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Abstract: Recent development of nuclear magnetic resonance (NMR) techniques provided new types of structural

restraints that can be successfully used in fast and low-cost global protein fold determination. Here, we present CABS-

NMR, an efficient protein modeling tool, which takes advantage of such structural restraints. The restraints are con-

verted from original NMR data to fit the coarse grained protein representation of the C-Alpha-Beta-Side-group (CABS)

algorithm. CABS is a Monte Carlo search algorithm that uses a knowledge-based force field. Its versatile structure ena-

bles a variety of protein-modeling protocols, including purely de novo folding, folding guided by restraints derived

from template structures or, structure assembly based on experimental data. In particular, CABS-NMR uses the distance

and angular restraints set derived from various NMR experiments. This new modeling technique was successfully tested

in structure determination of 10 globular proteins of size up to 216 residues, for which sparse NMR data were available.

Additional detailed analysis was performed for a S100A1 protein. Namely, we successfully predicted Nuclear Over-

hauser Effect signals on the basis of low-energy structures obtained from chemical shifts by CABS-NMR. It has been

observed that utility of chemical shifts and other types of experimental data (i.e. residual dipolar couplings and methyl-

methyl Nuclear Overhauser Effect signals) in the presented modeling pipeline depends mainly on size of a protein and

complexity of its topology. In this work, we have provided tools for either post-experiment processing of various kinds

of NMR data or fast and low-cost structural analysis in the still challenging field of new fold predictions.
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Introduction

In the recent years, we have observed steady growth of a number

of nuclear magnetic resonance (NMR) structures in the PDB. It is

mainly due to new, high-throughput techniques that place NMR as

a complementary approach to X-ray crystallography in protein

structure determination. Many proteins that are difficult or even

impossible to crystallize can be examined without serious obstacles

by modern NMR methods. That important issue is often raised by

experimentalists from large-scale protein structure production cen-

ters of National Institutes of Health - National Institute of General

Medical Sciences (NIH - NIGMS) Protein Structure Initiative.1

Recent development of Transverse Relaxation Optimized Spectros-

copy and new techniques of selective protonation and deuteration,

which focus on such observables as methyl-methyl Nuclear Over-

hauser Effect signals (NOEs), has extended the size limit of protein

NMR.2 A significant improvement in the solid state spectra resolu-

tion by Magic Angle Spinning techniques and weak alignment of

samples made possible to examine even such difficult objects as

membrane proteins.3

An important issue regarding NMR techniques is extremely

high diversity of the recorded data, in the sense of quality and sort

of structural information. This requires efficient computational

methods for the data processing and analyzing. It is especially in-

evitable in the case of such sparse NMR data as residual dipolar

couplings, chemical shifts, or methyl-methyl NOEs, which are rel-

atively easy to obtain but carry incomplete information about a

protein fold. Such data, which are usually translated to a limited

set of structural restraints, need to be thoroughly included in high-

throughput computational pipelines to exploit its full potential and

significantly decrease the time of NMR structure determination. In
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the recent years, several new algorithms have been developed to

