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TRACER. A new approach to comparative modeling that 
combines threading with free-space conformational sampling
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A new approach to comparative modeling of proteins, 
TRACER, is described and benchmarked against classi-
cal modeling procedures. The new method unifies true 
three-dimensional threading with coarse-grained sam-
pling of query protein conformational space. The initial 
sequence alignment of a query protein with a template 
is not required, although a template needs to be some-
how identified. The template is used as a multi-featured 
fuzzy three-dimensional scaffold. The conformational 
search for the query protein is guided by intrinsic force 
field of the coarse-grained modeling engine CABS and 
by compatibility with the template scaffold. During Rep-
lica Exchange Monte Carlo simulations the model chain 
representing the query protein finds the best possible 
structural alignment with the template chain, that also 
optimizes the intra-protein interactions as approximated 
by the knowledge based force field of CABS. The bench-
mark done for a representative set of query/template 
pairs of various degrees of sequence similarity showed 
that the new method allows meaningful comparative 
modeling also for the region of marginal, or non-exist-
ing, sequence similarity. Thus, the new approach sig-
nificantly extends the applicability of comparative mod-
eling. 
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INTRODUCTION

Comparative modeling remains the most powerful and 
widely used methods for protein structure prediction.  
With the increasing number of experimentally solved 
protein structures the range of applicability of compara-
tive modeling steadily increases, although with a slower 
pace than expected a few years ago. Still, 30–40 % of 
newly sequenced proteins can not be modeled with an 
accuracy sufficient for practical applications, such as drug 
design, guiding of protein engineering or supporting X-
ray or NMR structure determination. Thus, besides ef-
forts in template-free, de novo modeling, it is important to 
develop new methods for comparative modeling, capable 
of generating reasonable models even for poor quality 
(remotely similar) structural templates. 

Classical comparative modeling consists of two, to a 
large extent independent, tasks. The first is to find the 
best possible template, usually a homologous protein, 
and to build an as good as possible alignment of the 

query and template sequences. Most of contemporary 
comparative modeling methods can handle multiple tem-
plates, which usually leads to better models than does 
modeling based on a single template. Template struc-
tures, together with the assignments of the query pro-
tein residues to the template given in the alignments, 
are the source of spatial restraints for the assembly 
of the query protein structure. The assembly process, 
which constitutes the second main task of comparative 
modeling, may be based on several substantially differ-
ent approaches. In the Modeller (Eswar et al., 2008), a 
golden standard for comparative modeling, the restraints 
derived from templates are used to derive probability 
distributions for intra-protein (query) distances (Sali & 
Blundell, 1993). The model is constructed by means of 
distance geometry. In other methods the structure of a 
query protein is assembled from small protein fragments 
(as in Rosetta (Rohl et al., 2004; Chivan & Baker, 2006) 
or folded from a random conformation (as in CABS 
(Koliński, 2004; Ekonomiuk et al., 2005), using the dis-
tance restraints derived from templates.

In cases when a closely related template can be iden-
tified the alignment problem is relatively easy to solve. 
When sequence similarity is 50 % or more the classical 
tools, such as PsiBlast (Altschul et al., 1997), usually pro-
vide an error-free, optimal alignment. For low sequence 
the similarity alignments usually contain numerous er-
rors. Threading (Rost et al., 1997) or Fold Recognition, 
FR (Kosinski et al., 2003) methods sometimes can detect 
remotely homologous and sometimes even evolutionar-
ily unrelated but structurally analogous templates. This 
is possible due to tertiary information explored by FR 
algorithms — the alignments are scored not only by 
sequence similarity, but also by the three-dimensional 
context of the template structures (Koliński & Bujnicki, 
2005). Unfortunately, true three-dimensional threading 
algorithms are of high complexity, and therefore compu-
tationally very expensive. Decreasing the level of similar-
ity between the query and template structures leads not 
only to ambiguous alignments but also to differences 
in the geometry of the correctly aligned fragments.  In 
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other words, even for an optimal alignment the template 
may turn out to be of poor quality due to differences in 
the geometry of the scaffolds. 

