2 ! min
x;y;z

ð5Þ

Equations (2)–(4) are similar to the spectral decomposi-

tion of a symmetric matrix but there are important dif-

ferences. Eigenvectors need not be the least squares solu-

tion of (5) for the functions (2)–(4). On the other hand,

there is no assumption about the orthogonality of the

approximating vectors. However, the eigenvectors of a

matrix A can be used as the initial solution in an itera-

tive procedure for solving the nonlinear least squares

problem for functions (2–4) (see below).

We may assume that the constants ck (k 5 1, 2, 3) are

equal to –1 or 1, since by multiplying the approximating

vector by H|ck| and updating ck 5 sign(ck) we get the

same result of the approximation. Moreover, note that if

all components of the vector are non-positive, then mul-

tiplication by –1 does not change the approximation.

Therefore we may assume that either all components of

the vector are non-negative, or at least two of the com-

ponents have opposite signs. These observations lead us

to a conclusion, that the approximating factors c1xixj
(and similarly c2yiyj, c3zizj) may have one of four forms,

depending on whether: (i) the constant ck 5 1 or ck 5
21; (ii) all components of the approximating vectors are

non-negative or some components of the vector are neg-

ative. Each factor type may be associated with different

characteristics of the ideal form of the exchangeability of

AAs or the residue–residue interactions as shown in the

Conclusions.

Accuracy of the approximation will be measured by a

correlation coefficient. Specifically, let us denote the sca-

lar product of vectors x and y as (x, y) the mean value

of x as x and its standard deviation as rx. The correla-

tion between vectors x and y is defined as cor(x,y) 5 (x

2 x, y 2 y)/(nrxry). It is worth noting that the solution

of (5) maximizes the correlation between the matrix A

and its approximation. The proof of this fact is a simple

consequence of two observations: (i) formulas (2)–(4)

are closed with respect to affine transformations and (ii)

2 – 2cor(x, y) 5 kyN 2 xNk2/n, where kzk25(z, z), xN 5
(x 2 x)/rx and yN 5 (y 2 y)/ry.21

It is easy to anticipate that by increasing the complex-

ity of approximations (1–4) we can improve their accu-

racy (see Appendix in Ref. 1). The simplest additive

approximation (1) is given by the vector x, which is of-

ten highly correlated with empirical hydrophobicities.

The solution of the least squares problem for this case

leads to linear equations that can be solved analytically

[see Eq. (5) in Ref. 1]. The other approximations given

by Eqs. (2)–(4) lead to nonlinear least squares problems,

requiring numerical solutions. We have used the free

software R in our computations.22 Many vectors were

used as starting solutions: the vector defined by Eq. (5)

in Ref. 1, the diagonal (aii) and the eigenvectors of A (or

matrix obtained from A by subtracting the mean value)

corresponding to the dominant eigenvalues. Generally,

there is no significant dependence on starting vectors or on

the algorithm used in the optimization: (the Levenberg-

Marquardt or the Gauss-Newton method). Moreover, the

same results were obtained by using Matlab with the

optimization toolbox (Mathworks, Inc; www.mathworks.

com).

Approximations of CPs were studied earlier by Godzik

et al.,5 Li et al.,6 and Tobi et al.7 In Godzik et al.5 for-

mula (1) and the approximating vector given by the

main diagonal of the CP matrix were used. Li et al.6

used a more general formula (2) with the approximating

vector being the dominant eigenvector of the matrix

obtained from the CP by subtracting the mean value.

Tobi et al.7 analyzed performance of threading approxi-

mating CPs by their two most dominant eigenvectors.

For SMs an approximation defined by distance matrices

composed of triplets of AA indices was investigated.10

Recently, Kinjo and Nishikawa23 analyzed three domi-

nant eigenvectors of the BLOSUM matrices as a function

of sequence identity.

We should note, that substitution matrices could be non-

symmetric, unlike contact potentials matrices that are sym-

metric, except for the Maiorov and Crippen24 and Baker

and coworkers25 potentials. This may be one of the most

obvious differences between interactions and substitutions.

For example: the substitution of a small residue with a large

one may have a different probability than the substitution

of a large AA by a small one. However, only six substitution

matrices out of the 29 analyzed in this paper are non-sym-

metric and we replace these by their symmetric forms Asym

5 (A 1 AT)/2. Such a symmetrization procedure does not

lead to significant differences in the results, but it does sim-

plify computations. Alternatively, analogs to the approxi-

mations (1–4) for non-symmetric matrices could be defined

by formulas in which there would be twice as many app-

roximating vectors. For example Eq. (2) can be replaced by

ãij 5 c0 1 c1 x
(1) x(2) with the two vectors x(1)5(x(1)i ) and

x(2)5(x(2)i ).
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New here, with respect to our previous work,1 is the

centering of the matrices, which is often used in statisti-

cal data analysis. For a given matrix A we define the cen-

tered matrix Ac 5 (aij
c)i,j51

n such that aij
c :5 aij 2 ai� 2

a�j 1 a��, where ai� ¼
Pn

j¼1 aij=n, �a�j ¼
Pn

j¼1 aij=n,
�a�� ¼

Pn
i;j¼1 aij=n

2. Centering is easily formulated in ma-

trix form as: Ac 5 HAH with H 5 I – J/n, where I is the

identity matrix and J is the matrix composed of ones.

