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Abstract
Background: Although experimental methods for determining protein structure are providing
high resolution structures, they cannot keep the pace at which amino acid sequences are resolved
on the scale of entire genomes. For a considerable fraction of proteins whose structures will not
be determined experimentally, computational methods can provide valuable information. The value
of structural models in biological research depends critically on their quality. Development of high-
accuracy computational methods that reliably generate near-experimental quality structural models
is an important, unsolved problem in the protein structure modeling.

Results: Large sets of structural decoys have been generated using reduced conformational space
protein modeling tool CABS. Subsequently, the reduced models were subject to all-atom
reconstruction. Then, the resulting detailed models were energy-minimized using state-of-the-art
all-atom force field, assuming fixed positions of the alpha carbons. It has been shown that a very
short minimization leads to the proper ranking of the quality of the models (distance from the
native structure), when the all-atom energy is used as the ranking criterion. Additionally, we
performed test on medium and low accuracy decoys built via classical methods of comparative
modeling. The test placed our model evaluation procedure among the state-of-the-art protein
model assessment methods.

Conclusion: These test computations show that a large scale high resolution protein structure
prediction is possible, not only for small but also for large protein domains, and that it should be
based on a hierarchical approach to the modeling protocol. We employed Molecular Mechanics
with fixed alpha carbons to rank-order the all-atom models built on the scaffolds of the reduced
models. Our tests show that a physic-based approach, usually considered computationally too
demanding for large-scale applications, can be effectively used in such studies.

Background
Reliable high-resolution prediction of protein structure
remains a formidable challenge and it becomes more and
more evident that we are entering the era in which high-
resolution predictions and molecular designs will make
increasingly important contributions to biology and med-

icine [1,2]. The high-resolution models could be built by
means of various comparative modeling procedures,
although it is also sometimes possible to obtain good
models in a template-free modeling of small globular pro-
teins [2-5].

Published: 29 June 2007

BMC Structural Biology 2007, 7:43 doi:10.1186/1472-6807-7-43

Received: 30 March 2007
Accepted: 29 June 2007

This article is available from: http://www.biomedcentral.com/1472-6807/7/43

© 2007 Kmiecik et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17603876
http://www.biomedcentral.com/1472-6807/7/43
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Structural Biology 2007, 7:43 http://www.biomedcentral.com/1472-6807/7/43
Determining and properly quantifying the properties that
are characteristic for protein native structures are of pri-
mary importance for the construction of an accurate tool
for the model quality assessment. Several different
approaches to the optimal model selection have been pro-
posed – such as the use of empirical or knowledge-based
potentials [6,7] derived from the databases of experimen-
tal structures. More straightforward, although more
expensive computationally, is the evaluation of confor-
mational energy by means of Molecular Mechanics force
fields [8-10]. Another approach to the model selection is
the structural clustering, especially useful when large set of
models must be assessed [11]. Finally, learning-based
scoring functions can be developed using machine learn-
ing methods e.g. support vector machines [12], neural
networks [13,14], etc.

It is widely believed that the native conformation of a pro-
tein corresponds to the global minimum of the free energy
surface defined by the protein's conformational space and
the molecular interactions. A straightforward protein
modeling by the all-atom energy minimization remains
impractical due to the high complexity of the interactions
and astronomical size of the conformational space to be
searched. Thus, most approaches used for exploring the
protein's energy surface have resorted to essential simpli-
fications in the description of the polypeptide chain
geometry and definition of molecular interactions. Prop-
erly designed reduced models make possible very effective
search of the protein's conformational space. Model sim-
plifications, while beneficial in filtering out the majority
of unrealistic structures, limit the degree of accuracy that
can be achieved. In most contemporary approaches to
protein structure prediction large sets of alternative mod-
els are built. Proper selection of the best model is in many
cases as difficult as obtaining very good models (usually
mixed with not so good models).

Even in the simplest case of protein structure prediction –
comparative modeling, the exact structure of a target pro-
tein differs from its nearest structural template used in
modeling. Such deviations can not be corrected on the
low-resolution modeling level, a more detailed represen-
tation of the protein and more realistic force field are
needed. Unfortunately, more complex energy functions
produce more rough energy landscapes, which conse-
quently makes sampling much more difficult. Thus, it
seems reasonable to split the modeling process into two
stages: fold assembly (in a simplified representation) fol-
lowed by the model refinement/selection procedure,
using a more detailed representation (preferentially all-
atom) and a more exact interaction scheme.