The new method for comparative modeling of dif-
ficult structures, TRACER, described in this work, uni-
fies true three-dimensional threading with unrestricted 
sampling of protein conformational space (Koliński & 
Gront, 2007). A template needs to be somehow identi-
fied, not necessarily by sequence or FR methods, but 
also, for instance, by purely biochemical considerations. 
The template is represented as a loosely defined three-
dimensional object, with multi-featured spatial proper-
ties. The query protein chain samples the vicinity of 
such defined template scaffold using the mesoscopic 
representation of the CABS (Koliński, 2004) protein 
modeling software. The method does not require prior 
sequence alignment. The alignment is built in paral-
lel to the process of structure assembly. The idea of 
TRACER is general. It does not need necessarily to be 
implemented in the context of CABS technology. It 
would be quite easy to use a different sampling engine, 
for instance Rosetta. 

The Methods section contains a detailed description 
of the TRACER idea and its implementation. The new 
method is evaluated (Results section) and compared with 
the Modeller. The test set of modeled proteins contains 
cases of very different levels of similarity between the 

query and template structures, and therefore represents a 
broad range of difficulty for comparative modeling. 

METHODS

TRACER employs CABS representation of pro-
tein conformational space and its knowledge-based 
force field. CABS is a coarse-grained model where 
protein residues are represented by up to four pseu-
do atoms: Cα — alpha carbon (CA), Cβ — beta car-
bon (B), center of mass of the side chain (S), and a 
pseudo atom at the center of a virtual Cα–Cα bond. 
The Cα trace is restricted to a simple cubic lattice 
with the mesh size of 0.61  Å, and provides a refer-
ence frame for the definition of the remaining pseudo 
atoms, which are not restricted to the lattice. The lat-
tice representation facilitates rapid generation of lo-
cal conformational transitions of the model chain and 
efficient calculation of the system energy. The force 
field of CABS consists of statistical knowledge-based 
potentials describing short-range conformational pro-
pensities, geometric context-dependent (multibody) 
potentials of side chains’ interactions, and a coopera-
tive model of main the chain hydrogen bonds. Sol-
vent is treated in a highly idealized implicit fashion. 
Details of CABS representation, stochastic dynam-

Table 1. Summary of the test set

Protein  name Protein code
 (length)

Templatecode 
(length)

Sequence 
identity

cRMSD [Å] of struc-
tural alignment 
(length)

Antioxidant  defense  protein  (AhpD) 1knc(68)                 1p8c(69)              22.2 %                      2.43(68)

Antioxidant  defense   protein  (AhpD) 1knc(68)                 2cwq(70)                     23.2 %                      4.24(67)

Gamma-carboxymuconolactone decarboxylase  (CMD) 2af7(70)                 2gmy(68)                      22.2 %                     6.02(67)

4-Hydroxyphenylpyruvate  dioxygenase (HppD) 1cjx(88)                  1sqd(92)                      29.0 %                      8.52(84)

4-Hydroxyphenylpyruvate
dioxygenase  (HppD)

1sqi(89)                  1sp8(92)                       40.4 %                      7.02(87)

Glyoxalase I 1qip(72)                 1byl(76)                       10.9 %                    11.93(69)

Glyoxalase I 1qip(72)                 1qto(60)                       15.6 %                    12.09(60)

Glyoxalase I 1qip(72)                 1t47(85)                       19.5 %                    12.61(70)

Histidine  biosynthetic  protein  (HisF) 1h5y(116)               1jvn(136)                     15.5 %                  10.12(110)

Phosphoribosylformimino-5-aminoimidazole  carboxamide
ribotite  isomerase  (HisA)

1qo2(116)               1h5y(116)                      7.8 %                    4.63(105)

Phosphoribosylformimino-5-amino-imidazole  carboxamide
ribotite  isomerase  (HisA)

1qo2(116)               1jvn(136)                     13.8 %                  10.46(111)

Phosphoribosylformimino-5-amino-imidazole  carboxamide
ribotite  isomerase  (HisA)

1qo2(116)               1ka9(114)                     28.9 %                   7.94(110)

Phosphoribosylformimino-5-amino-imidazole  carboxamide
ribotite  isomerase  (HisA)

1qo2(116)               1thf(114)                        23.7 %                  7.88(109)