take advantage of sparse NMR data, such as RDCs and chemical

shifts, namely: Side-Chain-Only (SICHO)—a coarse grained

structure prediction algorithm,8 Rosetta-NMR4 and other molecu-

lar fragment replacement approaches,5–7 several interesting fold-

recognition approaches9–11 and some pipelines that involved the

conventional NMR software such as X-plor.12–14 In the above-

mentioned algorithms, residual dipolar couplings (RDC) data have

been included either in its original form, i.e. values of dipolar cou-

plings in Hertz, or in a converted form, i.e. ranges of internuclear

vectors projection angles computed by e.g. DipoCoup program.9,15

The latter approach is especially useful in simulated annealing

protocols, because it does not require complicated orientating an

alignment tensor with respect to a protein molecule during simula-

tions. Chemical shifts, implemented in a modified version of a

CABS coarse-grained algorithm,16 by Rosetta-Chemical Shifts

(CS),17 a CS23D server,18 CHESHIRE19 and a homology search

in SimShiftDB,20 are used explicitly or after the transformation

into dihedral angles F and C by a TALOS program.21

Those of the above-mentioned computational methods that are

based on molecular fragments assembly approaches (i.e. Rosetta-

CS, CS23D, CHESHIRE) encounter a time-limiting step requiring

parallel computations for comparing experimental data with each

structure generated during simulations. Moreover, performance of

a majority of those methods depends on the similarity of a target

protein to known protein folds.18 For a couple of reasons, the

CABS-NMR tool is free of those limitations. During CABS-NMR

simulations, experiment-based restraints are computed only for

short protein fragments that have been modified in a simulation

step. Restraints for the entire protein model are computed during a

Monte Carlo (MC) simulation only twice, at the beginning and at

the end of a run. Consequently, the total simulation time is quite

short in comparison with conventional NMR software, i.e. less

than 1 day for a small globular protein (2gb1).16 Then, because

CABS is a de novo method it does not necessarily require any

information about structural templates derived from known pro-

tein folds. Here, we use the term de novo in the meaning of protein

structure prediction without any tertiary information from specific

structural templates. Nevertheless we use prediction of secondary

structure and torsion angles that uses some local sequence

similarity to known protein structures. However the bias from

possible homologous proteins introduced in that way into the

CABS force field is negligible in comparison with purely tem-

plate-based structure prediction algorithms. It is the consequence

of the fact that the information about the local protein structure is

averaged over the thousands of unrelated proteins in the database.

Developing pipelines and algorithms for global protein fold

determination from sparse NMR data are important also in the

case of high-molecular mass proteins. Complexity of NMR spec-

tra of such systems needs to be reduced by perdeuteration,

which, on the other hand, causes serious loss of many NOE

signals.22 Structure determination with a low-density restraints

set, including only methyl and backbone HN NOEs, although

possible with standard programs such as CNS,23 is still of low

accuracy and could be enhanced with sophisticated structure pre-

diction algorithms such as CABS-NMR.

In this study, we present CABS-NMR—a new high-through-

put tool for protein structure prediction supported by different

kinds of sparse NMR data that complementarily provide struc-

tural information about a protein fold. CABS-NMR combines an

efficient method for de novo protein structure prediction (CABS)

together with energy terms associated with distance and orienta-

tion restraints based on chemical shifts, residual dipolar cou-

plings, and methyl-methyl NOEs. The main aim of this de novo

approach, which does not use tertiary information from tem-

plates and is based solely on protein sequence information, is to

reduce time and cost of the experimental determination of pro-

tein structures by the simultaneous application of the MC search

algorithm (CABS) and high-throughput NMR techniques. The

computationally efficient CABS algorithm uses a coarse-grained

representation based on the trace of C-alpha atoms. Coordinates

of C-alpha atoms are restricted to lattice vertices, whereas coor-

dinates of other atoms: C beta and united atoms representing

side groups of amino acids (named here Side Group [SG]), are

off-lattice. In the CABS-NMR modeling pipeline, NMR data

have to be converted into the suitable form based on a reduced,

not all-atom, protein representation. For example, chemical shifts

are incorporated into CABS-NMR in the form of the C-alpha-

based pseudoangles computed from F and C dihedral angles

using a procedure called TRANSFORM24 and the protocol

described elsewhere.16 Furthermore, methyl-methyl NOEs are

converted into distances between C-beta atoms that are defined

explicitly in the CABS algorithm in contrast to methyl groups.

The only kind of NMR data incorporated into CABS-NMR

using a computationally expensive all-atom representation of a

protein backbone is RDCs data. The CABS tool and the above-

mentioned NMR data were combined together in an efficient

modeling pipeline. This modeling pipeline was successfully

tested in structure modeling of several globular proteins includ-

ing new folds for which evolutionary information about the

structure is weak or nonexisting. Such structurally new proteins

lack reliable templates and require de novo modeling approach

such as the one presented here.

The algorithm for using RDCs data explicitly is completely

different from the one that uses RDCs only implicitly, which

was described in Ref. 8 by one of the authors of this manuscript.

Results

Before testing the CABS-NMR pipeline, it was necessary to see

what is the final loss (if any) of the structural information

resulted from the transformation of experimental data fitting it to

the CABS-NMR algorithm. In Table 1, we compared the accu-

racy of the original experimental data (NOEs) or data partly

transformed by TALOS or DipoCoup (i.e., F, C, u angles) with

the accuracy of the final restraints generated by the CABS-NMR

toolkit and used in the modeling (i.e. h, c angles, C-beta intera-

tomic distances). In the case of chemical shifts and residual

dipolar couplings, fitting to the CABS model involved minor

(CS) or none (RDCs) drop of accuracy in comparison with the

TALOS or DipoCoup transformations. This has already been

inferred in our previous study,24 in which details of the F/C to

h/c transformation were also described. The only noticeable loss

of the structural information was observed in the case of NOEs

(drop of accuracy: 3% in the 1p89 case—from 98.1% to 95%, to
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Table 1. The Impact of the Restraints Accuracy on the Protein Structure Modeling Results.