The first attempts at using the all-atom modeling as a final
stage of hierarchical approach were applied to GCN4 leu-

cine zipper – a very simple homodimer coiled-coil con-
sisting of two 33-mer monomers [3,4]. The simulations
were held in the times when even short macromolecular
simulations were hardly possible due to limitations of
computer power. ~1 Å backbone RMSD (coordinate Root-
Mean-Square Deviation from the native structure after the
best superimposition) was achieved by means of reduced
modeling of GCN4 leucine zipper, followed by a molecu-
lar dynamics annealing protocol [4]. Such improvement
was possible only with the help of α-helical constraints
applied to each residue. A decade after the pioneering
work by Vieth et al. [4] molecular dynamics was still too
expensive for significant protein structure refinements.
More recently, explicit solvent molecular dynamics and
implicit solvent energy calculations on 12 small, single-
domain proteins allowed a successful ranking of the near-
native conformations and the best structure selection
from predictions generated by Rosetta method [8]. How-
ever, the simulations were unable to refine the best struc-
tures. De novo models produced by Rosetta were also
subjected to molecular dynamics simulations performed
in explicit water [15]. RMSD values of the starting models
increased during the short simulations, but longer simula-
tions appeared to generate tighter packing of helices and
regularization of β-strands in some cases. Very encourag-
ing result was also obtained by Simmerling et al. [5], who
managed to significantly improve assembled on a lattice,
low resolution structure of 29-mer CMTI-1 protein (3.7 Å
from native). The final model had the correct packing of
β-strands and was much closer to the native structure (2.2
Å).

Very interesting hierarchical approach to protein folding
was developed by Levitt group [16]. First, a large set of
compact decoys was generated on a very coarse-grained
lattice. Then, fragments extracted from known structures
were fitted to the lattice scaffolds. Subsequently an elabo-
rated procedure for the model selection and evaluation
was performed. Quite good structures were finally pre-
dicted. To some extent the present approach follows this
idea, although the higher resolution lattice decoys enable
a higher resolution modeling by the entire hierarchical
scheme.

Currently, probably the most successful refinement proce-
dures use the all atom force-field that focuses on the short
range interactions and Monte Carlo minimization. Unfor-
tunately, the methods consume a lot of computer power
and can be used only for small protein domains [2]. The
authors suggest that the primary bottleneck in a consistent
high resolution prediction appears to be the conforma-
tional sampling. Insufficient sampling misses the native
basin and a false minimum could be selected.
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Here we show that by using a combination of a relatively
high resolution sampling in a reduced conformational
space, with the model selection by an all-atom detailed
potentials and a high performance computing, the high
resolution structure prediction can be achieved (less than
1.0 Å from native). To get such result the reduced models
need to be diverse enough to cover the near-native subset
of the conformational space. CABS (CA-CB-Side chain)
modeling tool was employed for this purpose [17,18].
CABS model was successfully used by Kolinski-Bujnicki
group during the CASP6 (Critical Assessment of Protein
Structure Prediction) experiment – the average score of
the models submitted by this group was the second best
among about 200 groups participating. Interestingly,
inspections of the simulation trajectories after publication
of the target structures have shown, that there were always
better models (frequently much better) than those sub-
mitted to the CASP6 server. The lack of specificity of the
CABS force field in a 3 Å vicinity of the native structure,
was the main reason of the poor model selection. In this
range the CABS energy is poorly correlated with RMSD for
the majority of proteins. During the CASP6 experiment
the group mentioned above, did not have sufficient com-
puter resources for the all-atom refinement. Also, the role
of even brief all-atom refinement in the proper model
selection was underestimated at that time by the authors.
Nevertheless, several submitted models (comparative
modeling using CABS) were of very high accuracy, similar
to the accuracy of crystallographic structures (detailed
results are available at CASP6 website [19]).

In the present work we have demonstrated that a short,
all-atom minimization with fixed Cα positions can prop-
erly rank-order large sets of near native decoys generated
by CABS. In this context it becomes apparent that critical
for the high-resolution protein structure prediction is abil-
ity to generate sets of models that contain some near-
native structures. In comparative modeling with CABS, it
could be achieved by using restraints extracted from vari-
ous templates with alternative alignments in the uncertain
regions. To our knowledge, that's the first approach ena-
bling a meaningful refinement of large protein domains.