Initiation  factor  eIF2 1kk0(48)                 1g7s(52)                        12.5 %                  10.50(48)

Elongation  factor  eEF-1alpha 1skq(62)                  1r5b(61)                        29.5 %                    1.17(61)

PurS  subunit of  FGAM  synthetase 1gtd(60)                  1t3t(58)                          10.3 %                    5.37(58)

PurS  subunit of  FGAM  synthetase 1gtd(60)                  1t4a(57)                          21.7 %                   2.56(56)

Chorismate  mutase  1ecm(79)                 2csm(99)                       16.5 %                    3.27(76)

Serine/threonine protein  kinase  Plk 1umw(71)               1mby(76)                       25.4 %                    9.59(69)

RNA  polymerase     1ijv(60)                   1smy(60)                        93.3 %                   2.18(60)

Transcriptional  coactivator  PC4 1pcf(58)                   1l3a(69)                           8.6 %                  14.69(58)
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ics and force field are described elsewhere (Kolinski, 
2004), and parameters of the force field are available 
from the authors’ homepage. Also a commercial ver-
sion of CABS software is available with full documen-
tation. Numerous applications of the CABS modeling 
technology include: protein structure prediction (from 
comparative modeling to de novo modeling of new 
folds), modeling of protein complexes (Kurcinski & 
Koliński, 2007), and study of protein dynamics (in-
cluding mechanisms of protein folding) and thermo-
dynamics (Kmiecik & Koliński, 2007; 2008). An early 
idea of TRACER has already been presented else-
where (Koliński & Gront, 2007) as a proof of prin-
ciple. The method described in this work employs an 
updated and optimized scoring scheme for the Rep-
lica Exchange Monte Carlo, different sampling pro-
cedures and different representation of the template 
scaffolds, that together significantly extend the range 
of efficient applications. In particular, the scaling fac-
tors in the template-query similarity function (Eqn. 1) 
have been optimized basing on a large set of mod-
eling instances. Also the present version of TRACER 
contains a new, very efficient, subroutine for the de-
tection of  spatial proximity of the query and template 
Cα vertices. Additionally, the Monte Carlo sampling 
scheme of TRACER employs a ten-fold larger frac-
tion of  the 4–22 fragment moves compared with the 
original CABS algorithm (Koliński, 2004). This update 
enables a faster search for plausible alignments of the 
query and template chains.
Template  representation. TRACER requires a tem-

plate for the modeling. The template can be identified 
by any bioinformatics method, or by purely biochemical/
genetic considerations. Only Cα trace of the template is 
taken into consideration. The Cα trace is projected onto 
a simple cubic lattice with the spacing of 0.61 Å, consist-
ent with the CABS representation. In the vicinity of the 
template trace a three-dimensional object is defined in 
such a way that to each point of the lattice assigned are 
the amino acid identity and its characteristics read from 
the template.  The amino acid characteristics include: 
values of the Blosum62 substitution matrix (Henikoff 
& Henikoff, 1992), hydrophobicity according to Kyte–
Doolittle (Kyte & Doolittle, 1982) scale, and secondary 
structure according to the three-letter DSSP assignment 
(Kabsch & Sander, 1983). An imprint of a residue is the 
cloud of lattice vertices which are closest to a template 
residue and within a certain cut-off distance, which, after 
careful calibration, has been set at 4 Å.
TRACER  sampling  scheme. The stochastic dynam-

ics of the query chain is executed as a long sequence 
of local conformational transitions controlled by the 
CABS algorithm. Conformational updates include: two-
bond kink motions of the Cα trace, three-bond motions, 
four-bond motions, and small random translations and 
“reptation-like” movements of longer (4–22 residues) 
fragments that do not break the chain connectivity. Sam-
pling is executed according to the Replica Exchange 
Monte Carlo (REMC) scheme (Swendesen & Wang, 
1986; Geyer, 1992; Hukushima & Nemoto, 1996; Hans-
mann, 1997) (REMC), where a number (20) of query 
protein chains are placed at various temperatures. The 
temperatures of the replicas are uniformly distributed 
and the stack of temperatures is gradually lowered during 
the simulations. Each replica is controlled by asymmetric 
Metropolis scheme, where the system energy is the sum 
of CABS energy ECABS and the query-template similar-
ity pseudo energy ETEMPLATE. The latter can be written as 
(see Fig. 1 for reference):

