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Abstract Protein modeling tools utilize many kinds of

structural information that may be predicted from amino

acid sequence of a target protein or obtained from experi-

ments. Such data provide geometrical constraints in a

modeling process. The main aim is to generate the best

possible consensus structure. The quality of models strictly

depends on the imposed conditions. In this work we present

an algorithm, which predicts short-range distances between

Ca atoms as well as a set of short structural fragments that

possibly share structural similarity with a query sequence.

The only input of the method is a query sequence profile.

The algorithm searches for short protein fragments with

high sequence similarity. As a result a statistics of dis-

tances observed in the similar fragments is returned. The

method can be used also as a scoring function or a short-

range knowledge-based potential based on the computed

statistics.

Keywords Protein structure prediction �
Spatial restraints � Comparative modeling �
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Introduction

In many cases for a given protein sequence, homologous

proteins (whose structures are already known) may be

found in structural databases. The known structure may be

used as a template in a comparative modeling procedure

[1, 2]. Provided that the level of sequence similarity is

high, one may expect accurate result. Moreover, homology

based methods demand less computer time and are rela-

tively easy to automate. Indeed, large-scale experiments

have been started [3, 4] to model all known sequences for

which it is possible to find a structural template.

Unfortunately in many cases sequence similarity

observed between a query sequence and proteins from a

database lies in a twilight zone. Then the evolutionary

relationship between the query and the template becomes

uncertain. This could be a serious limitation of comparative

modeling since the probability of finding a template for a

sequence randomly picked from a genome ranges about

50%, depending on the genome [5]. In the remaining cases

the only way to obtain a 3D model for a query sequence is

to do a de novo protein structure prediction. Although

considerable progress has been made in this field,

employing even sparse homology information still prom-

ises more accurate results.

If no global template structure can be identified for the

target sequence, in many cases it is possible to find frag-

ments of structures that can model some parts of the target.

Such fragments, extracted from PDB files may be used as a

source of spatial constraints to guide de novo modeling.

There are also some other sources of information that can

drive de novo search to a plausible topology or decrease the

number of conformations that must be sampled.

The information predicted by sequence methods follows

two main categories: long and short range. Starting from a

protein sequence it is possible to predict contacts between

residues [6, 7]. This data has a long-range nature, defining

how a protein chain is folded and, as a consequence,

describing its topology. On the contrary, short-range

information describes local geometry of the backbone.
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Current methods [8–10] enable secondary structure pre-

diction with accuracy (according to the Q3 measure) of

about 75% [10]. Local geometry can also be described by

short structural fragments (peptides) [11–13]. The advan-

tage of such libraries of fragments is that they describe

more precisely local conformation than the 3-state sec-

ondary structure alphabet does. Employing such ‘building

blocks’ in a de novo modeling could be quite complicated.

Sophisticated algorithms need to be designed for this pur-

pose. An example is Rosetta method [14]. These

algorithms are usually strictly related to specific databases

of fragments characterized by their representation (e.g.

Cartesian coordinates versus dihedral angles) and

assumptions made in the derivation process (e.g. length and

the size of fragments’ database).

In our approach [15] the distributions of short-range

distances between Ca atoms are calculated. In this work we

also show that a knowledge-based sequence-dependent

scoring function and the most probable distances can also

calculated from locally similar fragments. Our approach

describes local conformation more accurately than pre-

dicted secondary structure does. In comparison with the

methods that are based on explicit structural fragment

assembly, the distance constraints are much easier to

implement—they may be applied in virtually any modeling

tool, e.g. in molecular dynamics, Monte Carlo, genetic

algorithms and many hybrid methods.

To conduct experiments we utilized BioShell [16, 17]

software package. Its most recent version provides modules

that may be used in jython (python scripting language

interpreter implemented in Java) scripts. Among numerous

features, the package provides efficient routines for profile-

to-profile alignment as well as statistical utilities. All

algorithms described in this paper have been implemented

as Jython (searching for fragments and GMM-EM esti-

mation) or as bash (running Psi-Blast for a number of

amino acid sequences in an automated manner) scripts.

They can be downloaded from BioShell website:

http://bioshell.chem.uw.edu.pl.

Methods

Overview of the method

To run a program, user should provide query and template

sequence profiles [18] as well as template structures.

During the search described below in details, local simi-

larity between the two profiles (template and target) is

assessed. Similarity of secondary structure, e.g. predicted

by PsiPred [9], can also be assessed for higher specificity of

the search. As a result, a set of short fragments cut out from

the template structures is returned.