The procedure proposed here may also work for small
proteins in the template-free modeling. In such cases very
large and diverse sets of decoys need to be generated and
properly clustered before the all-atom based model selec-
tion. To further evaluate the proposed method for model
assessment and ranking, we also performed tests on mod-
els generated by MODELLER [20] – probably the most
popular, versatile and quite accurate computational tool
for comparative modeling. Such models are collected in
the MOULDER testing set [12] – a comprehensive and
well evaluated, present-day decoy set. Numerous state-of-
the-art methods for model selection were tested using this
set. Our method performed similarly well, or even better
than majority of the other methods. Very rigorous criteria
of the model ranking assessments were used to make this
comparison.

Results and discussion
Construction of the CABS decoy sets
We tested the proposed model ranking protocol on large
sets of near-native decoys. We constructed a benchmark of
7 proteins [21], which are representative in respect to their
length and secondary structure content (Table 1). None of
these proteins was present, or had detectable homologs,
in the library of the protein fragments used for the back-
bone reconstruction (the test structures were added very
recently to the PDB).

Several studies have utilized different energy functions to
discriminate the native structure among sets of decoys
built in different ways [9,22-25]. Typically, the decoys
have been generated by means of various threading proce-
dures. Unfortunately, the decoys' sets built by threading
contain many incorrect structures, mainly due to the
alignment problems in the threading algorithms, result-
ing in incorrectly paired tertiary contacts or wrong second-
ary structure assignments. In contrast, Park & Levitt
decoys' set [22] was generated by means of a lattice mod-
eling with constrained native secondary structure and cov-
ered wide range of RMSD values. Decoys built by Rosetta
from Lee et al. work [8] exhibited varying topologies with
locally optimized structure. The size of this set (a small

Table 1: The CABS decoys set

PDB ID % α % β L % of low energy structures

2gr8A 16 50 78 99
2cklA 44 14 98 93
2gmkA 19 41 103 75
2gu3A 19 48 128 79
2grrB 64 0 157 92
2cl4X 52 2 250 68
2cjpA 45 16 320 38

Particular columns contain: the PDB code, the fraction of alpha helices, the fraction of beta strands, the protein length and the fraction of correctly 
built structures (where the minimization did not result in abnormal high energy values).
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number of small proteins) is probably not sufficient for a
clear estimation of the correlation between RMSD and
energy. That makes such decoys' sets less challenging then
those investigated in the current work. While threading
methods are limited to the existence of structural analogs,
high-resolution lattice models can be used efficiently in
comparative modeling as well as in de novo structure pre-
dictions [18].

In this work, long Monte Carlo simulation with the CABS
model [17] were performed in order to generate protein-
like near-native decoys with RMSD in the range of 0.35 –
3 Å from native (0.35 Å is the average accuracy of the Cα-
trace projections onto the CABS underlying lattice grid).
The CABS model features high computational efficiency
and has the ability to cover the near-native conforma-
tional space (given some constraints extracted from a cor-
rectly aligned template) or can be used in de novo structure
prediction. As can be seen from the example given in Fig-
ure 1 and Figure 2, the near-native decoys generated by
CABS consist of structures varying mainly in the most flex-
ible regions as loops or near the ends of the secondary
structure elements. We have decided to limit the range of
the decoys diversity from about 0.35 to 3 Å from the
native. This is a typical range for the comparative mode-
ling.

The main objectives of the use of Molecular Mechanics
force field after the coarse-grained stage modeling in our
work are: improving filtering of the crude models, provid-
ing better correlation with similarity to the native, and
then identification of the best model (closest to the
native). To reliably verify the correlation between the
Molecular Mechanics energy and RMSD we decided to
divide each protein subset (60 – 150 thousands of struc-
tures, depending on a protein) onto 30 bins, using RMSD
from the native structure as a criterion for the classifica-
tion (from 0 to 3 Å, with the bin size of 0.1 Å). From each
bin, 30 models or less if there weren't as many, were ran-
domly selected. In this manner approximately 800 decoys
were selected for each protein, with a broad spectrum of
the quality of models (in the sense of similarity to the
native structure).