 ETEMPLATE = S(0.25Esubst + 0.25Ehp + Esec + Ealign)      (1)

where the summation is done for the entire query pro-
tein chain, and:
Esubst = –ai,j for superposition of the template and query 
residues at distances smaller than 4 Å, ai,j – the value of 
BLOSUM62 substitution matrix
Ehp= –max(0, Hi ·Hj)  for superposition of the template 
and query residues at distances smaller than 4 Å, Hi, Hj 
are values of the Kyte–Doolittle hydrophobicity indexes
Esec = –1 for identical (helical or extended) secondary 
structures of the template (assigned) and the query (pre-
dicted), and superposition at distances smaller than 2.5 Å
Ealign= –1 for both chains (template and query) having 
locally (in the vicinity of two residues superimposed at a 
distance smaller than 4 Å) similar orientations and direc-
tions (the angle between pairs of flanking Cα–Cα vectors 
smaller than 90 degrees).

  The term measuring the amino acid similarity is typi-
cal for various FR methods. The hydrophobicity term 
has been included for two reasons. First, the Kyte–
Doolittle scale is less specific and reflects the hydro-
phobic/hydrophilic patterns of protein sequences. Thus, 
the energy landscape is smoothened and hydrophobicity 
patterns (abstracted from the sequence patterns) influ-
ence the alignments of the query chains onto the tem-
plate scaffold. Second, hydrophobicity profiles of globu-
lar proteins exhibit a relatively well-defined hydrophobic 
core surrounded by a more hydrophilic surface. Thus, 
the early stages of the TRACER sampling are to some 
extent driven by an overall shape of the template, and 
therefore the energy landscape becomes funnel-like, even 
at relatively large distance from the target structure.  The 
term measuring the similarity of secondary structures (as-
signed according to DSSP for the template and predicted 
for the query sequence) is defined for a smaller distance 
cut-off than the three remaining terms. This reflects the 
higher structural conservation of the regular secondary/
supersecondary structure elements in comparison with 
entire folds. Finally, the alignment term favors monoton-
ic assignments of pairs of residues (query and template) 
along the both sequences.

In principle, the starting conformations of the query 
chains (replicas) could be generated in a random fash-
ion and then placed in the center of gravity of the tem-
plate scaffold. This is, however, not the best choice, 
since reorientation of the query chains and their folding 
from a random conformation within the CABS sampling 
scheme is computationally quite expensive. It is better to 
build the starting chains on the scaffold of the template 
using a crude threading procedure and a simple search 
algorithm for random conformations of missing loops. 
Then the TRACER runs are shorter, since the algo-
rithms only does a search for the best superposition of 
the query chains onto the fuzzy scaffold of the template, 
satisfying intrachain interactions.  

The conformational updates in TRACER simulations 
are the same as in CABS and include small local modifi-
cations of two, three and four pseudo-bonds of the Cα 
trace, with appropriate rearrangements of the side chains. 
Additionally, the CABS algorithm employs, although less 
frequently,  rearrangements of larger fragments, 4–22 
residues long. There are two types of these larger-scale 
modifications. The first one is a rigid body translation, 
provided the required changes of the valence angles and 
lengths of the end bonds of the affected segment permit 
the move. The second one is a “reptation-like” move, 
where the chain units slide along the Cα-trace, removing 
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a “wave” at one end of the sliding fragment and creat-
ing one at the opposite end. These intermediate distance 
moves facilitate rapid sampling of the template scaffold, 
frequently changing the “alignment” of the two chains. 
Obviously, all conformational updates are controlled by 
a pseudo random mechanism.

In the test modeling described here, the TRACER 
trajectories from relatively long runs (several hours on a 
single LINUX box) were clustered using K-means meth-
od and the medoids of the largest clusters (top clusters) 
were used for all-atom reconstruction and structural 
analysis. Also the best clusters, for which the cRMSD 
from the target structure was the lowest, were recorded.

The idea of TRACER is illustrated in Fig. 1.