Fragment’s search algorithm

The search method compares short gapless fragments of

sequence profiles. The fixed length of the fragments is one

of the parameters of the method, denoted as NF, usually

range 13–19 residues. Let PQ
i and PT

j denote the ith column

from the target (query, denoted as Q) profile and the jth

column from the template profile (denoted as T), respec-

tively. The similarity score (denoted as Sij) between the

fragments starting at ith and jth amino acid in a target and

template sequences, respectively, is a sum of the NF scores

calculated for corresponding positions in the target and in

the template sequence profiles (Fig. 1):

Sij ¼
XNF�1

k¼0

simSPðiþ k; jþ kÞ

¼
XNF�1

k¼0

simP PQ
iþk;P

T
jþk

� ��

þ simS SQ
iþk; S

T
jþk

� ��

ð1Þ

By simP PQ
i ;P

T
j

� �
we denoted a similarity between two

profile columns. Virtually any scoring scheme can be

combined with our approach. Several most successful

scoring schemes are implemented in BioShell library. In

this work we used COMPASS [19] scoring function

although some tests runs suggest that Picasso3 [20] would

work similarly well. Additionally, similarity of secondary

structure (based on three-state definition: H, E, C) for the

target ST and template SQ is also assessed. Scoring function

simS is defined as a simple similarity matrix based on H, E

and C letters and taken from [21].

In practical implementation elements simSP(i, j) comes

from a matrix that contains scores that assess similarity

between position i in a target and position j in a template

protein. The size of the matrix is NQ 9 NP. The matrix

is computed as the first step of the program. In all the

formulas (1–6) indices i and j denote a top-left corner of a

Fig. 1 Schematic illustration of the single step of the database search

algorithm. A fragment of a template sequence profile is compared to a

fragment of a target sequence profile (in the figure only single

sequences are shown). If the similarity score is higher than a certain

threshold, r13, r14, r15, r17 and r19 distances between Ca atoms are

measured from the central part of a template fragment (only r17

distance is shown for the sake of clarity)
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certain submatrix of simSP. The submatrix contains scores

calculated for a fragment from Q (starting at position i)

and a fragment of T (starting at position j). The size of

such submatrix is NF 9 NF and its elements are indexed

by i + k and j + l, where indices (k,l) change from 0 to

NF - 1

The S value is not particularly useful for scoring the

similarity between two fragments. It highly depends on

amino acid composition of compared profiles and on their

length. The method that is frequently used in such situa-

tions is to calculate the z-score value:

z-score ¼ S�\S [
rðSÞ ð2Þ

The mean value of the score \ S [ and the standard

deviation of the score r(S) have to be estimated for all the

permutations of the columns in both profiles. Thus, \ S [
stands for an average alignment score for two profiles with

a given length and amino acid composition, no matter what

the amino acid order (column order in profiles) is. Usually,

it is estimated via some random shuffling of one of the two

profiles and recalculating the scoring function. Due to the

assumptions mentioned above: fixed length of a fragment

and its gapless nature, \ S [ and r(S) can be calculated

analytically in O(N2) and O(N4) time, respectively. The

mean value is calculated as a sum of all possible scores for

columns of the template and the query profiles, divided by

NF:

\S [ ¼ 1

NF

XNF�1

k¼0

XNF�1

l¼0

simSPðiþ k; jþ lÞ ð3Þ

To calculate a variance from a well-known formula:

r2ðSÞ ¼\S2 [ �\S [ 2 ð4Þ

an average value of squared-terms \ S2 [ must be

calculated:

\S2 [ ¼ 1

N

XNF�1

k¼0

XNF�1

l¼0

ðsimSPðiþ k; jþ lÞÞ2

þ 1

NðN � 1Þ
XNF�1

k¼0

XNF�1

l¼0

SMðk; lÞsimSPðiþ k; jþ lÞ

ð5Þ

where SMði; jÞ denotes a minor of a considered simSP

submatrix formed by eliminating row i and column j from

simSP:

SMði; jÞ ¼
XNF�1

k¼0 6¼i

XNF�1

l¼1 6¼j

simSPðiþ k; jþ lÞ ð6Þ

The distribution of S converges to the normal

distribution when fragments are several residues long

(see Fig. 2). Thus the use of z-score value is well-justified.

When the total score is higher than a specified param-

eter, a proper structural fragment is cut out of a template

structure and recorded. When the search is finished, a set of

plausible structural fragments are returned. That structural

information may be utilized in many ways. The first pos-

sibility, explored in our previous work, is to derive a

sequence dependent scoring function, according to Boltz-

mann formalism. Here we apply Gaussian mixture model

to derive a continuous scoring function and prediction of

the most probable distance between two given Ca atoms.

