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Abstract Much structural information is encoded in the

internal distances; a distance matrix-based approach can be

used to predict protein structure and dynamics, and for

structural refinement. Our approach is based on the square

distance matrix D = [rij
2] containing all square distances

between residues in proteins. This distance matrix contains

more information than the contact matrix C, that has ele-

ments of either 0 or 1 depending on whether the distance rij

is greater or less than a cutoff value rcutoff. We have per-

formed spectral decomposition of the distance matrices

D ¼
P

kkvkvT
k , in terms of eigenvalues kk and the corre-

sponding eigenvectors vk and found that it contains at most

five nonzero terms. A dominant eigenvector is proportional

to r2—the square distance of points from the center of

mass, with the next three being the principal components of

the system of points. By predicting r2 from the sequence

we can approximate a distance matrix of a protein with an

expected RMSD value of about 7.3 Å, and by combining it

with the prediction of the first principal component we can

improve this approximation to 4.0 Å. We can also explain

the role of hydrophobic interactions for the protein struc-

ture, because r is highly correlated with the hydrophobic

profile of the sequence. Moreover, r is highly correlated

with several sequence profiles which are useful in protein

structure prediction, such as contact number, the residue-

wise contact order (RWCO) or mean square fluctuations

(i.e. crystallographic temperature factors). We have also

shown that the next three components are related to spatial

directionality of the secondary structure elements, and they

may be also predicted from the sequence, improving

overall structure prediction. We have also shown that the

large number of available HIV-1 protease structures pro-

vides a remarkable sampling of conformations, which can

be viewed as direct structural information about the

dynamics. After structure matching, we apply principal

component analysis (PCA) to obtain the important apparent

motions for both bound and unbound structures. There are

significant similarities between the first few key motions and

the first few low-frequency normal modes calculated from a

static representative structure with an elastic network model

(ENM) that is based on the contact matrix C (related to D),

strongly suggesting that the variations among the observed

structures and the corresponding conformational changes are

facilitated by the low-frequency, global motions intrinsic to

the structure. Similarities are also found when the approach

is applied to an NMR ensemble, as well as to atomic

molecular dynamics (MD) trajectories. Thus, a sufficiently

large number of experimental structures can directly provide
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important information about protein dynamics, but ENM can

also provide a similar sampling of conformations. Finally,

we use distance constraints from databases of known protein

structures for structure refinement. We use the distributions

of distances of various types in known protein structures to

obtain the most probable ranges or the mean-force potentials

for the distances. We then impose these constraints on

structures to be refined or include the mean-force potentials

directly in the energy minimization so that more plausible

structural models can be built. This approach has been suc-

cessfully used by us in 2006 in the CASPR structure

refinement (http://predictioncenter.org/caspR).

Keywords Distance matrix � Spectral analysis �
Protein structure prediction � Protein structure refinement �
Elastic networks � Distance geometry

Introduction

Mathematical approach to studies of various protein prop-

erties by the analysis of the corresponding matrices has been

quite popular in bioinformatics. In our earlier work we tried

to approximate 20 9 20 dimensional matrices correspond-

ing to contact potentials by 20-dimensional vectors of

various physical properties of amino acids by using a simple

linear c0 ? xi ? xj and quadratic functions c0 ? xixj ? yiyj

of two amino acid properties x and y [1]. We analyzed 29

different matrices of contact potentials published in litera-

ture. We used AAindex database of over 500 amino acid

indices collected by Kanehisa [2, 3] http://www.genome.jp/

aaindex/ and have found that all matrices of contact poten-

tials can be approximated with correlation 0.9 by

hydrophobicities and isoelectric points of amino acids. A

dominant role of hydrophobicity in interactions among res-

idues in proteins has been already well known, and our study

have shown that isoelectric points, that measure electric

charges of various amino acids are also important for contact

potentials. We have found two classes of contact potentials.

The first class of contact potentials can be approximated by a

linear combination of hydrophobicities. Major contribution

comes from the one body transfer energy of amino acids from

water to protein environment. The second class of contact

potentials can be approximated by a quadratic function of

hydrophobicities and isoelectric points of amino acids.

Potentials of this class represent energies of contact of amino

acid pairs within an average protein environment.

In our later work we have extended our method to

substitution matrices [4]. We have analyzed 29 different

substitution matrices known in the literature, plus five

statistical contact potentials. We found that substitution

matrices can be approximated with correlation 0.9 by a

quadratic expression c0 ? xixj ? yiyj ? zizj with vectors

x, y and z corresponding to hydrophobicity, molecular

volume, and coil preferences of amino acids. We also

found that some substitution matrices correlate well with

contact potentials.

In our present work we apply a similar approach to

matrices containing structural information for proteins. We

try to express these original matrices in terms of their

eigenvectors, try to connect these eigenvectors with phys-

ical properties of amino acids and predict them from the

amino acid sequence. Our work was motivated by a recent

work of Vendruscolo [5] who found that the eigenvector

corresponding to the dominant eigenvalue of the contact

matrix in proteins correlates well with the vector of hy-

drophobicities of the amino acid sequence. We show that

the structural matrices relate to experimental B-factors

(temperature factors) that measure thermal fluctuations of

atoms around their mean positions in crystals (for X-ray

determined structures) or in solution (for NMR-determined

structures). We discuss elastic network models of proteins

that mathematically relate contact matrices to mean square

fluctuations of residues. We show that motions of amino

acids in proteins computed from elastic network models

better fit NMR-determined. Finally we discuss methods of

refinement of protein structures based on libraries of

interatomic distances in proteins, and propose a new opti-

mization method of solving a generalized distance

geometry problem for determination of NMR structures by

using B-factors.

Methods

Matrices containing structural information

There are several different matrices that contain structural

information for proteins. The most common is the distance

matrix

d ¼ ðdijÞ ð1Þ

where the ij-the element of the matrix is the distance dij

between residues i and j. Usually the distance is measured

between the Ca atoms of the residues, although other def-

initions of distances, such as: the distance between the

centers of side chains of the amino acids, or the distance

between the closest heavy atoms of the two residues, are

also popular.