Test set for modeling with TRACER

TRACER is designed for “difficult” cases of compara-
tive modeling, where the sequence similarity between the 
query protein and the template is low, although it is also 
important to see how the proposed method performs 
for easier cases. For these reasons, we selected the SISY-
PHUS (Andreeva et al., 2007) database, which contains 
structural alignments of proteins or protein fragments 
taken from the SCOP (Murzin et al., 1995) classification 
scheme. The test set used in this work is summarized in 
Table 1.  Pairs of the test proteins (query/template) are 
small single-domain structures (or their fragments) with 
very different degrees of sequence similarity.

RESULTS AND DISCUSSION

The results of test simulations are summarized in Ta-
ble 2, where various measures of the model quality are 
given for 21 modeling experiments. The second column 
of Table 2 gives values of coordinate root-mean square 
deviation (cRMSD) of the models after the best super-
position with the target structure. The third column 
contains values of GDT_TS, which is frequently used 
for benchmarking modeling procedures. GDT (Zemla 

et al., 1992) measures fractions of residues that could 
be aligned with a certain cRMSD cut-off. Additionally, 
the Table (columns 4–6) contains numbers of residues 
in the longest continuous  segments (LCS) (Zemla et al., 
1999) of the models that could be superimposed with 
the target structure with an accuracy of 1 Å, 2 Å and 5 Å, 
respectively. Finally, the last column contains LGA_S 
(Zemla, 2003; Zemla et al., 2005), a combination of LCS 
and GDT measures. The lines abbreviated TRACER 
(top) correspond to the top (largest) clusters’ medoid 
from the clustering of the trajectories from TRACER 
simulations. Lines abbreviated TRACER (best) contain 
data for the best clusters (with the rank of the best 
cluster given in brackets). The rank of the best clusters 
are given in parentheses.  The results of modeling with 
TRACER (without prior sequence alignment) is com-
pared with classical modeling, starting from a sequence 
alignment. The latter was done using Modeller, version 
9v5, a standard for comparative modeling. 

Global versus local quality of models

A crude comparison of the results obtained with 
the new modeling method with those of classical mod-
eling  shows that models from TRACER are on aver-
age more accurate globally. Of the 21 models generated 
by TRACER, 14 have lower cRMSD when compared 
with the target structures.  When local accuracy of the 
models, as measured by LCS, is compared, an opposite 
tendency is observed. Namely, only in 8 of the 21 cases 
the LCS (1 Å) is better or the same for TRACER, when 
compared with Modeller. values of LCS (2 Å) are on 
average very similar for both methods — in 10 of the 
21 cases the TRACER models are better or the same 
than for Modeller. When the LCS (5 Å) are considered, 
the results for TRACER are much better — 19 per 21 
models have longer continuous segments that can be 
aligned with the target assuming a 5 Å tolerance.  Thus, 
the classical models from Modeller are on average 
more accurate locally, while TRACER yields models 
that have a better overall structure. This is illustrated 
in Fig. 2 and Fig. 3, showing snapshots of best super-
positions of the models with the target structures and 
GDT plots for two selected, typical, cases. In the GDT 
plots the cRMSD cut-offs of the best segments of the 
models are plotted against the length of the segment, 
usually given in percentage of the total length of the 
modeled protein.  Analysis of the results of modeling 
illustrated in Fig. 2 and Fig. 3 explains the profoundly 
different performance of the two methods. In one case 
(Fig. 2)  the initial alignment used in the classical meth-
od was qualitatively correct. This led to a very good 
quality of the model built by Modeller, as quantified by 
the GDT plot showing that the model is actually bet-
ter than the template used along the entire length of 
the query protein. The model from TRACER was glo-
bally correct, although with lower local accuracy — the 
GDT plots show that the model is of the same accura-
cy as the template used. A different situations is shown 
in Fig. 2. Here the sequence alignment employed by 
Modeller was incomplete and the resulting model con-
tained qualitatively wrong fragments. Due to its three-
dimensional scoring of query/template superpositions 
TRACER found an optimal alignment and produced 
globally correct model. Thanks to intrinsic force field 
of CABS the resulting model was much closer to the 
target structure than to the template used, as quantified 
in the GDT plot. These examples (and similar results 
observed in other cases) illustrate the qualitative differ-