PDB id BMRB id Nres a or b (%) Experimental data and converted data Data accuracya

Modeling results—

cRMSDb model ranked

1 (best model) (Å)

Restrained folding Nonrestrained folding

2p81 7386 44 59 (a) 511 CS converted to: 8.5 (8.5)

F, C 79.4, 73.5

h, c 82.3, 75.9 5.5 (3.9)

43 DNH-RDC converted to:

500 u 73.8 8.1 (7.7)

All exp. data (CS1DNH-RDC) 4.2 (4.2)

1sf0 6187 68 19 (a1b) 277 CS converted to: 9.7 (8.3)

F, C 50.9, 49.1

h, c 62.3, 48.8 9.5 (7.1)

68 DNH-RDC converted to:

494 u 82.6 7.5 (6.6)

All exp. data (CS1DNH-RDC) 6.5 (6.5)

2f40 7073 74 20 (a1b) 250 CS converted to: 9.7 (7.2)

F, C 54.2, 44.1

h, c 57.6, 46.9 12.7 (5.0)

113 DNH-RDC converted to:

500 u 80.2 10.4 (7.5)

All exp. data (CS1DNH-RDC) 6.2 (5.5)

2js1_A 15350 74 61 (a) 654 CS converted to: 7.9 (6.4)

F, C 81.3, 81.3

h, c 85.7, 80.0 5.3 (4.8)

52 DNH-RDC converted to:

472 u 47.0 6.4 (5.5)

All exp. data (CS1DNH-RDC) 4.6 (4.5)

2fe9 6922 86 56 (a) 984 CS converted to: 11.0 (9.6)

F, C 88.0, 80.0

h, c 93.0, 79.4 9.2 (6.3)

60 DNH-RDC converted to:

500 u 67.4 7.3 (6.5)

All exp. data (CS1DNH-RDC) 9.5 (5.9)

2ea9 15088 103 36 (a/b) 900 CS converted to: 14.4 (10.9)

F, C 72.9, 80.2

h, c 76.9, 58.6 5.3 (4.5)

80 DNH-RDC converted to:

496 u 86.1 14.3 (8.7)

All exp. data (CS1DNH-RDC) 9.0 (7.1)

1y8b domain 3 5471 139 52 (a/b) 222 F, C converted to: 81.8, 76.4 15.0 (13.2)

h, c 86.1, 73.7 16.8 (7.9)

74 CH3-CH3 NOE converted to: 100

Cb-Cb 74.3 7.6 (4.9)

All exp. data (F, C1 CH3-CH3 NOE) 6.4 (5.1)

1hbg 4038 147 66 (a) 1528 CS converted to: 14.7 (10.9)

F, C 94.6, 92.4

h, c 94.6, 89.2 9.9 (4.7)

1zwm domain 1 410051c 87 48 (b) 158 F, C converted to: 69.6, 67.1 11.9 (8.7)

h, c 85.5, 79.2 12.9 (9.1)

26 CH3-CH3 NOE converted to: 92.3

Cb-Cb 76.9 7.7 (7.7)

All exp. data (F, C1 CH3-CH3 NOE) 7.9 (6.5)

1p89 4848 216 53 (a1b) 2330 CS converted to: 17.2 (17.2)

F, C 70.8, 66.7

h, c 70.4, 58.5 18.9 (18.9)

161 CH3-CH3 NOE converted to: 98.1

Cb-Cb 95.0 3.4 (3.4)

All exp. data (CS1 CH3-CH3 NOE) 3.2 (3.2)

aThe data accuracy is defined as Acc 5 Ntrue/Nall, where Ntrue 5 Nall 2 Nfalse; Nfalse—number of angular or distance intervals

that do not include the real value extracted from the PDB structure. Nall—number of all distance or angular intervals computed

by DipoCoup, TALOS, the CABS-NMR toolkit or, provided in BMRB file. Acc is the measure of the data transformation

accuracy of different protocols (TALOS—for F,C; DipoCoup for u; CABS-NMR for h, c, and Cb-Cb distances) and the origi-

nal experimental data accuracy in the case of methyl-methyl NOEs. In the case of 1y8b and 1zwm, no TALOS computations

were performed, and F andC angles were obtained directly from the NMR Restraints Grid (http://restraintsgrid.bmrb.wisc.edu/).
bcRMSD—root mean square deviation of C-alpha atoms coordinates of protein models with respect to native structures.
cmrblock id—id of the data file from the NMR Restraints Grid repository of converted NMR restraints that were parsed

with entries in the PDB database.



more than 25% in the 1y8b case—from 100% to 74,3%). Fortu-

nately, that drop of accuracy of the NOEs-based restraints is still

small due to high information content of these data.