Distance matrices have been used for a long time in

structural bioinformatics mostly for protein structure

comparison and alignment and for inferring protein–

protein interactions [6–24]. In particular Snyder and

Montelione used this approach for identification of core

atom sets and for the assessment of the precision in NMR-

derived protein structure ensembles [20].
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From the mathematical point of view it is easier to deal

instead of distances with their squares. Because of this we

define the matrix of square distances

D ¼ ðd2
ijÞ ð2Þ

containing information about square distances dij between

amino acids i and j. All diagonal elements of the distance

matrix d and the square distance matrix D are zeros.

Another matrix that is very popular in computational

biology and contains significantly less information than the

distance matrix is the contact matrix

C ¼ ðcijÞ ð3Þ

with elements cij defined as:

cij ¼ 1 if dij� dcutoff

cij ¼ 0 otherwise ð4Þ

Here dcutoff is the cutoff distance defining residues being in

contact.

Laplacian of C that is frequently called the Kirchhoff

matrix is defined

Lc ¼ diag Rcij

� �
� C ð5Þ

The diagonal elements of Lc are the sums of its off-

diagonal elements taken with the negative sign. Because of

such definition the sums of all elements in each row or

column are zero and the determinant of Lc is zero, i.e. the

matrix is singular and has no inverse.

We may however, define a generalized inverse

(pseudoinverse that might be right or left) L�1
c of the La-

placian matrix Lc Such generalized inverse L�1
c of the

Laplacian of the contact matrix is introduced in elastic

network models of proteins (described in detail in the next

section) and its elements represent covariances between

instantaneous fluctuations of residues i and j.

Similarly we can define Laplacian of the matrix of

square distances D:

LD ¼ diag Rd2
ij

� �
� D ð6Þ

and its generalized inverse L�1
D .

Elastic network models of proteins

Elastic network models treat proteins as elastic bodies. A

coarse-grained representation of proteins with a single site

per residue is usually used. Positions of these sites are

generally identified with the coordinates of the Ca atoms in

proteins. Residues separated by a distance less than or

equal to a certain cutoff value Rc (including neighbors

along the sequence) are assumed to be in contact, and are

connected with identical mass-less harmonic springs. This

leads to an elastic network representation of a protein

structure in the folded state that resembles a random

polymer network. Figure 1 illustrates the basic idea of this

model.

The simplest of the elastic network models is Gaussian

Network Model (GNM). This model was originally

developed for the theory of rubber-like elasticity of random

polymer networks [25, 26] to calculate fluctuations of

junctions and chains inside the network. The model was

adapted to proteins by Bahar and Erman [27, 28] using an

earlier result of Tirion [29] who used a single harmonic

force parameter to analyze atomic motions in proteins.

The total potential energy for the network composed of

N nodes is

Vtot ¼
1

2
c
XN

i\j

DRij

� �2
HðRc � RijÞ ð7Þ

where c is a uniform universal spring constant, and H(x) is

the Heaviside step function that equals 1 if x [ 0, and is

zero otherwise. Here DRij ¼ Rij � R0
ij is the instantaneous

displacement of the distance vector Rij between the ith and

the jth sites from the mean value R0
ij observed in the native

structure. Equation 7 can be rewritten in the following

form

Vtot ¼ ðc=2ÞfDRgTCfDRg ð8Þ

where C is the Kirchhoff matrix of size N 9 N, defined on the

basis of the cutoff distance Rc, with off-diagonal elements ij

being either -1 if nodes i and j are in contact or zero

otherwise, and the diagonal elements are defined as the sum

of the off-diagonal elements in the i-th row (or column) taken

with a negative sign. Mathematical definition of the

Kirchhoff matrix was given earlier by Eq. 5. Kirchhoff

matrices were introduced first in physics to study electric

currents in networks. Similarly as for electrical circuits

where all currents at a given node sum up to zero, for a system

of connected springs forming a network a sum of elastic

Fig. 1 Beads and springs representation of proteins in elastic network

models. Protein backbone is shown in red
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forces at each node is zero. The matrix is equivalent to the

Laplacian Lc of the contact matrix in Eq. 5. Here {DR} is the

N-dimensional fluctuation vector DR = col (DR1, DR2, …,

DRN) of DRi for all N nodes, and the superscript T denotes the

transpose. We should note that

DRij ¼ DRi � DRj ð9Þ

Then the average changes in positions, given either as

the correlation hDRi � DRji between the displacements of

pairs of residues i and j or as the mean-square fluctuations

hðDRiÞ2i ¼ hDRi � DRii for a single residue i, are

hDRi � DRji ¼
R
ðDRi � DRjÞ expð�Vtot=kBTÞdfDRg

R
expð�Vtot=kBTÞdfDRg

for all i, j

ð10Þ

This can be rewritten [25] in a simple form as

hDRi � DRji ¼
3kBT

2c
ðC�1Þij ð11Þ

where ðC�1Þij is the ij-th element of the inverse of the

Kirchhoff matrix C, kB is the Boltzmann constant, T is the

absolute temperature, and c is a spring constant. Mean-

square fluctuations hðDRiÞ2i of the i-th residue in a protein

are given by the i-th diagonal element of C�1. Since the

Laplacian matrix C is singular because det ðC) = 0 only

the pseudoinverse of C can be computed through the use of

the singular value decomposition method. The pseudoin-

verse of C may be written as C�1 ¼ UðK�1ÞUT where U is

the matrix composed of eigenvectors ui (1 B i B N) of C,

and K is the diagonal matrix of the eigenvalues of C.

Additionally, it can be proven that all eigenvalues ki of C
are non-negative.

Mean-square fluctuations of the position of each Ca

computed from Eq. 11 can be compared with the Debye-

Waller thermal factors, which are measured by X-ray

crystallography and deposited in the Protein Data Bank.