Figure 1.  Explanation of  TRACER idea.
Template scaffold is drawn in solid line and marked T, with 
spheres showing residue locations as seen by moving query chain 
(in dashed lines), marked Q. Pairs of residues (Ti, Qj) and (Ti+1, Qj+1) 
satisfy three of the four template/query compatibility criteria (see 
text) while (Ti+1, Qj+2) satisfies all four criteria, including the sec-
ondary structure compatibility criterion. For clarity side chains are 
not shown. 
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ences between the TRACER and classical methods of 
comparative modeling. 

Effect of sequence identity on modeling accuracy

The accuracy of comparative modeling depends on 
sequence similarity between the query and template 
proteins. In Fig. 4 the overall accuracy of the models 

built by TRACER (the top ranking models) and Model-
ler is plotted against the percentage of sequence iden-
tity.  Figure 4 clearly shows that modeling by TRAC-
ER, as measured by overall similarity of the target and 
query structures, is superior in the region of very low 
sequence identity, while for “easier” cases the perform-
ances of the classical scheme and TRACER are simi-
lar, with a clearly better performance of Modeller for 

Figure 2.  Results of modeling of 
1skq structure using 1r5b as tem-
plate.
From top: (a) superposition of tem-
plate (solid Cα trace) with target 
structure (smoothened dashed Cα 
trace), (b) superposition of Modeller 
model with target structure, (c) su-
perposition of TRACER model with 
target structure, and (d) GDT plot 
for template, Modeller and TRACER 
structures. Overall accuracy of Mod-
eller and TRACER models measured 
by cRMSD after superposition with 
the target structure are 1.63 Å and 
4.07 Å, respectively. 

Figure 3.  Results of modeling of 1ecm 
structure using 2cms as template.
From top: (a) superposition of  template 
(solid Cα trace) with target structure 
(smoothened dashed Cα trace), (b) su-
perposition of Modeller model with tar-
get structure, (c) superposition of TRACER 
model with target structure, and (d) GDT 
plot for template, Modeller and TRACER 
structures. Overall accuracy of Modeller and 
TRACER models measured by cRMSD af-
ter superposition with target structure are 
13.81 Å and 2.82 Å, respectively. 
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Table  2. Summary of  modeling results

Method RMSD GDT_TS LCS(1A) LCS(2A) LCS(5A) LGA_S

                                                   1knc / 1p8c                     (target / template)

MODELLER 2.50 74.3 19 38 68 71.7

TRACER(top) 2.98 74.3 26 61 68 81.2

TRACER(best)
(9)

2.11 76.5 20 67 68 86.9

1knc / 2cwq

MODELLER 5.87 41.9 14 15 45 35.5

TRACER(top) 6.15 42.6 14 15 44 34.2

TRACER(best)
(9)

3.10 76.5 33 55 65 79.5

2af7 / 2gmy

MODELLER 4.91 70.0 41 54 70 71.4

TRACER(top) 4.04 63.2 18 51 70 67.9

TRACER(best)
(11)

3.82 67.4 30 52 70 70.2

1cjx / 1sqd

MODELLER 3.94 64.5 39 50 88 61.1

TRACER(top) 3.88 63.4 20 30 88 57.9

TRACER(best)
(9)

3.22 64.8 22 46 88 62.8

1sqi / 1sp8

MODELLER 2.80 78.7 40 42 89 70.4

TRACER(top) 2.15 75.0 17 61 89 78.6

TRACER(best)
(10)

1.96 78.4 22 89 89 89.0

1qip / 1byl

MODELLER 12.26 36.8 13 23 29 34.3

TRACER(top) 9.40 38.9 13 16 54 35.6

TRACER(best)
(13)

7.46 45.5 13 19 56 41.1

1qip / 1qto

MODELLER 12.55 38.2 15 23 29 34.6

TRACER(top) 9.94 52.8 11 21 49 48.1

TRACER(best)
(12)

7.95 59.0 12 42 51 56.9

1qip / 1t47

MODELLER 12.19 20.8 8 9 19 18.2

TRACER(top) 10.02 55.9 10 20 49 50.8

TRACER(best)
(1)