Similar procedures were used in Refs. 2 and 11.

As we stated in the Introduction, centering of SMs and

CPs reduces the dependence of these matrices on the

expected probability vectors. Indeed, let us assume, that

A 5 (aij) and B 5 (bij) are SMs differing only by

expected probability vectors (qi
(1)), (qi

(2)). Then we have

aij 5 mij 2 log qi
(1) 2 log qj

(1) and bij 5 mij 2 log qi
(2)

2 log qj
(2), where mij 5 log pij and pij is the observed

frequency of aligned pairs of AAs i and j. A simple com-

putation shows that aij
c 5 mij 2 mi� 2 m�j 1 m�� 5 bij

c .

Hence, after centering the matrices A and B become

equal.

RESULTS AND DISCUSSION

Substitution matrices studied

We have analyzed 29 different substitution matrices

and five statistical contact potential matrices for compari-

son. We have studied mostly new SMs but we have

included also a few older, historically important SMs

such as the PAM and BLOSUM series. The SMs and CPs

are listed and abbreviated as follows.

M—one of the oldest SM developed by Mc Lachlan.26

The relative substitution frequencies were computed

from an alignment of 89 sequences.

G—the matrix of distances between AAs derived by

Grantham.27 The distances combine properties that cor-

relate with protein substitution frequencies: hydrophobic-

ity, molecular volume, and composition.

D120, D250, D500—the popular PAM120, PAM250,

PAM500 (Percentage of Acceptable point Mutations per

108 years) matrices computed from global alignments of

closely related proteins by Dayhoff et al.28

GCB—the matrix obtained by Gonnet, Cohen, and

Benner using exhaustive pairwise alignments of the pro-

tein databases29 and normalizing to the PAM distance of

250. Other matrices of this series reported in Ref. 30 are

correlated with GCB at the 0.98 level and these have

been omitted in our comparative analyses.

JTT, JTTm—other versions of the PAM250 matrix

based on the SWISS-PROT protein sequence database

developed by Jones, Taylor, and Thornton. The first ma-

trix was computed from alignments of globular pro-

teins,15 but the second one originates from alignments

of transmembrane proteins.31

HH—the BLOSUM62 matrix (BLOcks SUbstitution

Matrices)—one of the most popular SM series derived

from multiply aligned strongly conserved sequence blocks

by Henikoff and Henikoff.8 This matrix is derived from

blocks with at most 62% sequence identity. Because the

BLOSUM45, the BLOSUM80 and the OPTIMA32 matri-

ces have a correlation with HH greater than 0.98, we

have studied only the HH matrix.

JO—Johnson and Overington substitution matrix14

constructed from structural alignments of 235 proteins.

A multiple sequence alignment for each of 65 families

was computed by the program COMPARER using many

structural criteria.

MJsm—the SM estimated by Miyazawa and Jernigan

using the contact energies and the number of contacts

for each type of AA pair33 together with a genetic model

for transitions. A transition probability matrix for codon

substitutions was obtained and finally a log-odds matrix.

BCGg—a version of the PAM250 matrix obtained by

Benner et al.30 with the assumption that the genetic

code is the only constraint for AA pairs with a PAM1

distance.

NN, AN—the matrices developed by the Nussinov

group. The first matrix (Naor et al.34) was derived from

the single residue interchanges at spatially, locally con-

served structural regions of globally unrelated proteins.

The second matrix (Azarya-Srinzak et al.35) comes from

spatially neighboring pair interchanges calculated from

the same protein database.

WAC—Wei, Altman and Chang SM based from analy-

ses of AA microenvironments.36 Twenty one features

summarizing atomic, chemical group, residue, and sec-

ondary structure properties were considered to define

comparative profiles and finally to construct a substitu-

tion matrix.

RSh—the SM introduced by Russell et al.37 based on

structural alignments of 335 pairs of remote homologous

proteins derived from the SCOP database. Two another

SMs derived in this reference are not included here

because of their low correlations with other matrices.

OOU—the matrix proposed by Ogata et al.38 for

homology modeling. An initial matrix derived from

structural alignments was optimized by the Markov chain

Monte Carlo (MCMC) method. The objective function

in the MCMC algorithm was defined as entropy.

NHH—the matrix built by Ng et al.39 from predicted

hydrophobic and transmembrane (PHAT) regions of the

Blocks database. The authors demonstrated that in

searches with transmembrane queries this matrix outper-

forms the HH, JTT and JTTm matrices.