The second important observation involved the effect of

each kind of the experimental data on the modeling results. In

Table 1, we compared results of folding simulations without any

restraints with the simulations supported by each type of experi-

mental restraints separately and by the entire set. Provided the

protein structure had achieved the native-like fold in the simula-

tions, in most tested cases we observed better results of

restrained than of nonrestrained simulations, regardless of a type

of experimental restraints used. This condition was not fulfilled

in the case of the high molecular mass proteins (1zwm, 1y8b,

1p89). Such proteins could not be folded without any restraints

or with the medium-accuracy (see below) local, CS-based

restraints. In the 2f40 case, restrained MC folding provided the

best model with the lower cRMSD then in the nonrestrained

folding. But when comparing the cRMSD of the models ranked

as 1 we observed that nonrestrained folding provided the better

protein model. Only with the whole, diverse set of NMR

restraints (RDCs and CS) we obtained both, the best and the

model ranked as 1, of the lowest cRMSD than in the case of

nonrestrained folding. The 2f40 case is an example of a difficult

novel fold with high content of coils that requires the high level

of diversity of the experimental data to cover uncertainties of

different prediction methods.

The most efficient seemed to be distance restraints based on

the NOEs data. If we take into consideration the specific con-

struction of the CABS force field, which is already based on dis-

tance-dependent potential functions as the most efficient compu-

tationally,25 that observation is not unexpected. The mean

improvement rate for NOEs-restrained simulations over the best

model from nonrestrained simulations is 7.7Å and over the

model ranked as 1:8.5Å. In the case of chemical shifts, to com-

pare the mean improvement rates are: 2.87Å (the best model)

and 1.4Å (the model ranked as 1). The improvement was com-

puted as the mean difference of cRMSD of compared protein

models.

As for the local orientation restraints based on the chemical

shifts, they are useful in our modeling pipeline as long as their

accuracy does not drop below 80% (for small proteins up to 100

amino acids). In the case of proteins of higher molecular mass

with more complex topology, the minimum accuracy should be

at least 90% (compare the results for proteins 1hbg and 1y8b in

Table 1). Noteworthy, those accuracy cutoffs are only approxi-

mate because the modeling results depend mostly on the com-

plexity of the target protein topology, which cannot be fully

defined by only local, chemical shifts based restraints. Nonethe-

less, the greatest advantage of chemical shifts in contrast to

NOEs, which is the simplicity of the spectra recording and

assignment process,19 encourages to incorporate them in the rou-

tine NMR global fold determination. Another kind of orientation

restraints, which are based on u angles (obtained from RDCs),

improved the structure prediction to much lesser extent in com-

parison with chemical shifts (see Table 1). It is mainly due to

the limited accuracy of u angles, ranging from 47% to 86%

(according to a typical accuracy definition, see Table 1). What is

more, the average 20% of false u angles (computed as: Nfalse/

Nall, where Nfalse—number of angular intervals that do not

include the real value extracted from the PDB structure; Nall—

number of all intervals computed by either DipoCoup or

TALOS), which define the global arrangement of protein frag-

ments, have more effect on the modeling results than the same

20% of inaccurate h and c pseudoangles that define only local

geometry (e.g. the 2p81 case, see Table 1).

In Figure 1, we illustrated the effects of the restraints type on

the modeling results, i.e. the protein model quality. We pre-

sented there a graphical interpretation of the modeling results

instead of numerical similarity scores such as cRMSD shown in

Table 1. Total structures similarity score such as RMSD,

GDT-TS, or TM-score, though widely used in fast structure-to-

structure comparison, does not seem to be sufficient in the

detailed structural analysis of protein models.26 It is difficult to

assess from a numerical score if whole model is totally wrong

or just a small protein fragment is mispredicted (e.g., a loop or a

terminal fragment). Instead, graphical evaluation of structure

predictions involves a more detailed analysis of fragments simi-

larity.26 The useful example of such graphical illustration is a

Hubbard’s plot, which is commonly used for evaluating CASP

results.26 In our work, Hubbard’s plots helped us to assess if the

model improvement due to experimental restraints involved only

a fragment or a whole protein structure. We prepared Hubbard’s

plots for two proteins (see Fig. 1). Expectedly, we observed the

global improvement of the whole protein model when all avail-

able experimental restraints were used in the modeling (green

lines in Fig. 1). It confirmed our hypothesis that sparse experi-

mental data from NMR could be highly complementary (see the

Introduction section). In case of the modeling supported by only

one type of experimental restraints, we observed irregular sud-

den increasing of lines on the Hubbard plots indicating that

some fragments are significantly less accurate than the others.

Those major deviations from the native structures were observed

for the fragments with no experimental data available (see the

right part of Fig. 1). Those deviations were more distinct when

the fragments were not incorporated into any secondary structure

unit (an alpha helix or a beta sheet) and were forming irregular

loops. It can be explained by the fact that the CABS algorithm

is able to rebuilt regular secondary structure units without seri-

ous obstacles even without experimental restraints, whereas

loops regions are still a challenge (likewise for any other, avail-

able currently, de novo algorithm based on knowledge-based or

physical potentials).