The relationship between the B-factor and the mean square

fluctuations for the i-th residue is given by

Bi ¼ 8p2hðDRiÞ2i=3 ð12Þ

The B-factors computed by GNM usually are in

excellent agreement with experimental data [30, 31].

The Gaussian Network Model is based on the assump-

tion that all instantaneous fluctuations are isotropic. A more

sophisticated elastic network model of proteins is the

Anisotropic Network Model (ANM) [32]. Equation 8 is

then replaced by

V ¼ ð1=2ÞDRTHDR ð13Þ

where DR is the 3N-dimensional vector of fluctuations,

DRT its transpose and H is the (3N 9 3N) Hessian matrix,

whose elements are the second derivatives of the total

potential energy with respect to the Cartesian coordinates

of the ith and jth nodes.

Spectral decomposition of structural matrices

Decomposition of matrices is a standard algebraic proce-

dure to factorize them into a canonical form. There are

various different methods of decomposition, such as for

example LU decomposition where the original matrix is

expressed a product of a lower triangular matrix L and an

upper triangular matrix U. Decomposition based on

eigenvalues of a square matrix A is called eigen decom-

position or spectral decomposition. It allows us to express

the original square matrix A of size in N 9 N terms of its

eigenvalues kkand corresponding eigenvectors vk

A ¼
X

k

kkvkvT
k ð14Þ

The inverse matrix A�1 is then expressed by the same

Eq. 14 with eigenvalues kk replaced by their inverses k�1
k .

In mathematical problems related to system dynamics the

eigenvalues correspond to frequencies of motions that are

called modes.

The matrix C�1 for the Gaussian Network Model can be

written as the sum of contributions from individual modes:

C�1 ¼
X

k

k�1
k ukuT

k ð15Þ

where zero eigenvalues of the Kirchhoff matrix C (related

to rigid body motions of the center of mass of the system)

are excluded from the summation. The i-th component of

the eigenvector uk specifies the magnitude of fluctuations

of the i-th residue in the protein in the k-th mode. If we

order the eigenvalues according to their ascending values

starting from zero, then the most important contributions to

C�1 in Eq. 15, and therefore (because of Eqs. 11–12) also

to temperature factors are given by the smallest non-zero

eigenvalues kk of C that correspond to the large-scale slow

modes. The slowest modes play a dominant role in the

fluctuational dynamics of protein structures, because their

contributions to the mean-square fluctuations scale with

k�1
k . It has been shown that the most important functional

motions of proteins [33–35] or large biological structures

(such as the ribosome [36–38]) correspond only a few of

the slowest modes derived from the GNM.

To calculate the normal modes for the Anisotropic

Network Model, the Hessian matrix H is diagonalized to

the canonical form STHS = K, where K is a (3N 9 3N)

diagonal matrix with diagonal elements corresponding to

eigenvalues ðk1; . . .; k3NÞ and S is an orthogonal

(3N 9 3N) matrix (i.e. STS = I) built from eigenvectors.

The mean-square fluctuations of the residue i can be

expressed as a sum over all normal modes (except the first
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six zero modes that corresponds to translations and rota-

tions of the system) as

ðDRiÞ2
D E

¼ ðkBT=cÞ
X3N�6

l¼1

S2
il

kl
ð16Þ

where ðDRiÞ2
D E

are the mean-square fluctuations of resi-

due i.

Structure determination and refinement using distances

We consider a problem of the determination of a structure

or an ensemble of structures for a protein with a given set

of inter-atomic distances or their ranges. This problem

arises in modeling proteins using NMR distance data.

Mathematically, it requires the solution for a nonlinear

system of equations or inequalities. Let xi = (xi1, xi2, xi3)T

be the coordinate vector of atom i; (i = 1, …, n), with n

being the total number of atoms in the protein. The prob-

lem can be formulated to find xi, i = 1, …, n such that

jjxi � xjjj ¼ di;j;
ði; jÞ 2 S � D ¼ fði; jÞ : i ¼ 1; . . .; n; j [ ig ð17Þ

where di,j are the given distances between atoms i and j or

li;j� jjxi � xjjj � ui;j;
ði; jÞ 2 S � D ¼ fði; jÞ : i ¼ 1; . . .; n; j [ ig ð18Þ

Here li,j and ui,j are the given lower and upper bounds on

di,j, respectively.

The problem formulated in Eq. 17 has been studied in

several fields and has many applications. It is called the

distance geometry problem in mathematics, the multidi-

mensional scaling problem in statistics, and the graph

embedding problem in computer science. Distance geom-

etry methodology for proteins has been developed 30 years

ago by Havel and Crippen. [39–43]

The problem can be solved in polynomial time by using

for example the well-known singular value decomposition

algorithm if the distances for all the pairs of atoms in the

protein are given, but it is NP-hard for an arbitrarily given

subset of all the distances. The problem defined in Eq. 18

has a particular application in NMR protein modeling,

where only a lower and upper bound can be estimated for a

distance. A set of solutions can be obtained for this prob-

lem, which corresponds to an ensemble of structures, all

satisfying the given distance constraints. It is of great

practical interest to obtain the whole ensemble of struc-

tures, since it shows how a structure may change

dynamically given the possible ranges of their distances.

However, the problem to obtain the whole solution set,

even for a linear system of inequalities, is NP-hard.

Heuristic methods have been developed for the solution

of the first problem (Eq. 17), and been extended to the

solution of a generalized problem (Eq. 18). A common

approach to the later (Eq. 18) is to generate repeatedly a set

of distances within the given distance ranges, and solve

Eq. 17 with the generated distances. In the end, a set of

solutions is obtained that represents the whole solution set

for the problem defined by Eq. 18. The obtained solutions

form an ensemble of structures. They can be put together to

show how they deviate from each other at different times.

A long-standing issue with this approach is that the solu-

tion set for Eq. 18 is often underdetermined or not well

represented by the obtained solutions, and therefore, the

ensemble of structures cannot fully reflect the dynamic

behavior of structures. Besides, solving Eq. 17 for each

generated set of distances can be very costly.