PDS—the structure-derived substitution matrix (SDM)

derived by Prlic et al.40 The formalism of the Henikoffs

was applied to 122 proteins grouped into structurally

similar subsets using the PROSUP algorithm. The second

matrix reported in this article (HSDM) correlates with

SDM by more than 0.98, and we do not include it here.
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BC—the SM proposed by Blake and Cohen.41 Amino

acid residue exchange coefficients are estimated from

structural superposition data by the MINAREA method.

LMT—the non-symmetric matrix family derived by

Lin et al.42 An artificial neural network model was used

to obtain probabilities of AA substitutions.

DTs, DTt, DTsn, DTtn—non-symmetric matrices com-

puted from threading force fields by Dosztanyi and

Torda.11 DTs was calculated using SAUSAGE—a low re-

solution scoring function derived for protein fold recog-

nition. DTt was built from a Boltzmann-based potential

of mean force taken from THREADER2.5.43 DTsn and

DTtn are centered versions of DTs and DTt.

MRR—a non-symmetric SM derived by Mueller

et al.20 for detection of homologous transmembrane pro-

teins. The observed substitution frequencies are the same

as in NHH. The asymmetry arises because there are dif-

ferent background frequencies for the query and the sub-

jects.

MSV—the matrix VTML160 proposed by Mueller

et al.12 The search for the set of substitution frequencies

and the expected probabilities were calculated by iterat-

ing a maximum likelihood estimation until convergence,

starting from PAM matrices.

QG—the STROMA matrix derived by Qian and Gold-

stein32 for accurate alignments between known homo-

logs. Starting from the GCB matrix the iterative optimi-

zation of a coordinate root mean square deviation was

performed on the DAPS database.

CB—the SM developed by Crooks and Brenner.13

Entries of the matrix were computed as the log probabil-

ity ratios, using the dist.20comp Dirichlet Mixture Model

of expected AA probabilities. For comparison we have

included five CPs chosen from the set we analyzed in our

previous paper.1

MJ3h, MJ3—the third version of the popular Miya-

zawa-Jernigan potential published in 1999.2 These matri-

ces are centers of two groups of CPs representing transfer

energy from water and from an average buried environ-

ment, respectively.4

B2, B3 and B5—the newest version of quasichemical

potentials developed in the research group of Baker. Ear-

lier versions of this potential were discussed in Refs. 25

and 44. The potential is distance dependent—distance

bins are denoted by increasing integer numbers. The

potentials are part of ROSETTA—currently the most suc-

cessful protocol for ab initio prediction of protein struc-

ture from sequence.45

Comparative analysis of substitution
matrices

Clustering

Table I shows the results of comparative analysis of

SMs and a few CPs. In our computations we use CPs

with negative signs, so their correlations with SMs will be

positive. The entries below the diagonal represent correla-

tions between the original matrices, while the entries

above the diagonal show correlations between centered

matrices. All entries are multiplied by 100. The coloring

scheme (shown below the table) emphasizes the partition

of the set of matrices into five groups: G1,. . .,G5. The

group G1 consists of ‘‘classical’’ SMs derived mainly from

sequence alignments for globular proteins. This is the

most consistent group of SMs: almost all pairs correlate

at least at the level 0.9. The central element of this group

is the matrix HH (BLOSUM 62) and their newer var-

iants: matrices MSV and CB. The group G2 contains

mainly matrices derived from transmembrane proteins

(JTTm, NHH, and MRR) and matrices obtained from

alignments of remote homologs (RSh, BC, DTt, LMT).

Matrices from this group correlate better with SMs from

G1 (0.8) than among themselves (0.7). The group G3

contains only four elements MJsm, NN, AN, and DTsn

intermediate between classical SMs and CPs. This group

is more homogenous than G2, and additionally is more

distant from G2, than from G1. The matrix NN repre-

sents the distinct center of this group. The group G4 con-

tains CPs: B5, B3, B2, and MJ3. These matrices have cor-

relations of 0.8 among themselves, and correlations of 0.7

with G3. The popular transfer energy potential MJ3h and

the matrix DTs form G5.

Groups G1,. . .,G5 could be uniquely defined in the fol-

lowing way:

� G1—a maximal set of SMs such that M [ G1, if and

only if M correlates above 0.85 with more than a half

of G1,

� G3 | G4—a maximal set of matrices, which correlates

above 0.65 with NN and MJ3,

� G5—a maximal set of matrices, which correlates above

0.65 with MJ3h,

� G2—remaining matrices.

The importance of the matrices MJ3, MJ3h, and NN

in our clustering is motivated by the observation that

MJ3 and MJ3h are centers of two groups of CPs while

NN is the central element of matrices derived by using

the structural properties of proteins. Threshold values

0.65 and 0.85 set by us in this analysis represent mod-

erate (minimal essential) and large correlations, respec-

tively. The group G2 is defined as the complement of

the other groups and it consists of various modifica-

tions of classical SMs. The elements of G2 treated as

points in 210-dimensional Euclidean space are located in

the neighborhood of the cohesive group G1, but placed in

different directions away from G1 (among 12 elements of

G2 as many as 10 have the nearest neighbor belonging

to G1).