The test case: S100A1 protein

The developed toolkit was used in the structure modeling of a

calcium-binding S100A1 homodimer protein (available now in

PDB as 2jpt). The protein was in its apo form, modified chemi-

cally by the disulfide bond formation between Cys 85 and BME

(b-mercaptoethanol). That modification induced structural

changes that resulted in a dramatic increase in the protein affin-

ity for calcium.27 Namely, the apo-S100A1 structure became

more similar to that of holo-S100A1 and thus much better

adjusted for the calcium binding. Structural changes in a single

subunit of S100A1 involve elongation of a helix IV (red in

Fig. 2) and increasing an angle between helices I (blue in
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Fig. 2) and IV. In such case, the comparative modeling studies

were not appropriate because any available templates would bias

the protein model to a typical apo-type structure and the struc-

tural change toward the holo form after the chemical modifica-

tion would not be noticed. For example, bioinfo.pl, a protein

structure prediction metaserver,28 produced a 1k2h_A template

as the closest homologous structure, which is an apo-S100A1

structure with shorter helix IV and the interhelical angle I-IV

typical for the apo-form. The SimShiftDB20 homology search,

which uses chemical shifts information, also suggested that

structure as the best template (see Fig. 2). In contrast, our de

novo method, which does not depend on homology search, pro-

duced the modified structure of S100A1 structure with novel

features. Here, we performed modeling of a S100A1 monomer

because oligomeric structure prediction, although possible with

the other versions of the CABS algorithm,29 is not supported in

the current version of CABS-NMR.

The chemical shifts data were provided by authors of the

modified apo-S100A1 NMR structure27 (Biological Magnetic

Resonance Bank accession number: 4982). The modeling proce-

dure performed for the subunit 1 of S100A1 is described in

Methods section. We obtained a near-native structure (see Fig.

2), with an elongated helix IV (to residue 90 6 1) but a rather

weakly adjusted angle between helices I and IV.

Next, the obtained S100A1 protein models were used to pre-

dict all possible NOE-type contacts between HN and Ha hydro-

gen atoms. In that way, we wanted to confirm the reliability of

our modeling procedure and its utility as a part of NMR struc-

ture determination, i.e. in the assignment of the NOESY spectra.

In Table 2, we compared the PDB-derived NOE contacts with

the HN-HN, Ha-Ha, and HN-Ha contacts derived either from a

single protein model or a set of six, low energy models. In this

work, we named two hydrogen atoms as contacting when they

were closer than 5 Å (a NOE-type cutoff).

Figure 1. Graphical evaluation of CABS-NMR modeling results. Left, Hubbard’s plots representing

the nonrestrained (red lines) and restrained modeling results: blue lines (modeling supported by only

one type of NMR data: RDCs [A] or CS [B]) and green lines (modeling supported by all available

types of experimental data: RDCs, CS, and NOEs). Right, final protein models of 2ea9 (A) and the

third domain of 1y8b (B) superimposed on the experimental structures from the PDB. Grey regions

indicate these protein fragments for which at least one type of the experimental data (CS, RDC, or

NOE) is missing.
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Typically, the final result of the CABS-based structure model-

ing is a set of low-energy protein structures (medoids of the most

populated clusters) instead of a single protein model. Usually, we

perform the clustering analysis and use Model Quality Assessment

Programs to choose the best predicted structure (with the lowest

cRMSD vs. a native structure). However, in de novo structure pre-

diction tasks, we often take an insight into the whole set of medoid

structures of several, the most populated clusters. In that way, we

are able to detect the most probable core of a protein by discarding

the diverged loops (see Fig. 2). Therefore, we supposed that the

NOEs prediction would be better if performed on a whole set of

structures and not on the most probable, yet single, protein model.

Our presumption was right especially in the case of Ha–Ha con-

tacts (see Table 2). False NOEs, placed at the end of Table 2,

which were predicted from a single protein model were almost

completely discarded by ranking based on the occurrence fre-

quency in a whole set of protein models. The set of protein models

where chosen by calculating an interhelical angle for helices I and

IV in each model by a Interhlx program.30 We discarded all con-

formations with the angle sign opposite to a typical value observed

for S100 proteins,27 in which the EF hand motif did not appear.

Unfortunately, such conformations, although in minority (4 of 10

structures), were inevitable because we folded a monomer not a

dimer structure in the implicit-solvent simulation. Without the

presence of the second monomer structure, in such a folding simu-

lations, the protein may fold into a more compact bundle of four

vertical helices instead of three vertical helices and one set hori-

zontally (see Fig. 2A). The final obtained six low-energy struc-

tures are superposed on each other in Figure 2A.