From simplified to all-atom representation
Employing simplified protein representation for explora-
tion of the vast conformational space (including de novo
structure prediction, various comparative modeling tech-
niques, or hybrid methods utilizing different kinds
restraints from experimental data) brings the necessity of
reconstruction of the reduced models to the all-atom rep-
resentation, compatible with the classical all-atom mode-
ling tools [21]. Rebuilding procedure may also be
beneficial when structures from different sources (and of
different quality) are being compared [10]. Recently, dur-

ing the extensive tests of available methods for reconstruc-
tion of protein backbone from Cα-trace [21], we found
that in the cases of the high accuracy models (better than
1.5 Å) the best performance is achieved by the procedure
employing insertion of well adjusted fragments from
known protein structures [26] (implemented in the Sybyl

Accuracy-representative models from the CABS decoys setFigure 1
Accuracy-representative models from the CABS 
decoys set. Three 2GU3A example models with various 
distances from the native structure (the lowest energy model 
– 0.6 Å, intermediate 1.5 Å, and the worst one 3 Å from 
native). Models are plotted in gray, reference native struc-
ture in dark thin line.
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software from Tripos Inc. St. Louis, MO). Such procedure
improves the local geometry of the backbone. To assure
the best possible reconstruction, we applied this method
to our benchmark set. Similarly to the main-chain back-
bone atoms, the side-chains were reconstructed and their
conformations optimized using Sybyl. It is worth noting,
that the increase of the number of experimentally deter-
mined high-resolution structures in the Protein Data Bank
(PDB) may lead to further improvements in the all-atom
reconstruction methods that use protein fragments from
the PDB.

CABS decoys evaluation by all-atom minimizations
Evaluation of protein models were done by all-atom min-
imization with frozen alpha carbons using Amber7 FF99
force field and Amber charges [27] implemented in Sybyl.
The effect of solvent has been neglected and a uniform
value of the dielectric constant was set equal to 1. Due to
the frozen positions of the alpha carbons, this is probably
an acceptable approximation. What important, it is often
unknown whether the target sequence is a part of a larger
oligomeric structure [12]. If it is, the solvation energy term
would unnecessarily penalize for the exposed binding
part of the protein surface. Moreover, the ranking of large
sets of decoys of relatively large molecules requires as fast
as possible computations. That would be impossible, or
very difficult, with the explicit treatment of the surround-
ing solvent [2]. Also, the fixed positions of the alpha car-
bons prevent from evolution of the all-atom systems into
directions of non-native local minima. On the other
hand, a significant repacking of the model structures is
rather unlike within the frozen Cα approximation. The

underlying assumption is that the set of decoys contains a
fraction of a good-geometry near-native structures.

The results of minimization are illustrated in Figure 3. For
each protein, the decoys' energies after 1000 iterations of
the Sybyl minimization were plotted as a function of the
Cα-trace RMSD. For all proteins, resulting energies as a
function of RMSD divide into two ensembles: wedge
shaped low energy values (Figure 3, right panels) and
abnormal high energy values (Figure 3, left panels). The
abnormal high energy values, observed for a fraction of
the decoys, resulted mainly from bond stretching and the
van der Waals repulsive energy contribution due to the
rebuilding inaccuracies leading to the overlaps of some
atoms. The decoys were produced by the low resolution
search, with a very simplified representation of the side
chains. This flattens the energy landscape but it also may
result in a distorted geometry of the Cα-trace. This is in the
agreement with the observation that physic-based energy
functions are sensitive to small displacements as opposed
to the statistical energy functions [28]. The rebuilding pro-
cedure aimed at adjustment of protein fragments as
closely as possible to the initial Cα trace, and conse-
quently was not always capable of constructing structures
without some local defects. Structures with small errors
can be easy filtered out by a short minimization – range of
200 iterations, regardless of the protein length. This is suf-
ficient to reject the decoys with the local defects (energy >
0) and it takes about 5 minutes per one structure of a large
protein domain (2CJPA) on a single LINUX box. Interest-
ingly, in all cases such short minimization leads practi-
cally to the same correlation between energy and RMSD as

Illustration of the secondary structure dependent character of differences between the accuracy-representative modelsFigure 2
Illustration of the secondary structure dependent character of differences between the accuracy-representa-
tive models. RMSD deviation from native for each residue of three 2GU3A example decoys (after the best superimposition 
of the entire structures – see Figure 1). On the sequence axis the secondary structure is symbolically depicted (helices in black 
and strands in grey).
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Results of 1000 iteration minimization for the CABS decoysFigure 3
Results of 1000 iteration minimization for the CABS decoys. For each protein, the energy was plotted as a function of 
Cα RMSD for all decoys (left panels) and without decoys with abnormal high energy values resulted from structural inaccura-
cies (right panels). On the left panels, energies of the native structures are denoted by asterisks. The native structures were 
subjected to the same rebuilding procedure from the Cα-traces as that applied to the decoys. Proteins are ordered in respect 
to their chain lengths (Table 1) – from the smallest on top (2GR8A) to the largest (2CJPA) on the bottom.