Let us note that the above partition is consistent with

a popular agglomerative clustering method in which dis-
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tances between clusters are computed using McQuitty’s

formula (for details see the Help to the function hclust

in the statistical package R).22 Indeed, Figure 1 shows

that groups G1, G3,. . .,G5 are branches of the dendro-

gram generated by McQuitty’s clustering method.

Automatic clustering of 42 SMs by the single linkage

and the complete linkage agglomerative clustering algo-

rithms was studied 10 years ago by Tomii and Kane-

hisa.10 The largest cluster from their partition is, in a

certain sense, a predecessor of our group of classical

Table I
Correlations Between Substitution Matrices (SMs) Given in the Lower Triangular Part and Centered SMs in the Upper Triangular Part (Values Multiplied by 100)

For comparison we also include five protein contact potentials (CPs). The coloring key is given below the table.
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SMs. However the other groups are different. In another

paper by May9 a comparison of 18 SMs derived mostly

before 1993 (except the RSh matrix) was made. This

original, two-step hierarchical clustering leads to a group

composed of many classical SMs, but unexpectedly the

popular GCB matrix is left outside this group. For com-

parison, our clustering is more laborious, but provides a

more insightful partition of the SMs. Additionally, 16 of

the SMs analyzed here were published after 1996 and

were not included in those earlier studies.9,10

Intermediate links

The intermediate links between SMs and CPs are pro-

vided by the matrices NN, DTsn, DTs and the potentials

B2, B3, and B5. Figure 2 illustrates these relationships.

We should note that the ‘‘transition’’ between SMs and

CPs is more ‘‘continuous’’ (correlations �0.8) than the

transition between these two groups of CPs centered

around MJ3h and MJ3, respectively (correlations �0.5).

Centering

We use centering of matrices to understand the effects

of databases of substitutions or contacts, and on the

other hand, differences in expected probabilities. It

appears that the expected probability is the main factor

differentiating contact potentials. Indeed after centering,

each potential from the first group of CPs (transfer

energy dependent) moves to the second group of the av-

erage protein environment dependent potentials (data

not shown). It is worth remembering that the matrix

MJ3 was originally derived as the result of ‘‘physical’’

centering of MJ3h, which depended not only on this ma-

trix but also on the number of contacts. Since after the

centering here, MJ3h is correlated with MJ3 with a value

of 0.97, we can clearly interpret the centered MJ3h

(HMJ3hH) as an approximation of MJ3, which is based

only on MJ3h.

Table I shows also that the intra-group correlations

calculated before and after centering for the matrices of

the first and the fourth group are almost the same. This

Figure 1
The dendrogram for SMs and CPs matrices generated by agglomerative clustering algorithm using McQuitty’s formula for intercluster distances. Branches contained in

dashed-line rectangles correspond to the same clusters of matrices as given in Table I.

Figure 2
Illustration of intermediate links between CPs and SMs. Bonds in the graph

denote correlations according to the same coloring scheme as in Table I. Part (a)

corresponds to centered and part (b) to original SMs, respectively. To simplify

the figure, only the strongest correlations for each node have been shown. Groups

of matrices correlated with each other by more than 0.75 are enclosed by boxes.
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means that the original matrices are already centered.

Otherwise, correlations among centered SMs from the

second group would be higher (�0.8) than among origi-

nal ones (�0.7). Centering enhances especially the corre-

lations among the transmembrane matrices JTTm, NHH,

and MRR, increasing them from 0.66, 0.76, 0.92 to 0.88,

0.89 and 0.99, respectively. Additionally, correlations

between the first and the second group have also

improved after centering (from about 0.8–0.85). This is

easily seen for DTt, G, and OOU. Probably the oddest

behavior is seen for the matrix DTs, where before center-

ing DTs is most correlated with the transfer energy ma-

trix MJ3h, but after centering DTs shows the highest cor-

relation with B5. The substitution matrix DTs derived

from the SAUSAGE force-field shows more similarity to

CPs than to SMs.

Ideal substitution forms

Accuracy of one-body approximations

Table II shows in columns 2–5 correlations between

the matrices and their one-body approximations given by

Eqs. (1)–(4). It is evident that correlations between SMs

belonging to G1 | G2 and their approximations (2) are

roughly 0.7. The second and the third approximating

vectors increase the accuracy of the approximation of ele-

ments of G1 | G2 to 0.8 and 0.9, respectively. For com-

parison, intermediate links and CPs are easier to approxi-

mate, because the obtained correlations between matrices

belonging to G3 | G4 | G5 and their approximations (2)

are at the level 0.9. It is interesting that by comparing corre-

lations in columns 2–5 of Table II, we may group matrices

(rows of Table II) similarly to the groupings shown in Table

I. Additionally we should notice that vectors x approximat-

ing given matrix in various formulas (2)–(4) may differ

[similarly as do vectors y in formulas (3)–(4)].