Results

Spectral decomposition of a square distance matrix

The eigenvalue spectrum of contact matrices or Laplacian

(Kirchhoff) matrices is rather complex, with only one

eigenvalue out of N being zero for GNM, and six out of

3 N being zero for ANM. In the case of the square distance

matrix D (Eq. 2) the eigenspectrum is much simpler.

Spectral decomposition of a square distance matrix is a

complete and simple description of a system of points and

has at most five nonzero, interpretable terms:

A dominant eigenvector associated with the dominant

eigenvalue is proportional to r2—the square distance of

points to the center of the mass, and the next three are

principal components of the system of points. It can be

shown that these principal components are related to the

directionality of the secondary structure elements. This

means that the square distance matrix D that contains

almost complete information about protein structure

(except impossibility to distinguish protein from its mirror

image) can be completely reconstructed from the dominant

r2-related eigenvector and three eigenvectors correspond-

ing to the principal components.

To illustrate relationships with the square distance of

residues from the center of mass and the secondary struc-

ture let us consider protein G. Figure 2a shows the plots of

experimental B-factors of Ca atoms measured by the X-ray

crystallography (shown in black), mean-square fluctuations

computed from the Gaussian Network Model, and the

values of the square distance of Ca atoms from the protein

center of mass plotted versus the residue index. We see that

r2 correlates with B-factors better than predictions provided

by elastic network model. Figure 2b shows the plot of the

first principal component versus the residue index for

protein G. The relation with directionality of the secondary

structure elements is obvious if we compare Fig. 2 with
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Fig. 3 that shows protein G oriented in the direction of the

first principal component.

The first principal component (Fig. 2b) increases as the

residue index follows the direction of the secondary

structure in proteins (Fig. 3), when the secondary structure

reverses its direction the principal components starts

decreasing, etc. In the case of the second (or the third)

principal component the relationship between the values of

these components and orientation of the secondary struc-

ture in the direction of the principal component (Fig. 4) is

much more difficult to visualize.

We used a nonredundant database of 680 structures

derived from the ASTRAL database and computed average

correlations between experimental B-factors and various

theoretically computed quantities, as well as correlations

among them. We analyzed the square distance of each

residue from the center of mass (r2), principal eigenvector

of the contact matrix (PECM), contact number (the number

of residues being in contact) for each residue (CN), and

mean-square fluctuations computed from the Gaussian

Network Model (GNM). We tried also to predict B-factors

from the sequence alone using Support Vector Regression

(SVR) that is a variant of Support Vector Machines for

continuous variables. The results of our computations are

Fig. 2 a The plot experimental

B-factors (black), fluctuations

computed from Gaussian

Network Model (green), and the

square of the distance from the

center of mass (red) versus the

residue index for protein G.

b The plot of the first principal

component versus residue index

for protein G

Fig. 3 Structure of protein G in the direction of the first principal

component
Fig. 4 Structure of protein G in the direction of the second principal

component
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shown in Fig. 5. Highest correlations of the order 0.9 are

shown in black, correlations 0.8 are shown in green, and

correlations of order 0.5 are shown in red. We see that all

four quantities (r2, PECM, CN and GNM) are very well

correlated with each other. Especially the correlations

between the fluctuations predicted from GNM and the

inverse of the contact number CN, or PECM are surpris-

ingly high (0.9). Accuracy of predictions of experimental

B-factors from the sequence alone using SVR is almost the

same (*0.5) as for predictions based on structural infor-

mation contained in the contact matrix (for GNM, CN and

PECM), or in the square distance matrix (for r2).

Some of these observations have been already reported

in literature. In 1980 Petsko found that crystallographic B-

factors correlate with the distances of residues from the

center of mass r2 [44]. Correlations between fluctuations of

residues and the inverse of their contact numbers have been

pointed out by Halle [45]. Prediction of B-factors from the

sequence using SVM was recently reported [46].

Approximation of distance matrices

We tried to reconstruct the original structure described by

the square distance matrix by using eigenvalue decompo-

sition (Eq. 14). The inclusion of all four terms in the

summation in Eq. 14 gives to the original square distance

matrix. By using only the first term related to the dominant

eigenvector, or the first two terms (the dominant eigen-

vector and the first principal component) we can assess the

contribution of these terms to the reconstruction of the

original square distance matrix from the eigenvalue

decomposition.

The computations were performed on our nonredundant

database of 680 structures derived from the ASTRAL

database. We found that the dominant eigenvector r2 alone

approximates protein structures with average RMSD 7.3 Å.

However if we used two terms in Eq. 14 by combining r2

with the first principal component the original structures

were approximated with much better RMSD 4.0 Å. Addi-

tion of the second principal component would of course

additionally improve these approximations. Since both r2

and the first principal component can be predicted from the

sequence alone, that allows us to predict the tertiary

structure of proteins with RMSD better than 4.0 Å from the

sequence. Such predictions can be based only on the pre-

dicted distances of residues from the center of mass, and

prediction of the secondary structure elements and their

orientation in space. We are currently working on this

problem by using Support Vector Regression.

Principal component analysis of multiple HIV-1

protease structures

We used 164 X-ray-determined and 28 NMR-determined

structures of HIV-1 protease deposited in PDB structures

[47]. Figure 6 shows the structure of HIV-1 protease. We

used also 10,000 structures (snapshots) obtained from the

Molecular Dynamics simulations of HIV-1 protease. We

performed the Principal Component Analysis of the struc-

tural matrices for all these three different datasets. Then we

compared the results of Principal Component Analysis with

normal modes computed from the Anisotropic Network

Model. We computed the overlap (measured as the dot

products of vectors) between directions of motions com-

puted from ANM and principal components for X-ray

determined structures and NMR-determined structures for

first few slowest modes. The results are shown in Table 1

with the best cases marked in bold.

Fig. 5 Correlations among experimental B-factors, contact numbers

(CN), principal eigenvectors of the contact matrix PECM, square

distances from the center of mass r2, and predictions of GNM.