-1200

-1000

-800

0 0.5 1 1.5 2 2.5 3 3.5

RMS

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

3500

0 0.5 1 1.5 2 2.5 3 3.5

E
N

E
R

G
Y

[k
ca

ls
/m

o
l]

RMS

2GR8A

-2000

-1800

-1600

-1400

-1200

-1000

-800

0 0.5 1 1.5 2 2.5 3 3.5

E
N

E
R

G
Y

[k
ca

ls
/m

o
l]

RMS

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

6000

0 0.5 1 1.5 2 2.5 3 3.5

E
N

E
R

G
Y

[k
ca

ls
/m

o
l]

RMS

2GU3A

-2400

-2200

-2000

-1800

-1600

-1400

0 0.5 1 1.5 2 2.5 3 3.5

E
N

E
R

G
Y

[k
ca

ls
/m

o
l]

RMS

-3000

-2000

-1000

0

1000

2000

3000

4000

0 0.5 1 1.5 2 2.5 3 3.5

E
N

E
R

G
Y

[k
ca

ls
/m

o
l]

RMS

2GRRB

-2000

-1000

0

1000

2000

3000

4000

5000

0 0.5 1 1.5 2 2.5 3 3.5

E
N

E
R

G
Y

[k
ca

ls
/m

o
l]

RMS

2GMKA

-1400

-1200

-1000

-800

-600

0 0.5 1 1.5 2 2.5 3 3.5

E
N

E
R

G
Y

[k
ca

ls
/m

o
l]

RMS

-1400

-1200

-1000

-800

-600

0 0.5 1 1.5 2 2.5 3 3.5

E
N

E
R

G
Y

[k
ca

ls
/m

o
l]

RMS

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

3500

0 0.5 1 1.5 2 2.5 3 3.5

E
N

E
R

G
Y

[k
ca

ls
/m

o
l]

RMS

2CKLA

-3000

-2000

0 0.5 1 1.5 2 2.5 3 3.5

E
N

E
R

G
Y

[k
ca

ls
/m

o
l]

RMS

-4000

-3000

-2000

-1000

0

1000

2000

3000

0 0.5 1 1.5 2 2.5 3 3.5

E
N

E
R

G
Y

[k
ca

ls
/m

o
l]

RMS

2CL4X

-4000

-3000

0 0.5 1 1.5 2 2.5 3 3.5

E
N

E
R

G
Y

[k
ca

ls
/m

o
l]

RMS

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

0 0.5 1 1.5 2 2.5 3 3.5

E
N

E
R

G
Y

[k
ca

ls
/m

o
l]

RMS

2CJPA

E
N

E
R

G
Y

[k
ca

ls
/m

o
l]



BMC Structural Biology 2007, 7:43 http://www.biomedcentral.com/1472-6807/7/43
a 5 times longer minimization (e.g. the Pearson's correla-
tion coefficient was equal to r = 0.79 for 2GR8A models
that were scored in the negative energy range after 200
iterations, and for the same models r = 0.80 after 1000
iterations procedure). However, we found that while in
the case of the high accuracy decoys a longer minimiza-
tion didn't bring any substantial changes to the ranking,
for filtering out the medium accuracy decoys (in the range
from 2 Å to 3 Å) from the worse models, a longer minimi-
zation (1000 iterations) led to better results in the identi-
fying the best model (see the section on Evaluation of the
MOULDER testing set).

The number of steric mistakes grows with the protein
length (Table 1, Figure 3). The exception is 2GRRB, an all-
alpha protein which was rebuilt the most accurately from
the whole set. While clashes could be easily removed via a
short relaxation of the entire structures, constructing
instead a larger number of the reduced space decoys (and
rejecting these with clashes) seems to be a more effective
option.

Figure 3 clearly shows that the proposed procedure leads
to the proper ranking of models – there is very good cor-
relation between energy and the RMSD from the native
structure. The lowest energy models are always very close
to the native and in most cases the best decoys have been
selected.