Interpretation of approximating vectors

To interpret our approximations we used the AAindex

database46 of amino acid properties developed by the

Kanehisa laboratory (http://www.genome.jp/aaindex/)

currently containing 494 AA indices, supplemented by an

additional 26 hydrophobicity scales. All numerical data

and detailed references are available as Supplementary

Materials to this article and can be found at http://

www.mimuw.edu.pl/�pokar. For all approximated matri-

ces and all approximating vectors x, y, z we identified the

most closely correlated AA properties in the AAindex,

and tried to divide this set of observable scales, denoted

as A, into homogenous and easily interpretable groups.

At the very beginning we have observed that certain

scales from A frequently occur in our computations.

The popular Kyte-Doolittle3 hydrophobicity scale

(abbreviated as Hp, No. 151 in AAindex) was usually the

closest one to the approximating vector x. On the other

hand we know that hydrophobicity is a fuzzily defined

concept: e.g. Hp scale correlates with the Zimmerman

et al.4 hydrophobicity scale (No. 400 in AAindex) at 0.67

and with the Levitt scale47 (No. 153) at 0.68. Because of

that we assumed that the hydrophobicity scale must be

correlated with Hp at a level of at least at 0.65.

Frequently, the scales that were the closest to the vec-

tor y appeared to be the scales referring to the size of

residues or AA volumes. Similarly to hydrophobicity, AA

size is also a fuzzy concept. AAindex contains several

dozen scales that can be interpreted as AA size, but cor-

relate with each other by no more than 0.7. For example,

the scale that counts the number of atoms in side chains

(No. 28) correlates with the molecular volume of the side

chain (abbreviation Vol, No. 150) at 0.74.48 This last

scale appears to be the best candidate for the center of

the group of scales referring to AA size, since all the

scales that definitely measure the AA size are highly cor-

related with it. Similarly to the choice of the hydropho-

bicity scale we assumed that the scale referring of the AA

size must be correlated with Vol by at least 0.65.

The most difficult task was to group scales belonging

to A that have the largest correlation with the third

approximating vector z. The most frequent (occurring six

times in Table II) was the scale of the frequency of AAs

occurring as the fourth residue in a turn (No. 52),49

however this scale is not highly correlated with other ele-

ments of A, and therefore cannot be chosen as the center

of the cluster. Nevertheless we found, that among other

scales a homogenous group of scales is formed by those

correlated at 0.65 or more with the scale measuring nor-

malized, non-weighted frequency of reverse turns (abbre-

viation Cl, No. 165).50 Thus, the third approximating

vector z correlates with various definitions of coil. The

observation of coil preferences in SMs is an important

new result in the present paper, and therefore Table III

contains a short definition of all scales measuring coil

preferences in the A set. Figure 3 illustrates the highest

correlations among these scales.

One should notice that six scales out of the total 14 in

Table III have the word ‘‘turn’’ in their descriptions, and

other two scales define the frequency of terminal residues

in helices or b-sheets. Additional four scales are defined

based on the frequency of the occurrence of amino acids

in b-sheets (these scales are marked in red in Fig. 3).

Because these scales were derived for b-proteins the

change of the sign of the scale reverses the preference to

b-sheets to the preference to coil (since helices are absent

in b-proteins). The sign of the AA scale is often a prob-

lem of a convention; the scales that are negatively corre-

lated with Cl in Figure 3 are enclosed in boxes.

In summary, in all matrices the third vector reflects

the absence of a regular secondary structure for the cor-

responding residues.

Because some scales contained in A are correlated

weakly with all centers, while certain other correlate
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highly with a few of them (e.g. with Hp and Cl), we

need an additional condition to properly identify scales

and therefore the approximating vectors. The scale S

belonging to A will be called hydrophobic if |cor(S,Hp)|

> max(|cor(S,Vol)|, |cor(S,Cl)|, 0.65). Similarly defined

are scales referring to the AA size and the coil preferen-

Table II
One-Body Approximations of SMs

Columns 2–5 contain values of correlations between particular SMs and their approximations in the forms (1)–(4) denoted here as add, x, xy, and xyz, respectively. Col-

umns 6, 8, and 10 contain values of correlations for the individual optimal approximating vectors with respect to Eq. (4) and the closest amino acids indices from the

subset A of the AA index database. Numbers denoting scales are included in columns 7, 9, and 11. Column 12 contains the correlations between SMs and an approxima-

tion given by Grantham’s formula (6). The last column indicates the numbers of scales used in the last approximation. We denote identifying numbers of hydrophobic

scales in blue, volume scales in red, coil preferences scales in green and unclassified scales in black. The scaling factor and the coloring scheme is the same as in Table I.
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ces. If the given scale S doesn’t belong to any of these

three groups we call it unclassifiable. Additionally, by def-

inition the scale No. 52 refers to coil preferences. Table

IV illustrates clustering of all scales belonging to A. It

contains absolute values of correlations among these

scales and the centers Hp, Vol, and Cl.