10.02 55.9 10 20 49 50.8

1h5y / 1jvn

MODELLER 9.45 48.9 23 25 72 40.6

TRACER(top) 4.75 55.6 14 28 116 50.0

TRACER(best)
(5)

4.19 55.8 15 18 116 48.2

1qo2 / 1h5y

MODELLER 4.67 57.3 22 44 116 50.9

TRACER(top) 3.60 62.1 26 41 116 56.8

TRACER(best)
(1)

3.60 62.1 26 41 116 56.8
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1qo2 / 1jvn

MODELLER 10.29 45.0 23 25 65 37.9

TRACER(top) 7.46 54.7 17 34 94 50.3

TRACER(best) (1) 7.46 54.7 17 34 94 50.3

1qo2 / 1ka9

MODELLER 5.46 73.9 43 61 94 67.7

TRACER(top) 5.51 64.7 14 42 96 58.3

TRACER(best)
(1)

5.51 64.7 14 42 96 58.3

1qo2 / 1thf

MODELLER 5.34 72.8 43 60 94 66.5

TRACER(top) 5.62 58.2 16 37 95 53.3

TRACER(best)
(1)

5.62 58.2 16 37 95 53.3

1kk0 / 1g7s

MODELLER 10.15 33.3 11 12 17 28.8

TRACER(top) 8.11 37.0 7 10 27 31.9

TRACER(best)
(3)

5.56 51.1 8 12 47 45.4

1skq / 1r5b

MODELLER 1.63 81.0 26 62 62 90.7

TRACER(top) 4.07 52.2 10 19 60 47.3

TRACER(best)
(11)

4.00 57.3 7 20 62 53.6

1gtd / 1t3t

MODELLER 4.07 56.7 13 16 60 51.1

TRACER(top) 3.43 65.4 15 28 60 62.5

TRACER(best)
(1)

3.43 65.4 15 28 60 62.5

1gtd / 1t4a

MODELLER 3.51 67.5 20 36 60 67.8

TRACER(top) 3.73 65.4 18 37 60 66.2

TRACER(best)
(1)

3.73 65.4 18 37 60 66.2

1ecm / 2csm

MODELLER 13.81 38.0 21 29 45 36.0

TRACER(top) 2.82 74.4 33 62 79 76.9

TRACER(best)
(10)

2.38 75.3 33 61 79 77.9

1umw / 1mby

MODELLER 6.05 59.5 16 35 64 54.2

TRACER(top) 4.59 62.7 14 39 71 60.0

TRACER(best)
(9)

2.74 70.1 14 50 71 72.2

1ijv / 1smy

MODELLER 2.24 83.3 18 39 60 78.7

TRACER(top) 4.20 65.8 17 22 60 58.6

TRACER(best)
(5)

3.54 67.9 17 22 60 59.4

1pcf / 1l3a

MODELLER 9.27 45.7 15 20 40 38.3

TRACER(top) 5.87 48.7 16 18 48 46.0

TRACER(best)
(7)

4.75 54.7 14 21 58 50.2
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the cases of very high sequence similarity. The effect 
of sequence similarity on the quality of the resulting 
models for both types of methods is further illustrated 
in Fig. 5 and Fig. 6, where values of LCS (1 Å) and 
LCS (5 Å) plotted as a function of sequence identity. 
The length of very accurate continuous segments (LCS 
1 Å) ranges between 10 % and 60 % of the total length 
of the query proteins. In the region of low sequence 
similarity both methods give very good segments of  
similar length, typically between 10 % and 20 % of the 
chain length.  In the range of higher sequence simi-
larity the results of classical modeling with Modeller, 
as measured by LCS 1 Å, are on average much bet-
ter. When the longest continuous segments are meas-
ured with lower accuracy (LCS 5 Å), a different picture 
emerges. TRACER produces complete, or almost com-
plete, models of such defined low accuracy in all cases, 
outperforming the classical method in the range of low 
sequence similarity (below 22 %). Such low resolution 
models have qualitatively correct patterns of side chain 
interactions (contacts) and therefore could be quite use-
ful in identifying the type of a protein’s function and in 
guiding site-directed mutation experiments. 