Support Vector Regression (SVR) predictions of B-factors from the

sequence alone are also shown. The extent of correlations is

illustrated by colors

Fig. 6 The a-carbon trace of the HIV-1 structure
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Table 1 suggests that NMR-determined structures fit

predictions of elastic network models better than X-ray-

determined structures. This idea was further evidenced

after the computation of the cumulative overlap (a sum of

overlaps for the first k-modes), shown in Table 2.

NMR-derived structures fit prediction of Anisotropic

Network Model much better than X-ray-derived structures.

A possible explanation is that NMR experiments enable us to

study single isolated molecules in solution, and elastic net-

works are basically also single molecule models, whereas in

X-ray crystallography motions of protein residues are

affected by interactions with the rest of the crystal lattice.

An optimization approach for structure determination

and refinement using distances

We propose a new model for the solution of the problem

defined by Eq. 17 by making a similar assumption as in X-

ray crystallography that a protein has an equilibrium

structure and the atoms fluctuate around their equilibrium

positions. These thermal fluctuations are represented by the

B-factors in the X-ray crystal structure. With this model,

we can then reformulate the problem for determining an

ensemble of structures for a given set of distance ranges as

an optimization problem, i.e., to find the equilibrium

positions and maximal possible fluctuation radii for the

atoms in the protein, subject to the condition that the

fluctuations should be within the given distance ranges (see

Fig. 7). Let ri be the fluctuation radius of atom i.

Then, the problem can be written as to find xi and ri,

i = 1, …, n such that we maximize the total volume of

spheres corresponding to fluctuations of atoms, subject to

the lower and upper distance constraints imposed on

interatomic distances:

max
xi;ri

Pn
i¼1 r3

i

subj: jjxi � xjjj þ ri þ rj� ui;j

jjxi � xjjj � ri � rj� li;j; ði; jÞ 2 S
ri� 0; i ¼ 1; . . .; n:

ð19Þ

We call this problem a generalized distance geometry

problem. This problem is not exactly equivalent to Eq. 18,

but the solution of the problem can provide a meaningful

description for the structure to be determined and its

dynamic behavior. Moreover, the formulation given by

Eq. 19 has many advantages over Eq. 18. First, it is a much

better defined problem, because it requires only a single

solution rather than a solution set. Second, it is

computationally more tractable because there are well-

developed methods for solving optimization problems.

Third, the solution of the problem can deliver an NMR

structure in a similar form as an X-ray crystal structure,

with a single structural file containing the coordinates and

fluctuation radii (or B-factors) for the atoms. These

advantages make it possible for us to develop an efficient

algorithm for the determination of a structure using a set of

distance data and improve the way to represent a structural

ensemble in NMR modeling.

A buildup algorithm

In practice, there can be more than tens of thousands of

variables and constraints for the problem in Eq. 19. A

constrained optimization problem of such complexity can

Table 1 Overlap between ANM directions of motions and principal

components

X-ray NMR

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

PC1 0.06 0.06 0.24 0.25 0.91 0.02

PC2 0.07 0.04 0.64 0.88 0.28 0.04

PC3 0.46 0.53 0.13 0.02 0.05 0.30

Table 2 Cumulative overlap between directions of motions and

principal components

X-ray NMR

PC1 PC2 PC3 PC1 PC2 PC3

3 Modes 0.25 0.65 0.71 0.94 0.92 0.31

6 Modes 0.25 0.65 0.74 0.95 0.94 0.35

20 Modes 0.32 0.69 0.84 0.96 0.95 0.46

j

i
ri

rj

d i,j

Fig. 7 Protein model. A protein is assumed to have an equilibrium

structure and the atoms fluctuate around their equilibrium positions

(as represented by the B-factors in an X-ray crystal structure)
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still be very difficult to solve. We therefore propose a novel

so-called buildup algorithm for the solution of the problem.

The idea of this algorithm is to determine the coordinate

vectors and fluctuation radii of the atoms, one at a time,

using the distance constraints from the determined atoms to

the undetermined ones. Let xj and rj be the coordinate

vector and fluctuation radius of an atom to be determined.

Suppose that there are l determined atoms xi, i = 1, …, l

from which the lower and upper bounds on the distances to

atom j are given. Then, a subproblem for determining atom

j can be formulated as follows:

max
xj;rj

r3
j

subj: jjxi � xjjj þ ri þ rj� ui;j

jjxi � xjjj � ri � rj� li;j

ri� 0; i ¼ 1; . . .; l:

ð20Þ

This subproblem has only four variables and 2l

constraints, and can be solved easily. By repeatedly

solving such subproblems for undetermined atoms, the

coordinate vectors and fluctuation radii of the all atoms in

the protein can all be determined eventually. We have

implemented such a buildup algorithm in Matlab and

applied it to a set of test problems. We demonstrate how

the algorithm works in the following.

Let us consider the structure of protein 1AX8 as an

example. In order to test the algorithm, we first used the

PDB data for 1AX8 to compute all the distances less than

or equal to 5 Å. We then computed the root-mean-square

fluctuations for all the atoms based on their B-factors. Let

yi and bi be the coordinate vectors and B-factors for atom i,

respectively, i = 1, …, n. We then set a fluctuation radius

for atom i to be

fi ¼ C sqrt(bi=DÞ ð21Þ

where constants C and D are the scaling factors that are

evaluated by solving later the optimization problem defined

by Eq. 19. Let di,j be the distance between atoms i and j.

We then set

li;j ¼ di;j � fi � fj;

ui;j ¼ di;j þ fi þ fj;

ði; jÞ 2 S ¼ fði; jÞ : di;j ¼ jjyi � yjjj � 5Åg: ð22Þ

With such a set of distance intervals, we then solve an

optimization problem (Eq. 19) by using a buildup procedure.