Columns 6–11 of Table II show correlations between

approximating vectors and AA indices collected in the

AAindex. Our major conclusions from the analysis of

this data are:

1. SMs can be accurately (�0.9) approximated by Eq.

(4). Since the constants c1–c3 are positive for almost

all SMs this expression can be simplified to c0 1 xixj
1 yiyj 1 zizj. The vectors (xi), (yi), (zi) are highly cor-

related with hydrophobicity, molecular volume, and

coil preferences of AAs, respectively. This result sug-

gests that polarity, side chain packing and secondary

structure are the most conserved physicochemical

properties during protein evolution.

2. CPs are easier to approximate than SMs. However, the

second vector y for CPs, instead of being associated

with molecular volume (Vol), correlates better with

isoelectric points (pI, scale No. 401 in AA index).

3. Intermediate links from the third group of SMs can

be approximated, similarly to CPs by Eqs. (4) and (6).

Among the intermediate links in the fourth group, the

potential B5 has its vector y correlated with Vol –

similarly to the SMs belonging to groups 1–2. On the

contrary, the matrix DTs is associated with the trans-

fer energy MJ3h.

Approximation of SMs by distance matrices

The substitution matrices have been approximated in

the past by using distance matrices between AAs

scales.10,27 This has a sound foundation, because most

of the classical substitution matrices M are positive defi-

nite, and therefore might be obtained by centering of

matrices of the squares of Euclidean distances D2 (22M

5 HD2H, see Th. 14.2.1 in Ref. 59). Columns 12–13 of

Table II show correlations between SMs and their corre-

sponding approximations given by the distances D 5
(dij) defined by the formula introduced by Grantham27

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
axðxi � xjÞ2 þ ayðyi � yjÞ2 þ azðzi � zjÞ2

q
ð6Þ

where aw ¼ ðPi>j jwi � wj j=190Þ�2
and w [ {x, y, z}.

Here coefficients aw normalize contribution of the

scales w at the distance dij. It is unclear why Grantham

didn’t use classical normalization, dividing w by its

standard deviation, which would be equivalent to the use

of the formula aw ¼ ðPi>jðwi � wjÞ2=400Þ�1
.

The approximation (6) is slightly less accurate (�0.8),

but could be improved by choosing fitted solutions of

Table III
The List of Scales in A Which are Classified as Coil Preferences

No. Accession no. Short description of the index and the reference

39 CHOP780202 Normalized frequency of beta-sheet49

48 CHOP780210 Normalized frequency of N-terminal non beta region49

52 CHOP780215 Frequency of the 4th residue in turn49

79 FAUJ880102 Smoothed upsilon steric parameter51

165 LEVM780106 Normalized frequency of reverse turn, unweighted50

167 LIFS790101 Conformational preference for all beta-strands52

228 PALJ810106 Normalized frequency of turn from CF58

236 PALJ810114 Normalized frequency of turn in all-beta class53

346 ROBB760108 Information measure for turn54

347 ROBB760109 Information measure for N-terminal turn59

363 SUEM840101 Zimm-Bragg parameter s at 20 C55

416 AURR980114 Normalized positional residue frequency at helix termini C256

426 VINM940102 Normalized flexibility parameters (B-values) for each residue surrounded by none rigid neighbours57

431 MUNV940103 Free energy in beta-strand conformation58

Accession numbers and descriptions are taken from the AAindex.

Figure 3
Coil preferences scales in the subset A described as in Table III. Edges of the

graph depict the strongest correlations for each node. Scales that are marked in

red were developed based on the frequency of the occurrence of amino acids in

b-sheets. Scales that are enclosed in boxes are negatively correlated with the

central scale No. 165.
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(5) instead of scales selected from AA index. The former

one was applied by Tomii and Kanehisa10 in the statisti-

cal analysis of SMs. Here we have performed the same

analysis but for a different set of matrices, and by

employing a significantly expanded database of AA prop-

erties.

Trends in amino acid similarities shown
in CPs and SMs

Figure 4 compares AA scales (Hp, pI, Vol) with the

vectors x, y, z in formula (4) that are the solution to the

least squares problem (5) for the matrices MJ3, B5, NN,

CB and MSV, respectively. It is an illustration of the

results from Table II that the first approximating vector x

for MJ3 is closely correlated with Hp, while the second

one correlates well with pI. For comparison, the first

approximating vectors for CB and MSV, newer versions

of the BLOSUM62 matrix, correlate also with hydropho-

bicity. This is, however, a different aspect of hydropho-

bicity. Indeed, in MJ3 aliphatic AAs are more hydropho-

bic than aromatic ones, contrary to the case for CB and

MSV. The B5 and NN matrices represent an intermediate

case, with aliphatic and aromatic residues being closer to

one another than for typical SMs, but more distant than

for typical CPs.