It should be noted that our method does not predict

fragments (and, as a consequence, distances and potentials)

for all residues in a target sequence. Since the window for

scoring the similarity between fragments of profiles always

spans more residues (NF = 13–19) than the measured

fragment (usually 7–9 residues long), several N-terminal

and several C-terminal residues (e.g. (NF - 7)/2 or (NF -

7)/2) are skipped. Moreover, for some sequence regions it

is not possible to got a statistically significant hit. For

example, in the experiment described in this work (see

Results and discussion) nothing has been predicted for

almost 30% of residues.

Gaussian mixture approximation

Originally the potentials that can be derived from frag-

ments [15] were designed to work with a lattice modeling

tool CABS [22]. Therefore the scoring functions are

 0
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Fig. 2 Example distributions of Picasso similarity score between two

fragments of evolutionary related (left peak) and randomly chosen

pairs of sequence profiles (right peak). Stepwise plots show distri-

butions obtained by 1,000,000 random shuffles of a sequence. Thick

lines showing Gaussian approximation calculated by the algorithm

described in this work perfectly agrees with the simulated data.

Comparison score between a target and a template profiles is denoted

by a square (for the pair of unrelated profiles) and by a circle (in the

case of evolutionary related proteins). Z-score values for the two

points are 0.01 and 5.11, respectively. The statistics were computed

for fragments with 15 amino acid residues
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represented in a form of histograms. This could be however

not the best choice in other applications. In order to make

our results more general, we also approximated the distri-

butions of the distances by continuous functions. We tested

several approaches and decided that Gaussian mixture

(GM) is the most suitable for this task.

The unknown probability distribution function f(x) is

approximated as a linear combination of normal

distributions:

f ðxÞ ¼
Xk

i¼1

aiNðx; li; riÞ ð7Þ

where k is the number of components, ai, li and ri are

mixing factor, mean value and standard deviation,

respectively, for ith normal distribution, denoted as N(x).

The unknown parameters (ai, li, ri) are calculated via

Expectation Maximization (EM) algorithm. Unfortunately,

the EM procedure cannot determine optimal number of

components (k). We employed the following iterative

approach to find the best value of k. The procedure starts

from a large k and for this value the best GM

approximation is found according to the EM algorithm.

After that, for each pair of normal distributions a

dissimilarity measure is calculated. We choose symmetric

Kullback–Leibler KL(i, j) divergence for this purpose—the

standard dissimilarity measure between probability

densities. In the case of Gaussian densities, the

symmetric KL distance has a closed form:

KLði; jÞ ¼
r4

i þ r4
j þ ðli � ljÞ2ðr2

i þ r2
j Þ

2r2
i r

2
j

þ 1 ð8Þ

Equation (8) may be obtained directly from the

definition of the symmetric Kullback–Leibler KL(i, j)

divergence:

KLðpi; pjÞ ¼
Z

piðxÞ log
piðxÞ
pjðxÞ

� �
dx

þ
Z

pjðxÞ log
pjðxÞ
piðxÞ

� �
dx ð9Þ

in several steps of integrations. Analytical formulas

describing symmetric KL divergence for some common

univariate distributions may be found in [23]. A sketch of a

derivation for the case of multivariate normal distribution

may be found e.g. in [24].

If any two components are closer to each other than a

certain threshold, k is decreased by one and the EM step is

repeated for the new k. The procedure stops when any two

components are less similar to each other than a threshold

or when only one component remains.

Once the observed probability distribution f(x) has been

described as a mixture of Normal components one can

select the most probable component (i.e. that with the

highest value of ai). The most probable distance may be

introduced into a modeling protocol as a harmonic force.

Results and discussion

Sequence specificity of our knowledge-based scoring

function has been already compared with the specificity of

simple statistical potentials using gapless threading [15].

We also tested the ability to predict specific geometry of

protein fragments. Significant improvement in threading

sensitivity and increased ability to generate sequence-

specific protein-like conformations has been achieved.

Moreover, we found, that the new scoring function

implemented in a Monte Carlo sampling scheme semi-

quantitatively reproduces conformational properties of

denatured proteins [25]. In this work, we investigate further

applications of gapless comparison of short fragments of

sequence profiles. We also bring a user-friendly and highly

portable implementation of our algorithm to the public.