Figure 8 shows the X-ray crystal structure for 1AX8 and the

equilibrium structure determined after solving Eq. 19 using

the distance data given in Eq. 22. Let Y = {yi, i = 1, …, n}

and X = {xi, i = 1, …, n} be two n 9 3 coordinate matrices

for the two structures, respectively. Then, RMSD

(X, Y) = 2.0e-04 Å, showing that the two structures are

almost the same. After solving Eq. 19, we have also obtained

the fluctuation radii for the atoms. Figure 9 shows the

computed radii ri and the radii fi derived from the

B-factors of the crystal structure, i = 1, …, n. Clearly, the

two sets of radii correlate very well.

Structure refinement using statistical distances

We propose a computational approach to refining an NMR

structure (and possibly other types of structures as well) by

statistically deriving additional distance data from a large

set of known protein structures. General idea of our

approach is based on earlier work of Sippl [48–53], Melo

and Feytmans [54, 55], Garbuzynskiy [56] among others.

By statistically deriving additional distance data, we

mean that we can search for the distances between certain

pairs of atoms, especially for those missing in the experi-

mental data, in a database of known protein structures such

as PDB, and then obtain a statistical distribution of each

distance type, say the distance between the two Cb atoms in

two neighboring residues, alanine (ALA) and tryptophan

(TRP). Using these distributions, a probable range or a

Fig. 8 Computational versus

experimental structures. The

structure on the left is the

crystal structure for protein

1AX8. The one on the right is

the structure for 1AX8 obtained

by solving a generalized

distance geometry problem

using a set of distance bounds
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mean-force potential of each distance type can be defined,

and applied to refining a structure.

Consider the distances between two atoms in two resi-

dues separated by some residues in sequence. Let A1 and A2

be the two atoms, R1 and R2 the two residues, and S1, …, SN

the residues between R1 and R2. Let the distances between

A1 and A2 in R1 and R2 separated by S1, …, SN be collected

from a database of know protein structures and grouped

into a set of uniformly divided distance intervals [Di, Di?1],

where Di = 0.1 * i Å, i = 0, 1, …, n - 1. Then, the dis-

tribution of this particular type of distances can be defined

by a function P[A1, A2, R1, R2, S1, …, SN](D) for any

distance D, and

P½A1;A2;R1;R2S1; . . .; SN �ðDÞ ¼
#distances in ½Di;Diþ1�
# distances in ½D0;Dn�

;

D 2 ½Di;Diþ1�:
ð23Þ

The distribution graphs for most distance types should

have non-uniform patterns if the two residues are not too

far apart. This is primarily due to the fact that large

portions of protein segments form regular secondary

structures, i.e., a-helices or b-sheets, where short-range

distances always have certain ranges (see Fig. 10). Based

on the distribution of the distances of a given type, we can

extract a probable range for the distances by using the

mean minus and plus a few standard deviations of

the distances. Let l and u be the lower and upper bounds

of the distances between A1 and A2 in R1 and R2 separated

by S1, …, SN. We can define l = l - kr and u = l ? kr,

where l and r are the mean and the standard deviation of

P[A1, A2, R1, R2, S1, …, SN] and k is a constant.

Alternatively, we can also use the distribution of the

distances to define a mean-force potential.

For example, for the distances between A1 and A2 in R1

and R2 separated by S1, …, SN, we can define a potential

function E such that for any distance D of this type

E½A1;A2;R1;R2; S1; . . .; SN �ðDÞ
¼ �kT log P½A1;A2;R1;R2; S1; . . .; SN �ðDÞ ð24Þ

where kB is the Boltzmann constant and T the temperature.

Once a set of distance bounds or mean-force potentials

are obtained, we can impose the bounds on a structure to be

refined or include the mean-force potentials in energy

minimization so that a more plausible structural model may

be built.

Results of structure refinement

We have downloaded around 2000 X-ray crystal structures

with resolution of B2.0 Å and sequence similarity of B90%

from PDB, and calculated a set of short-range distances and

their distributions [57]. The types of the distances calculated

can be specified in terms of five parameters [A1, A2, R1, R2, S],

where A1 and A2 are the atoms, R1 and R2 the residues, and S

the residue separating R1 and R2. Also, only five different

100 200 300 400 500 600 700 800 900 1000 1100 1200
0

0.05

0.1

100 200 300 400 500 600 700 800 900 1000 1100 1200
0

0.05

0.1

Fig. 9 Atomic fluctuation radii. The upper graph shows the fluctu-

ation radii of the atoms extracted from the B-factors of the original

crystal structure of protein 1AX8. The lower graph shows the

fluctuation radii obtained by solving a generalized distance geometry

problem

Fig. 10 Statistical distances. The distances of a specific type have

been collected from known protein structures and used to form a

probability distribution function of the distances
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types of atoms were considered: the amide N, Ca, and the

carbonyl C and O along the backbone and the carbon Cb in

the side-chain. The residue types included all twenty dif-

ferent amino acid types. For convenience, we call them

cross-residue distances. For each set of A1, A2, R1, R2, and S,

all corresponding distances in the downloaded crystal

structures were computed and collected into a set of uni-

formly divided distance intervals [Di, Di?1], where Di = 0.1

i Å, i = 0, 1, …, 200. The distribution function P[A1, A2, R1,

R2, S](D) for any D in [Di, Di?1] was defined as the number of

distances in [Di, Di?1] normalized by the total occurrences of

distances in all intervals.

The distribution functions for a subset of cross residue

distances were used to generate a set of bound constraints

for the corresponding distance types, with the lower and

upper bounds equal to the mean values of the distances

minus and plus twice the standard deviations, respectively.

The generated distance bounds were then taken as addi-

tional distance constraints to refine a set of NMR

structures, including five structures for 1EPH, 1GB1, 1IGL,

2IGG, 2SOB and five for 1CEY, 1CRP, 1E8L, 1ITL, 1PFL.

The last five were selected because they have X-ray

structures available. The original NMR experimental con-

straints for the structures were downloaded from NMR

structure database BioMagResBank [58]. The structures

were refined using the default torsion angle dynamic sim-

ulated annealing protocol implemented in CNS [59, 60].