Discussion

The main purpose of the proposed modeling scheme is to assist

the experiment-based protein structure determination. The applica-

tion of the robust coarse-grained structure prediction algorithm

(CABS) accelerates the structure determination process. On the

other hand, usage of sparse and relatively easy to obtain experi-

mental data in the modeling procedure protects it from severe

Figure 2. The S100A1 protein model generated from chemical shifts

only. (A) Superposition of six low-energy structures obtained in

restrained MC folding simulations with the CABS-NMR algorithm.

The cRMSD of the best model with respect to the first model in the

PDB entry (2jpt) is 4.3Å. The average pairwise cRMSD for the six

conformers is 4.6Å. (B) Superposition of the best CABS-NMR protein

model and the native S100A1 structure (PDB: 2jpt_A). (C) Superposi-

tion of 2jpt_A and the best model generated by SimShiftDB on the

1k2h_A template structure (cRMSD 5 5.71Å, E-value 5 8.80e-85)

(D) Superposition of 2jpt_A and the SimShiftDB model generated as

the second (template: 2k2f_B, cRMSD 5 5.15Å, E-value 5 1.11e-

82). In (B), (C), and (D) the native structure of 2jpt is colored with

blue. [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

Table 2. The S100A1 Protein—Long-Range NOEs Prediction.

Residue No.a

PDB-derivedb

distance (Å)

A single protein

modelc

Distance (Å)

Average of 6

protein models

i j ([i13) Distance (Å) Rankd

H
N
-H

N
NOEs

29 33 4.17 3.64 4.29 1

Ha-HN NOEs

30 68 4.57 3.86 4.30 1

28 70 4.93 3.61 3.73 2

Ha-Ha NOEs

38 42 3.13 4.34 4.63 5

87 91 4.20 6.24 6.07 -

16 20 4.44 4.84 4.25 4

29 68 4.47 2.95 2.98 1

27 70 4.58 3.16 2.91 2

59 63 4.81 7.33 6.28 -

30 61 4.86 7.27 7.51 -

45 49 6.06 3.62 3.92 3

15 20 8.40 4.95 4.95 35

27 71 5.61 4.42 4.42 31

29 67 8.29 4.81 7.08 -

30 67 8.55 4.79 4.79 29

The prediction were based on the S100A1 protein models obtained in the

CABS-NMR procedure from chemical shifts data. The real NOE-type con-

tacts, which were observed in the PDB structure, are listed in bold. The

most accurate predictions were performed for HN��HN Ha��HN NOE-type

contacts using a set of six protein models instead of one.
aResidue sequence number.
bDistance between hydrogen atoms in the first model of a PDB

structure.
cThe model ranked as the first, i.e. the most probable model out of

six proposed. Typically, it is the model from the most populated clus-

ter of protein structures obtained from the folding simulation trajec-

tory.
dRank based on the frequency of occurrence of the given NOE-type

contact in the set of six protein models. Dashes indicate that a con-

tact was not detected at all in the set of six protein models.
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loss of resolution of the generated protein models. The benefits

from using the coarse-grained algorithm, which is the reducing of

computation time, outweigh a minor loss of structural information

resulted from the data transformation. The resolution of the

obtained protein structures is sufficient for using them in the after-

ward NMR data analysis, for example in the verification of the

NOEs assignment. The all atom reconstruction module based

on the BBQ method provide the useful way to incorporate to

CABS-NMR detailed all-atom force field based on either knowl-

edge-based or physical potential functions. It also enables to

include other kinds of experimental data, especially from 1H

NMR experiments, which will be investigated in future. In con-

trast to other structure prediction algorithms, CABS-NMR is not

biased toward template-based modeling tasks and therefore is

the most useful in new folds prediction, especially as a part of

NMR-based structure determination in high-throughput pipelines

followed by molecular dynamics refinement. The CABS-NMR

Toolkit package provides also important tools for the NMR data

formats conversion. It enables to perform useful transformations

of experimental data into the angular or distance restraints that

are easy to incorporate in MC or MD simulations.

Methods

CABS-NMR is an extension of a previously developed algo-

rithm16 dealing with sparse chemical shifts data. The chemical

shifts-based module in the previous and in the current algorithm is

based on a simple transformation of NMR data to angular relations

which are easy to apply in MC simulations. The first stage of the

transformation is carried out by the TALOS program from the

NMRPipe package.31 Although TALOS uses sequence homology

for prediction of dihedral angles, the actual protein folds similarity

derived from such prediction is negligible. It is due to small win-

dow size (only three residues) and small number of proteins in the

database (only 186) which is far not enough to find a reliable

structural homolog to any of the proteins tested in this work.