At this point it should be added, that there is nothing spe-
cific about the decoys generated by CABS with the subse-
quent all-atom rebuilding. The CASP6 assessments have
shown, that the local geometry of the CABS models was
on average the same as the local geometry of the models
built by means of other high-performance methods for
protein structure prediction. This is mainly due to the fact,
that various all-atom reconstruction procedures employ
in a similar fashion protein fragments extracted from the
high-resolution crystallographic structures. Thus, the pro-

posed method should work similarly well for decoys gen-
erated by means of different modeling algorithms.

Evaluation of the MOULDER testing set
To test the ability of our protocol to discriminate a
medium-accuracy models (better than 3 Å), from a low-
accuracy models we used MOULDER decoys' set, evalu-
ated by Eramian et al. [12] using 24 individual assessment
scores, including physic-based energy functions, statistical
potentials, and machine-learning scoring functions. Each
of the targets from the set was modeled using a template
of <30% sequence identity, corresponding to challenging
comparative modeling cases. No two alignments of a
given target shared >95% of identically alignment posi-
tions. The target-template alignments were obtained using
MOULDER [29] with MODELLER [20] to create 300 dif-
ferent target-template alignments.

Of the 20 targets subsets, only 7 contain models better
than 3 Å (for RMSD range and median RMSD see Table 2).
We decided to reduce the testing set to these 7 proteins,
since the sensitivity to small structural displacement make
physical force-fields less suitable for the assessment of
models with larger errors [28]. Before the minimization
procedure, coordinates of the alpha carbons of the models
were extracted and subjected to rebuilding procedure,
identical to the one applied to the CABS decoys' set.

The performance of the methods with the MOULDER
decoys' set were measured by average RMSD difference
(ΔRMSD) between the model identified as the best of the
set and the model with the lowest RMSD. Each of the sets
of 300 models was split into 2000 randomly populated
smaller sets of 75 models. The purpose of this division
was to reduce the impact of individual target sets on the
final ranking and to increase the robustness of the bench-
mark. For each 75 model set, the model with the lowest
Cα RMSD (after superposition with the native structure)
was used as a reference to calculate the ΔRMSD measure.

Table 2: The 7 protein subsets from the MOULDER testing set

PDB ID SS type L RMSD range Median RMSD avg.ΔRMSD
(best, rank.)

ΔRMSD

2mtaC α 81 2.2–42.7 6.7 0.56 (0.30, 5) 0.26
1onc_ α, β 101 2.2–22.8 10.5 0.37 (0.25, 8) 0.30
1bbhA α 127 2.5–20.8 6.5 0.51 (0.05, 17) 0.76
1mdc_ β 130 1.9–16.4 9.3 0.37 (0.13, 8) 0.02
1dxtB α 143 2.0–34.1 7.2 0.56 (0.31, 3) 0.08
2fbjL β 210 2.4–22.5 8.8 1.51 (0.32, 19) 0.53

2cmd_ α, β 310 2.5–20.2 5.8 1.26 (0.31, 13) 1.58

Particular columns contain: the PDB code, the secondary structure type, the protein length, the range of Cα RMSD (Å), the median of RMSD (Å), 
the average ΔRMSD of our method, in the brackets: the average ΔRMSD of the best method [12] and a ranking – the number of methods that 
outperformed our procedure (23 individual assessment methods were tested, SVMod that uses a composite score from the individual methods was 
not taken into account [12]), the ΔRMSD on the whole subset.
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We followed the same rules, despite the fact that the aver-
age ΔRMSD value of the 75 model set is not suited for
evaluating of our procedure, which is aimed at assessing
much larger sets due to its characteristics. Our method
narrows down the number of models in the testing set
rejecting the fraction of them (extreme high energy val-
ues), due to their small inaccuracies. Sensitivity for the
small displacements is the price for the high discrimina-
tory power [28]. Additionally, due to the same reasons, it
is desirable to provide a few copies of the model with the
small differences, to maximize the chance of the accurate
scoring. Such sets of models (clusters), representative for
a various type of conformations, can be easily extracted
from reduced modeling trajectories by structural cluster-
ing [30] and subjected to the evaluation procedure.

Two worst cases, which are the two largest proteins from
the set, illustrate the effect of narrowing down the number
of models and insufficient number of good models in the
set. The former situation is observed for the subset of 2fjbL
models, where only one third had been the subject to the
1000 iteration minimization, while the rest was rejected
after 200 step minimization (E>0). The latter could be
observed in the case of the 2cmd subset of models, which
is the subset with the smallest number of models better
than 3 Å (16 out of 300).