Results presented in this work show that the set of

potentials calculated by Frags approach is able to assess the

quality of a large group of decoys. In order to make test

difficult, we focused on targets from the last CASP com-

petition, denoted by organizers as ‘‘new folds.’’ That means

that no protein structurally similar to T0201, T0209 (sec-

ond domain), T0216, T0238, T0241, T0242, T0248

(second domain) and T0273 can be found in the PDB

database. We used PISCES_30_res2.0 [26] as a set of

templates. This database contains only these protein

structures culled from PDB, whose sequences are less

similar to each other than 30% and whose resolution is not

worse than 2.0 Å. That is the same database version that

we used during the CASP6 experiment. We used PSI-

BLAST [27] to calculate sequence profiles both for target

and template sequences. We also employed secondary

structure in our test. For targets it was predicted with Psi-

Pred [9] and for template structure it was calculated with

DSSP [28].

The accuracy of the Frags method depends on the

quality of the sequence profile created in the first step of

our method. For example, for T0201 no homologous

sequence could be found and therefore PsiPred failed to

build a sequence profile. Therefore, this protein was

excluded from the further analysis.

For all targets except T0201 we derived our scoring

function and measured the drmsd (distance root mean

square deviation) between target structures (which are

currently known) and the structures sent by CASP6 par-

ticipants. In our analysis we took into account all groups

i.e. both human and server predictors, taking all models (up

to 5) submitted by each group. All the structures have been

downloaded from CASP website. Since our potentials
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scores only local geometry of a protein structure and does

not recognize the topology, we took only short range dis-

tances (up to r19) into account in the drmsd calculations.

Results are plotted on Fig. 3. The x axis refers to the

total harmonic energy (r13 + r14 + r15 + r17 + r19

sequence-dependent potentials) for a nine-residue frag-

ments. The y axis refers to the drmsd distance between

fragments from the templates and the target structures.

Overall correlation coefficient calculated for all models

from all groups is 0.3. The four outliers in the upper middle

in the Fig. 3 correspond to two CASP targets (T0216 and

T0241) for which a very limited number of sequence

homologs were found. Resulting low-quality sequence

profile lead to bad prediction results.

Our results show that applicability of Frags approach

depends the number of homologs that may be found for a

given target in sequence databases. The quality of both

target and template profiles affects the sensitivity of

profile-profile scoring scheme. It also influences second-

ary structure prediction and as a consequence, the second

term of our scoring system. After initial optimization we

decided to combine the two scoring terms with equal

weights and to use 15 residues long fragments (NF = 15).

There is however a trade-off between optimization of

sequence-based and secondary structure related terms.

The use of longer protein fragments allow for more

accurate detection of locally conserved sequence motifs.

Unfortunately, the longer protein fragment is, the greater

chance that it spans two or even more secondary structure

elements. In such a case a high score for secondary

structure match may be gained, although the fragments

may be not structurally similar because secondary struc-

ture elements may have different spatial orientation in the

two protein structures.

The method described in this work allow prediction of

local geometry of protein backbones starting from

sequence information and selected structures of the Protein

Data Bank. The local distances between the alpha carbon

atoms could be used as a supporting distances in various

methodologies of protein structure prediction and ranking

of protein models. To test the predictive strength of the

proposed method the set of the models submitted in the

‘‘new fold’’ (and fold-analogy) category of the CASP6 [29,

30] experiment has been evaluated by the Frags approach.

The data collected in Fig. 3 clearly show strong correlation

between the quality of the local geometry of the models

and the score returned by the Frags method. Interestingly,

almost all models submitted by the two best groups show

better (or much better) local geometry than the average for

all predictions. This leads to two more general observa-

tions. Firstly, the CASP6 [31] experiment indicates that the

fidelity of the local geometry is strongly correlated with

overall quality of the molecular models. Secondly, from

comparison of the results of the two best groups it appears

that the first observation is independent of the type of

methodology employed in de novo modeling. This is

somewhat surprising, since one of these groups (i.e. the

Baker group) employed a fragment assembly technique

[29] while the second one simulated protein folding con-

trolled by a force-field derived from statistical analysis of

general structural regularities seen in the experimentally

solved protein structures [22, 30]. The potentials analogical

to these provided by Frags were one of the most important

components of the knowledge-based force field of the

Monte Carlo folding algorithm CABS [22]. Thus we hope,

that the proposed tool and the method will find several

applications also in context of other protein modeling

schemes.

Fig. 3 Benchmark of the short-range scoring function. The diagram

shows the two-dimensional histogram of local harmonic energy for

structures submitted by all human predictors (x axis) and local

drmsd (y axis) calculated for all models submitted during CASP6

experiment. The color scale describes the number of models of a

given quality. Structures submitted for two groups: Baker and co-

workers [29] and Kolinski and Bujnicki [30] in the ‘‘new fold’’

category are shown separately as white ellipses and blue rectangles,

respectively
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