The results obtained with and without additional database

distance constraints were examined on the deviations of all

simple cross-residue distances from their average distri-

butions, and compared and assessed in terms of several

criteria used in NMR modeling, including the acceptance

rates of the structures, the RMSD values of the ensembles

of structures, and the RMSD values of the structures

compared with their X-ray structures (for available ones).

The distribution functions for a set of cross residue

distances were also used to define a set of mean force

potentials [61]. Let P be the distribution function for any

distance of interest between two atoms. Then, the mean-

force potential E for the distance was computed from

Eq. 24. The potentials for all the cross residue distances

were then summed up and inserted into the energy function

in CNS software. The extended energy function was

applied to refining a set of selected NMR structures. Again,

the original NMR experimental constraints for the struc-

tures were downloaded from NMR structure database

BioMagResBank. The embedding and energy minimiza-

tion routines in CNS were used for the refinement. The

results obtained with and without using the mean-force

potentials were compared and assessed in terms of several

standard measures, including the potential energy of the

structures in various categories, the RMSD values of

the ensembles of structures, and the RMSD values of the

structures compared with their X-ray reference structures

(for available ones), and the Ramachandran plots.

As shown in Table 3, the means and standard deviations

of the RMSD values for the listed ensembles of NMR

structures all became smaller after the structures were

refined with the statistically derived distance constraints.

Note that the RMSD values were calculated in terms of

either just backbone atoms or all non-hydrogen atoms. The

results were consistent in both calculations.

The refined NMR structures for five proteins (1CEY,

1CRP, 1E8L, 1ITL, and 1PFL) were compared with their

corresponding X-ray structures for the RMSD values of the

pairs of NMR and X-ray structures. As shown in Table 4,

both means and standard deviations of the RMSD values

for the ensembles of structures refined with the derived

distance constraints were clearly smaller than those refined

without them, indicating strongly that the structures agreed

Table 3 RMSD of the ensembles of refined NMR structures

Protein #Res Data Means ± standard deviationsa

Backboneb Non-Hc

1EPH 53 NMR 2.04 ± 0.61 2.94 ± 0.70

NMR ? DB 1.78 ± 0.40 2.76 ± 0.54

1GB1 56 NMR 0.45 ± 0.12 1.04 ± 0.18

NMR ? DB 0.38 ± 0.09 0.91 ± 0.16

1IGL 67 NMR 4.50 ± 1.52 5.49 ± 1.55

NMR ? DB 3.81 ± 1.24 4.70 ± 1.43

2IGG 64 NMR 2.62 ± 0.85 3.29 ± 0.83

NMR ? DB 2.16 ± 0.90 2.87 ± 0.85

2SOB 103 NMR 7.25 ± 1.60 8.06 ± 1.67

NMR ? DB 5.54 ± 1.77 6.41 ± 1.77

a The means and standard deviations of the RMSD values of the

structure ensembles refined with and without database distance

constraints
b RMSD values in terms of backbone atoms
c RMSD values in terms of all non-hydrogen atoms

Table 4 Refined NMR Structures Compared to X-ray Structures

NMR ID X-ray ID #Res Means ± standard deviationsa

NMRb NMR ? DBc

1CEY 3CHY 128 1.85 ± 0.19 1.80 ± 0.17

1CRP 1IAQ_A 166 1.77 ± 0.29 1.60 ± 0.26

1E8L 193L 129 2.05 ± 0.22 2.02 ± 0.19

1ITL 1RCB 129 2.88 ± 0.76 2.79 ± 0.21

1PFL 1FIK 139 1.66 ± 0.07 1.65 ± 0.07

a The means and standard deviations of the RMSD values for the

ensembles of NMR structures compared with their X-ray structures
b Refined with only NMR distance constraints
c Refined with NMR and database distance constraints
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more closely with their reference structures after being

refined with the derived distance constraints.

As a case study, we have also applied the derived dis-

tance constraints to refining the NMR structure of the

human PrPc E200 K variant of the prion protein. Two

biologically critical but under-determined loop regions

(residues 167–171 and 195–199) were targeted particularly

for improvement. The Ramachandran plots of the average

and energy-minimized structure and the lowest energy

structure of the refined structural ensemble showed a sig-

nificantly higher percentage (89.6%) of residues in the

most favorable regions of the plots than the 85.4% of such

residues found in the regularly refined structures, which

was a clear indication on the improvement of the structures

due to the use of the statistically derived distance con-

straints. Table 5 shows the energy values for a list of

refined structures in various categories and in particular,

the means and standard deviations of the energy values in

each structural ensemble. Note that for a fair comparison,

the calculation of the overall energy did not count the

contribution from the mean-force potentials although the

latter were used in the CNS ? PMF refinement. Note also

that the energy due to electrostatic interactions was not

listed because the corresponding potentials were not

included in the default CNS refinement protocol. Table 3

shows that the means and standard deviations of the energy

values of the ensembles of structures became smaller in

almost all categories after the structures were refined with

the addition of the mean force potentials. The results

suggested that the refined structures, when using the mean-

force potentials, were clearly more favorable energetically.

Surprisingly, they also satisfied the experimental con-

straints better as the NOE and DIH energies were

decreased in many cases as well. Overall, in terms of the

means and standard deviations of the energy values in the

structural ensembles, of the 70 selected NMR structures,

about 80% had the overall energy significantly reduced, in

average by 7.5%, and about 65% had the NOE energy

decreased, in average by 5%, after refined with mean-force

potentials. Here we have not calculated the statistics for the

DIH energy because some structures did not have the DIH

data and energy available.