Omitting these two worst cases, our method performed
similarly to the Rosetta scoring function which is appar-
ently the most successful in de novo high-resolution small
protein structure prediction [2]. ΔRMSD value averaged
for the 5 subsets of proteins was 0.47 for our procedure
(for individual subsets values see Table 2) and 0.49 for the
Rosetta. Corresponding values for two physic-based
approaches used in the study by Eramian et al. were 0.56
and 0.51 for GB (CHARMM with Generalized Born sol-
vent model) and EEF1 (CHARMM EEF1), respectively
[12]. The authors noted that in the selecting the best
model from a set of very similar models EEF1 and GB were
more accurate than many of the statistical potentials
tested. According to their suggestion it is possible that dif-
ferent relaxation schemes would have produced better
results. They took also into consideration, that by includ-
ing the solvent model, the oligomeric proteins were pre-
sumably harder to evaluate than monomers.

The ability of the all tested methods to identify native-like
models greatly varied across different targets [12]. The
most accurate methods that obtained the best results for
the 7 targets considered here (see Table 2 for the best avg.
ΔRMSD) were: DFIRE, MODCHECK and
MODPIPE_COMBI implementing different kinds of sta-
tistical potentials and PSIPRED/DSSP (score based on pre-
dicted secondary structure using PSIPRED, compared with

the model secondary structure assigned by DSSP algo-
rithm) [12].

As we said earlier, the minimization with frozen Cα has to
be performed on a sufficient number of models. The
number of models in the studied MOULDER subsets
(300) seems to be enough (Table 2 and Figure 4).
Obtained ΔRMSD on the whole subsets surprisingly well
correlate with the minimum values of the RMSD (Table
2), confirming the usefulness of our procedure in the
high-accuracy modeling protocol. Clearly, performance of
our methods improves with increasing average quality of
the decoys. Thus, the analysis of the MOULDER decoys
indicates that the best results of the proposed procedure
are expected for the sets of relatively good models. This is
actually a nice finding, since ranking of very bad models
isn't useful anyway. It is also worth to mention that the
final selection can be likely improved by a structural clus-
tering of the best scored models.

Conclusion
In summary, the proposed simulation protocol makes
possible fast and reliable assessment of high resolution
structures for relatively large proteins. Bradley et al. [2]
have shown recently that a high resolution de novo struc-
ture prediction can be achieved for small proteins by
using an all-atom refinement procedure in the last stage of
prediction. The cost of application of the high resolution
refinement for large proteins was estimated by authors to
require orders of magnitude more computing power, than
the 150 CPU days required for small proteins [2]. A single,
500-step, minimization sufficient for the ranking of the
smallest proteins (of a comparable size to those from Bra-
dley et al. work) took in present work approximately 1.5
minutes. The approach described here may be a good
alternative for the refinement of small proteins and could
be applied as a means of the best model selection in a
large scale modeling, regardless of protein length.

Protein model filtering in the endgame of protein struc-
ture prediction protocols faces the following two chal-
lenges: fold identification (particularly in de novo
modeling) and the selection of the best models from a set
of good models (especially important in comparative
modeling). The results of this work apply mostly to the
model selection in comparative modeling. Recent CASPs
test have shown that the best comparative models are
built with a lot of human intervention using an assort-
ment of well known modeling tools [1]. The challenge is
to automate the protein prediction and produce even
more accurate models with no need of the human assist-
ance during the prediction protocol. Thus, consistent and
accurate last stage of modeling is needed, i.e., producing
and filtering the high-resolution predictions. Elaborate
human intervention can be compensated by a high-
Page 8 of 11
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Results of 1000 iteration minimization for the Moulder decoysFigure 4
Results of 1000 iteration minimization for the Moulder decoys. For each subset of decoys, the energy was plotted as a 
function of Cα RMSD for the best scored decoys.
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throughput modeling, employing sampling of alternative
alignments (which should lead to a sufficient sampling of
the near-native regions of the conformational space) and
an efficient scoring of the large number of obtained
decoys.

The need for a reliable detection of the best native-like
models from a set of different predictions produced in the
recent CAFASP4 experiment (CAFASP assesses the per-
formance of methods without the user intervention
allowed in CASP) led to a new category of model assess-
ments – Model Quality Assessment Programs (MQAPs).
Although performance of currently available MQAPs indi-
cate that some of these methods may be useful for new
automated procedures, high false positive rates are
observed, and the MQAP methods were suggested to be
used as additional elements of the prediction protocols
rather than as a simple post-filter [31].