The approximation of SMs and CPs allows us to

understand general trends in AA similarity. Classical SMs

separate AAs into six groups: aliphatic hydrophobic (I, L,

M, V), aromatic hydrophobic (F, Y, W), polar (D, E, H,

K, N, Q, R), small (A, S, T, P), G and C. For compari-

son, the approximating vectors of the potential MJ3 lead

to the following partition of residues: positively charged

(K, R), negatively charged (D, E), neutral, polar (G, H,

N, P, Q, S, T, Y), neutral, hydrophobic (A, F, I, L, M, W,

V) and C.

Similar results were obtained earlier by principal com-

ponent analysis11,14 or multidimensional scaling of sub-

stitution matrix data. In the case of the first, this fact is

easily explicable, since for centered symmetric matrices

Table IV
Classification of Scales in A

Columns 1, 5, 9, 13, and 17 contain the numbers of scales. We denote identifying numbers of hydrophobic scales in blue, volume scales in red, coil preferences scales in

green and unclassified scales in black. Remaining columns contain absolute values of correlations between a given scale and centroids of hydrophobic (151), volume

(150) and coil preferences (165) scales. The scaling factor and the coloring scheme is the same as in Table I.
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principal components and eigenvectors coincide. How-

ever, classical SMs are almost centered and our approxi-

mating vectors do not differ significantly from eigenvec-

tors of SMs, which are a starting solution for Eq. (5).

Similarities with the results of the second method follow

from the equivalence of principal component analysis

Figure 4
Amino acid similarity shown by the three indices (Hp, pI, Vol) in comparison with the optimal approximating vectors x, y, z in formula (4) for representative CPs and

SMs. AAs are colored as follows: aliphatic in green, aromatic in orange, positively charged in red, negatively charged in blue and the remainder in black.
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and classical multidimensional scaling (Th. 14.3.1 and

Th. 14.4.1 in Ref. 59). Experimental confirmation of this

fact is evidenced by the high correlation between a given

substitution matrix and its covariance or distance matrix.

One-body approximation does not
significantly affect alignments

To test the performance of the one-body approxima-

tions [Eqs. (3) and (4)] we aligned 1033 pairs of protein

sequences (one random pair for each homologous fam-

ily) from the HOMSTRAD database (release April 1,

2005).60 We used the Needleman-Wunsch global align-

ment algorithm with an affine gap penalty61,62 p(l)5 2
a–bl, where l denotes the length of a gap and a, b > 0

are the gap opening and the gap extension penalties,

respectively. End gaps were not penalized. Alignment

quality was measured by the root-mean-square distance

(RMSD) of aligned fragments, and the alignment percent-

age (AP), defined as 100*N/(N1 1 N2 2 N), where N is

the number of aligned residues and N1 and N2 are the

lengths of two sequences. We have carried out, as an

example, about 500 experiments for the MSV matrix

derived by Mueller et al.,12 and its approximations [Eqs.

(3) and (4)], changing the gap penalties (a 5 9,10,

. . .,45, b 5 0.85, 1.00,. . .,4.15) around the previously63

used values (a, b) 5 (14, 2). For each experiment the

results were averaged over the HOMSTRAD database.60

To precisely quantify the loss of alignment quality

resulting from the replacement of the MSV matrix by its

approximations we introduce the following definitions.

Let MSV0, MSV2, and MSV3 denote the original MSV

matrix and its two- and three-vector approximations,

respectively. Let ri(a, b) and ai(a, b) denote the averaged

RMSD and the averaged AP of alignments of the MSVi,

i 50,2,3, matrices for the gap penalty parameters (a, b).
We will call parameters (a, b) admissible for the matrix

MSVi, if there are no (a0, b0) such that ri(a
0, b0) < ri(a,

b) and ai(a
0, b0) > ai(a, b). We define the proportional

loss of the alignment quality produced by the two-vector

approximation MSV2 and the gap penalty parameters

(a0, b0) relative to the original MSV0 matrix and (a, b)
penalties as

err2ða;b;a0;b0Þ

¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½r0ða;bÞ � r2ða;bÞ�2

2r20 ða;bÞ
þ ½a0ða;bÞ � a2ða0;b0Þ�2

2a20ða;bÞ

s

ð7Þ

Let e2 (a, b) 5 mina0,b0 err2 (a, b, a0, b0) and (a2, b2)

be the optimal penalty parameters for MSV2 given MSV0

and (a, b), i.e. e2 (a, b) 5 err2 (a, b, a2, b2). Similarly

we define err3(a, b, a
0, b0), e3(a, b), a3 and b3 for the

three-vector approximation MSV3.

Table V shows the loss of precision of alignments for

seven different values of the gap penalty parameters (a,
b) for MSV0 displayed in columns 2–3. Columns 4 and 5

show the values r0(a, b) and a0(a, b) of the average

RMSD and the average AP. The first two columns of the

two-vector approximation section of Table V show gap

penalty parameters (a2, b2) for MSV2, which are optimal

according to Eq. (7). The next three columns of this sec-

tion of the Table present r2(a2, b2), a2(a2, b2), and

e2(a2, b2). The last section of Table V displays the corre-

sponding data for the three-vector approximation MSV3.