Refining comparative models

We have also participated in the CASPR 2006 structure

refinement experiments. In these experiments eight struc-

tural models (predicted with comparative modeling) were

provided for further refinement. The RMSD values of the

models compared with PDB structures ranged from 2.0 to

5.0 Å. To illustrate our methodology we focus on a model

of a protein with 70 residues and a 2.19 Å RMSD from its

crystal structure (1WHZ, see Fig. 11). We have used the

following procedure to refine the structure. First, 16 dif-

ferent structures were generated by randomly perturbing

the residues of the target structure. Energy minimization

was then carried out using CHARMM [62] with the gen-

erated structures as starting points. Of the 16 obtained

minima, four were selected randomly, and each was used to

generate 16 more structures for further energy minimiza-

tion. The process was repeated until the maximum number

of structures was generated.

In the end, total 100 minimum energy structures were

selected from the structures obtained in the energy mini-

mization stage. Based on the energy values and the

Ramachandran plots of the structures, a small set of struc-

tures were selected and the one with both low energy and

good residual distribution in the Ramachandran plot was

used as an initial model. The RMSD value of the initial

model against the experimental structure was 1.92 Å. From

Table 5 Energy of refined NMR structures (KJ/MOL)

PDB Method Overall Bond Angle Improper Van der Waals NOE DIH

1AFI CNS 160.9 ± 72.0 6.2 ± 3.3 63.6 ± 18.8 8.4 ± 7.2 54.2 ± 21.7 27.6 ± 20.1 0.9 ± 0.9

CNS ? PMF 122.1 ± 56.5 4.2 ± 2.3 53.9 ± 15.8 6.2 ± 4.7 37.8 ± 17.3 19.0 ± 15.4 1.0 ± 1.1

1BA4 CNS 93 ± 60.8 4.0 ± 3.0 34.3 ± 21.8 4.4 ± 5.9 26.0 ± 14.3 24.3 ± 15.9 NA

CNS ? PMF 57.8 ± 14.7 2.1 ± 0.7 24.1 ± 3.7 2.1 ± 1.2 17.1 ± 4.0 12.4 ± 5.2 NA

1DKC CNS 155.7 ± 90.1 7.4 ± 4.1 40.1 ± 10.6 4.7 ± 2.5 48.9 ± 48.6 54.6 ± 24.3 NA

CNS ? PMF 118.6 ± 40.4 5.2 ± 2.0 31.4 ± 8.1 3.2 ± 2.1 34.6 ± 12.4 44.3 ± 15.8 NA

1DVV CNS 85.6 ± 19.6 3.1 ± 0.9 40.7 ± 5.8 4.0 ± 1.1 23.7 ± 7.8 14 ± 5.2 0.05 ± 0.06

CNS ? PMF 73.3 ± 15.8 2.5 ± 0.9 37.5 ± 3.7 3.5 ± 0.9 18.4 ± 4.7 11.2 ± 5.5 0.03 ± 0.02

1I6F CNS 190.0 ± 73.2 1.4 ± 2.1 24.4 ± 8.8 1.3 ± 1.9 113.8 ± 47.3 48.9 ± 12.9 0.16 ± 0.47

CNS ? PMF 173.8 ± 8.3 0.9 ± 0.3 22.6 ± 1.8 0.9 ± 0.5 103.4 ± 3.3 45.9 ± 2.4 0.06 ± 0.09

Listed are means and standard deviations of the energies of the structural ensembles in various categories: Overall, total energy; Bond, bond-

length energy; Improper, improper angle energy; Van der Waals, Van der Waals interaction energy, NOE, energy for NOE distance constraint

satisfaction; DIH, energy for dihedral angle constraints. CNS, refined with original NMR data and CNS built-in energy function. CNS ? PMF,

refined with original NMR data, CNS built-in energy function, and database derived mean-force potentials
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this initial model, a large set of distances between atoms

contact distances was computed. A set of lower and upper

bounds for the distances was then generated by subtracting

20% from or adding 20% to the distances. Then, the CNS

NMR refinement protocols were used to further refine the

model with the generated distance constraints.

The distributions of distances between certain pairs of

atoms, especially the distances between heavy atoms in

different residues separated by several residues in the pri-

mary sequence, were also computed. A set of mean-force

potentials for the distances was constructed using the dis-

tribution functions, and was added to the CNS energy

function. The initial model was refined with the modified

energy function. Total 50 structures were generated by

CNS as an ensemble of models for the protein. The

structures were analyzed based on their total energies and

residual distributions in the Ramachandran plots. The one

with both low energy and good Ramachandran plot was

selected as the final model. This model had a 1.80 Å

RMSD from the experimental 1WHZ structure. The

improvement in this sense was significant compared to the

RMSD value (2.19 Å) of the original model.

Discussion

Conclusions

We show that mathematical approach based on distance

matrices is very powerful and enable us to predict protein

structure from the sequence. The information contained in

the square distance of residues from the center of mass, and

the first principal component allows us to reconstruct

protein structure with RMSD 4.5 Å. We demonstrate that

crystallographic B-factors can be predicted from the

sequence using Support Vector Regression. We also prove

that protein structures can be refined by using statistical

interatomic distances, and that generalized distance

geometry problem for solving NMR structures based on

distances between atoms subject to upper and lower bounds

can be reduced to an optimization problem that involves

maximization of the volume of spheres with the radii equal

to the range of corresponding thermal fluctuations of

atoms. All methods presented are still being improved and

may lead to a significant progress in prediction of protein

structure and dynamics and to substantial refinement of

protein models.

Summary

We have applied distance matrices and the related contact

matrices to several different, although interconnected

problems relevant to structural bioinformatics. We have

performed eigenvalue decomposition of square distance

matrices, and we have shown that a dominant eigenvector

is proportional to r2—the square distance of points from

the center of mass, while the next three eigenvectors are the

principal components of the system of points. We have

shown that both the dominant eigenvector and the first

principal component can be predicted from the sequence

alone that allows us to predict the tertiary structure of

proteins from sequence with RMSD around 4.0 Å.

We have performed elastic network analysis (based on

contact matrices) of the large number of available HIV-1

protease structures, and have shown that they provide a

remarkable sampling of conformations, which can be

viewed as direct structural information about the dynamics.

Finally, we have used distance constraints from databases

of known protein structures for structure refinement.
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