Our method gives surprisingly consistent correlation of
the all-atom energies with RMSD distance from the native
structure. Decoys within 3 Å from native were examined
and no false positive cases were noted. As mentioned
before, the correlation of the CABS energy with RMSD in
this range is often insignificant. The starting energy of the
all-atom structures are uncorrelated with the CABS energy
and are extremely high, mostly due to the overlaps of the
side chains. The Molecular Mechanics energy decreases
rapidly during the initial stage of minimization, mainly
due to the improvement of side-chain rotamers position.
For a fraction of decoys (see Table 1) the energy plateaus
at a high level due to non-resolvable steric clashes. The
subset of the low-energy structures, easily distinguishable
from the high-energy ones, exhibits the above mentioned,
nearly perfect correlation with the values of RMSD from
the native structure. This provides a very strong support
for the idea of multiscale high-resolution protein mode-
ling. More extensive molecular dynamics simulation, than
described here, might lead to even better model ranking
and refinement. In the case of fixed Cα-traces, a longer
than performing 1000 iterations minimization is not nec-
essary – the results do not change anymore.

Finally, we would like to return to the two important
assumptions of the present method: fixed positions of the
alpha carbons during the minimization and the in vac-
uum Molecular Mechanics. Obviously, these assumptions
significantly reduce the cost of computations for large sets
of decoys. The frozen alpha carbon approximation works
very well for the model ranking, although it eliminates
possibility of a significant refinement of the entire struc-
tures. Model ranking exercises performed on the
MOULDER set by others have shown clearly that there is
very little added value with use of more rigorous Molecu-
lar Mechanics procedures [12]. The same conclusion

could be drawn from our experiments with defrosted
alpha carbons and with a continuous model of solvent
(unpublished). The ability to generate sets of decoys con-
taining a significant fraction of the near-native structures
by coarse-grained modeling (followed by the all-atom
refinement and model ranking) remains a key factor for
the high-accuracy structure prediction.

Methods
The proposed procedure is a combination of tools availa-
ble in the BioShell package [32] and commercial Sybyl
software (Tripos Inc. St. Louis, MO) integrated in a single
pipeline with the reduced-space CABS [17] protein fold-
ing algorithm, which can be employed in a high-through-
put protein modeling.

Decoys generation by CABS
The CABS model uses a lattice representation with 800
possible orientations of the virtual alpha carbon-alpha
carbon bonds [17]. The sampling scheme of the confor-
mational space employs the Replica Exchange Monte
Carlo method. Knowledge-based potentials of the force
field include: generic protein-like conformational biases,
statistical potentials for the short-range conformational
propensities, a model of the main chain hydrogen bonds
and context-dependent statistical potentials describing
the side group interactions. The model could be effectively
used for high resolution comparative modeling as well as
for purely de novo folding of small globular proteins.

The Bioshell package was very useful in managing and
analyzing large volume of simulation data.

Backbone reconstruction
Reconstruction procedure from alpha carbons to back-
bone, implemented in Sybyl/Biopolymer, with default
settings was used. Procedure bases on a "spare parts"
approach [26], using fragments retrieved from the protein
database (PRODAT) to construct the full poly-alanine
backbone. Subsequently side chains were added by the
standard procedure implemented in Sybyl/Biopolymer
with the initial side chain position from the Sybyl data-
base.

All-atom minimization
We run all-atom minimization for all decoys (over 5500
structures from the CABS decoys' set and 2100 from the
Moulder testing set) with frozen alpha carbons using
implemented in Sybyl Amber7 ff99 force field, Amber
charges, dielectric constant equal 1.0 and Powell minimi-
zation method, without initial optimization.

Amber7 ff99 energy expression:
Page 10 of 11
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Etotal = Estr+ Ebend + Etor + Evdw/ele, (Estr - Bond Stretching
Energy Term, Ebend - Angle Bending Energy Term, Etors -
Torsional Energy Term, Evdw/ele - van der Waals/Electro-
static Energy Term)

Maximum number of iterations was set to 5000, however
the simulations longer than 1000 iterations were not nec-
essary. To speed up maximally the calculations, a suffi-
cient number of iterations (resulting in model ranking
similar to the unlimited minimization) should be range
of 500–1000, or even shorter, depending on the accuracy
of models.

CABS and Bioshell package can be downloaded from our
website [33].
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