The above analysis leads to a very simple practical 
conclusion: TRACER should be always employed in 
cases of low sequence similarity, where in almost all 
cases it outperforms the classical method. In the re-
gion of higher sequence similarity the models gener-
ated by TRACER are on average slightly less accurate, 
although there are numerous exceptions from this 
general rule.

Model ranking and selection

Selection of the top model from TRACER simula-
tions was done by means of cluster analysis. As could 
be seen from Table 2, in many cases the top model, the 
medoid from the largest cluster, was actually the best. 
There are, however, cases when lower-rank clusters pro-
vide better models. We checked the performance of dif-
ferent model ranking procedures. Unfortunately, none of 
them, including an all-atom reconstruction of the clus-
ters’ medoids followed by scoring with DOPE statistical 
potentials (Shen & Sali, 2006) gave clearly better results. 
Selection of the best models from coarse-grained simu-
lations and their refinement is still a challenging prob-
lem of computational protein structure prediction. This 
is true not only for de novo, template-free, methods but 
also for various hierarchical comparative modeling pro-
cedures.

A very interesting observation comes from an analysis 
of the width of the distribution of the clusters’ medoids 
(or centroids), as a measure of variance of the pairwise 
cRMSD distances between the clusters. For the 21 test 
cases studied, this width of the distribution of the sim-
ulation results varied from approx. 1.5 Å to 5–10 Å. In 
all the cases (except one) where this distribution was 
broad (variance larger than 4 Å) the models generated by 
TRACER were significantly better than those obtained 
by classical modeling with Modeller. Thus, there is a 
means to make quite a dependable choice between the 
two methods. It is actually not surprising.  Sampling of 
a broad spectrum of models by TRACER indicates am-
biguity of alignments, and consequently a higher prob-
ability that modeling based on prior alignment, without 
taking a good account of the tertiary structure con-
text, would lead to less accurate models. In such cases 
TRACER, which is actually a search engine for true 
three-dimensional threading with a fuzzy template scaf-
fold,  often leads to results that are not accessible for 
any other combination of FR and modeling. 

CONCLUSIONS

The new method for protein structure prediction, 
TRACER,  described in this work unifies three-dimen-
sional threading (taking an explicit account of tertiary 
interactions) with an efficient open-space conformational 
sampling. The method needs a template for modeling. 
The template needs not necessarily to be identified by 

Figure 4. Comparison of modeling accuracy by TRACER and 
Modeller as measured by cRMSD from target structure, for vari-
ous degrees of sequence similarities of  query/template pairs.

Figure 5. Comparison of modeling accuracy by TRACER and 
Modeller as measured by LCS (1 Å), for various sequence de-
grees of similarities of query/template pairs.

Figure 6. Comparison of modeling accuracy by TRACER and 
Modeller as measured by LCS (5 Å), for various degrees of se-
quence similarities of query/template pairs.
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any sequence alignment or Fold Recognition method, it 
could be also defined by other (e.g., biochemical) con-
siderations. TRACER does not use prior sequence align-
ment, although a crude alignment could be used to build 
starting structures for simulations. A proper alignment is 
built simultaneously with the search of the query protein 
conformational space. 

The benchmark set of query/template pairs used in 
this work contains folds of various structural classes and 
represents a broad range of sequence similarity within 
pairs. The results of modeling with TRACER were com-
pared with those from classical comparative modeling, 
where one starts from a sequence alignment of the query 
protein with the template, or templates. For the latter we 
selected a golden standard for comparative modeling, the 
Modeller. The comparison showed that TRACER sig-
nificantly extends the range of applications of compara-
tive modeling, allowing building of meaningful molecular 
models for very weak templates with marginal, or non-
existing, sequence similarity to the query proteins.

Future work will be aimed at achieving better means 
of selection of the best models from the TRACER pseu-
do-trajectories, and more effective methods of model re-
finement. These task remains to be very challenging for 
almost all protein prediction methods that are based on 
coarse-grained protein representations. It is also very im-
portant to design a multi-template version of TRACER. 
This is, however, significantly more complex than imple-
mentation of multi-template schemes driven by simple 
sets of distance restraints.
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