The resulted F and C dihedral angles from TALOS predictions

are then translated by the TRANSFORM program24 to pseudoangles

h and c. Those angles h and c are the reduced coordinates, defined in
the C-a-based coordinates system. The described data transforma-

tions from chemical shifts to angular restraints are performed with-

out serious loss of structural information.21,24 Particularly, in the test

set of 10 proteins used in this work, such h and c restraints described
in details 70%–80% of the main chain degrees of freedom. Chemical

shifts were also used in this work for approximate secondary struc-

ture assignment performed by a PsiCSI server,32 which combines a

well-known PSIPRED method33 with a Chemical Shift Index (CSI)

procedure.34 That rough prediction of secondary structure before

folding simulations is inevitable in our modeling pipeline. However,

it is an external procedure (see Fig. 3) and thus could be performed

by any other tool, not necessary the PsiCSI server.

The procedure described above, dealing with chemical shifts

data, is the same as in Ref. 16. A novel module in CABS-NMR

is a procedure for a backbone atoms reconstruction from a C-

alpha trace that is needed for the incorporation of 15N-1H RDCs

based restraints. The original CABS algorithm25 uses a reduced

representation of a protein (see Introduction section) and there-

fore backbone N and H atoms are not defined explicitly. Substi-

tution of an N��H bond vector by some other interatomic vec-

tor, defined in the reduced representation, although possible,8

could propagate errors and uncertainties of RDCs, which are al-

ready of low resolution. For those reasons, we add a separate

backbone reconstruction procedure to the CABS-NMR algorithm

despite the unavoidable elongation of simulation time (4 times

according to nonrestrained simulations and 2 times with respect

to CS or NOEs-restrained simulations). Our backbone recon-

struction procedure is based on a robust algorithm called

BBQ.35 The BBQ program reconstructs a protein backbone

using a database of average atoms positions in a local coordi-

nates system. The local coordinates system is defined by three

interatomic vectors of a quadrilateral (a consecutive fragment of

four C-alpha atoms). Originally, the statistics for backbone

atoms positions in the BBQ program was derived from the non-

redundant database of known protein structures. That statistics

had to be customized to fit protein-like, but not observed in

PDB, conformations of a C-alpha trace obtained in CABS simu-

lations. That customization was done following suggestions of

Gront et al.,35 by replacing a protein-like quadrilateral fragment

by its closest neighbor from the original BBQ program database.

The backbone reconstruction procedure included in the CABS-

NMR algorithm was combined with the simple geometrical

rebuilding of amide H atoms from coordinates of three consecu-

tive atoms: carbonyl C, amide N, and C-alpha. Giving the exact

positions of N and H atoms in the amide group, one could finally

define an angle between N��H bond vectors. A set of such angles

is a typical output of the DipoCoup program.9,15 DipoCoup con-

verts residual dipolar couplings into allowed ranges of projection

angles between intramolecular N��H bonds vectors. Such transla-

tion of dipolar couplings was originally developed to overcome

convergence problems in RDCs-restrained simulated annealing

protocols, possibly related to determination of the alignment ten-

sor.9 We observed that CABS could benefit from the DipoCoup

translation of RDCs data in the same way as standard simulated

annealing protocols despite being based on a more efficient search

algorithm, i.e. a parallel tempering MC method.25

Intramolecular projection angles obtained from DipoCoup,

named here u, are incorporated into CABS-NMR in the form of

ambiguous restraints with two allowed ranges for each angle.

The potential based on such angular restraints, graphically pre-

sented in Figure 3, is described by the following formula:

Eij ¼ �k minðjuij � u1
ijj; juij � u2

ijjÞ

for
uij 2 ðu1

ij � Du1
ij;u

1
ij þ DuijÞ

uij 2 ðu2
ij � Duij;u

2
ij þ DuijÞ

(

Eij ¼ 0 for

uij < u1
ij � Duij

uij 2 ðu1
ij � Duij;u

2
ij þ DuijÞ

uij < u2
ij þ Duij

8><
>: (1)

where: i and j are intramolecular N��H bond vectors; k is a

scaling factor; u1
ij is the mean of the projection angle range in

542 Latek and Kolinski • Vol. 32, No. 3 • Journal of Computational Chemistry

Journal of Computational Chemistry DOI 10.1002/jcc



the 0–p/2 interval, u2
ij is the mean of the projection angle range

in the p/2–p interval; and Du, a half of the length of the projec-

tion angle range (the same for both ranges in intervals: 0–p/2
and p/2–p). The above potential favors protein conformations

with most of the RDCs-based restraints fulfilled. The linear

function was used in this potential as the most efficient in the

MC sampling of the protein conformational space, following the

research on the NMR-restrained structure prediction described

previously.16 Namely, comparing the typical harmonic-type

potentials, the linear one less severely restricts the conforma-

tional space of a protein chain in these regions that are distant

from the native global minimum.