The fifth row of Table V shows probably the most inter-

esting statistical data on sequence alignments obtained

for MSV0 with (a, b) 5 (12, 2.80), These gap penalty

parameters are better than (a, b) 5 (14, 2) used earlier

by Green and Brenner.63 From the columns e2 and e3 in

this row it is evident that the most successful two- and

three-vector approximations give alignments worse only

by 4.7% and 1.5% from alignments obtained with the

original matrix MSV. For comparison among all admissi-

ble parameters (a, b) the maximal loss of the alignment

quality resulting from the replacement of MSV by its

two-vector approximation is 7.9% and for the three-vec-

tor approximation is 4.6%.

Figure 5 shows alignment percentage AP (ordinate) vs.

RMSD (abscissa) plot of points (ri(a, b), ai(a, b)) for all
admissible parameters (a, b) forMSVi, i5 0, 2, 3. The simi-

larity between Figure 5 and the ROC (Receiver Operating

Characteristics) curves is not accidental. As a matter of fact,

the methodology used in both cases is quite similar. Because

there is no single universally accepted measure of the quality

of alignments, we have chosen two popular, negatively cor-

related with one another measures: AP and RSDM, corre-

sponding to sensitivity and 1—specificity, respectively,

which taken together allow us to make a quite comprehen-

sive comparison of alignments.

Table V
The effect of gap penalties and different approximations on sequence alignments

using the Mueller, Spang and Vingrom (MSV) matrix12

No

MSV0
Two-vector

approximation
Three-vector
approximation

a b r0 a0 a2 b2 r2 a2 e2 a3 b3 r3 a3 e3

1 36 2.05 4.1 73 14 1.45 4.3 69 6.6 20 2.50 4.4 71 3.7
2 24 3.40 4.2 75 12 1.75 4.4 70 6.3 18 1.75 4.5 73 3.6
3 20 2.80 4.4 77 12 1.60 4.4 70 6.3 16 1.75 4.5 75 3.4
4 18 2.05 4.5 80 11 1.45 4.7 72 5.4 15 1.75 4.6 76 3.2
5 12 2.80 4.8 82 11 1.00 5.0 74 4.7 12 1.90 4.9 78 1.5
6 12 2.20 5.0 83 9 1.30 5.3 76 4.8 11 1.60 5.2 81 1.2
7 9 2.35 5.3 84 9 1.15 5.5 77 4.5 9 1.90 5.4 83 1.1

The loss of precision of alignments for seven different values of the gap penalty

parameters (a, b) for MSV0 is shown in columns 2–3. Columns 4 and 5 show

r0(a, b) and a0(a, b). The first two columns of the two-vector approximation

section of Table 5 show gap penalty parameters (a2,b2) for MSV2 , which are

optimal according to Eq. (7). The next three columns of this section present

r2(a2, b2), a2(a2, b2) and the minimal error computed from Eq. 7 e2(a2, b2). The

last section of Table V displays the corresponding data for the three-vector

approximation MSV3.
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CONCLUSIONS

1. The approximations (2)–(4) allow us to compre-

hend better the exchangeability of AAs as well as the resi-

due-residue interactions in proteins. In the Methods sec-

tion we have shown that there are four different types of

approximation factors. Now we would like to give them

a physical interpretation. The four types of approximat-

ing factors could be treated as ideal forms of these phe-

nomena and could be conveniently named as follows:

positive additivity if x � 0 (all components of the vector

are non-negative) and c 5 1; negative additivity if x � 0

and c 5 21; separability if not x � 0 and c 5 1; coupling

ability if not x � 0 and c 5 21.

The use of the term additivity can be explained by the

fact that the approximating factor that satisfies these con-

ditions is always highly correlated with xi 1 xj. The case

of positive additivity holds for the energy of transfer of a

residue from water to a protein environment (we should

note again that, in order to compare CPs and SMs we

have changed the signs of the former matrices). The neg-

ative additivity case has not been observed here. Separa-

bility was the most frequently occurring form, since it is

typical both for hydrophobic interactions in protein envi-

ronments and for all approximating factors for SMs. The

last ideal form, coupling ability rewards pairs i–j corre-

sponding to components of the approximating vectors

which have opposite signs. This form has been found for

electrostatic interactions only.

To summarize, the approximating factors for substitu-

tion matrices are almost independent (mutual correla-

tions are almost zero) and they divide all AAs into the

following groups: hydrophobic/polar, large/small and

occurring/absent in loops. On the other hand, for statisti-

cal potentials additionally to the separation of residues

with respect to their hydrophobicity, we observe the cou-

pling ability of electrostatic interactions.

2. From a practical point of view, our method of

approximation can be useful for protein structure and

function prediction. Specifically, it can significantly

enhance the performance of algorithms which are based

on alignments of the physicochemical profiles of protein

sequences, such as fast threading17 or multiple sequence

alignment based on a fast Fourier transform

(MAFFT).18,19 We plan to study this problem in near

the nearest future.
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