The methyl-methyl NOE data were incorporated into CABS-

NMR in the form of distance restraints. We did not use the dis-

tance between protons of methyl groups, because the CABS

model lacks an explicit definition of methyl groups. Instead, we

used the distance between C-beta atoms, which are defined ex-

plicitly in the CABS model (they are rebuilt from C-alpha coor-

dinates in-flight). Thus, no additional computations had to be

done during MC simulations. We chose the distance between

C-beta atoms because it resembles the methyl-methyl distance

better than the distance between other, defined explicitly atoms

in the CABS model (C-alpha atoms or SG united atoms). That

observation was done after generating histograms of C beta, C

alpha, and SG distances only between these residues for which

methyl-methyl NOEs were observed (see Fig. 4). Histograms

were derived from the ASTRAL40 database of such protein

structures that share less than 40% sequence identity with each

other. The lowest standard deviation from the mean value was

observed for the C-beta atoms distance and therefore we substi-

tuted NOEs by that interatomic distance. In the first approach,

the mean value (6Å) from the C-beta distances histogram was

chosen as a cutoff distance (equivalent to the 5Å interproton dis-

tances observed in NOESY spectra). However, in some prelimi-

nary tests, it turned out that the limited resolution of the CABS

model required a larger value of the upper cutoff distance, i.e.

7Å. The short range cutoff distance between C-beta atoms was

already defined in the CABS model as an excluded volume of

C-beta atoms. The final restraints potential reproducing methyl-

methyl NOEs is described as following:

Eij ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dij � dmax

p
for dij > dmax

Eij ¼ 0 for dij > dmax (2)

Here: i and j are a pair of amino acid residues for which a

methyl-methyl NOE is detected, k is a scaling factor, dij is an

Figure 3. The CABS-NMR modeling pipeline. The core of the

pipeline is the protein folding simulation divided into three stages

varying experimental restraints used. The presented pre- and postsi-

mulation data processing requires additional tools (CABS-NMR

Toolkit, Bioshell and BBQ), which can be freely downloaded from:

http://biocomp.chem.uw.edu.pl/services.php. The remaining external

modules: TALOS, DipoCoup, and PsiCSI are also available from

authors free of charge for academic purposes.

Figure 4. Distributions of different interatomic distances provided

in CABS. Here, we compared histograms based on distributions of

distances between C-alpha atoms (d-CA-CA), C-beta atoms (d-CB-

CB) and united atoms representing side groups (d-SG-SG). All dis-

tances were computed only for these pairs of residues between

which a methyl-methyl NOE were detected. The lowest standard

deviation is observed for the C-beta distances histogram. The dotted

line depicts the final cutoff for C-beta distances that reproduce

methyl-methyl NOEs in the restraints potential used in CABS-NMR.
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observed distance between C-beta atoms, dmax is a top cutoff for

C-beta atoms distance (7Å). The above potential penalizes pro-

tein conformations that do not fulfill the distance restraints. The

potential was adapted from the previous research, which was the

protein folding with the simulated, not experimental, contact

restraints between other types of atoms (Ca and pseudoatoms

representing side groups of amino acids).36 Namely, the poten-

tial function remained the same but the parameters were differ-

ently optimized.

In preliminary tests, we observed that all experimental

restraints significantly modify the conformational energy land-

scape of a protein. Generally, the energy landscape is more

rugged than in the case of non-restrained folding simulations. As

a result, the conformational search during the folding process is

less efficient and a protein conformation may be trapped in local

minima more frequently. Noteworthy, local restraints based on

chemical shifts are much more restrictive for protein conforma-

tional space than long range, global restraints obtained from

RDCs or NOEs. It is the consequence of the fact, that any global

change of a protein conformation in the CABS algorithm is per-

formed by series of modifications of small protein fragments

(from one to few residues long) and such local conformation

changes may be hindered by imposing local restraints (e.g. based

on chemical shifts). To overcome these problems, we applied

different types of experimental restraints sequentially, introduc-

ing all of them in turn from the beginning of a simulation run.

A similar approach was described elsewhere.37 Global restraints

and the biases resulting from the secondary structure assignment

are incorporated as the first, and then followed by more restric-

tive, local restraints. Figure 3 shows the detailed description of

the folding simulation protocol and the entire modeling pipeline.

Our modeling pipeline uses not only well-known tools such as

TALOS, PsiCSI or Bioshell (a package for structural analysis)

but also a new package called CABS-NMR Toolkit, available

from our website: http://biocomp.chem.uw.edu.pl/services.php. It

includes CABS-NMR and TRANSFORM programs and simple

shell scripts for converting experimental data formats (e.g. from

NMRSTAR format to TALOS and DipoCoup programs for-

mats). It also includes scripts for the protein models selection on

the basis of fitting experimental NMR data or sparse evolution-

ary information (i.e. predicted contacts38).
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