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Note: A simple picture of subdiffusive polymer motion from
stochastic simulations
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Entangled polymer solutions and melts exhibit unusual
frictional properties. In the entanglement limit self-diffusion
coefficient of long flexible polymers decays with the sec-
ond power of chain length and viscosity increases with 3–3.5
power of chain length.1 It is very difficult to provide detailed
molecular-level explanation of the entanglement effect.2 Per-
haps, the problem of many entangled polymer chains is the
most complex multibody issue of classical physics. There
are different approaches to polymer melt dynamics. Some
of these recognize hydrodynamic interactions as a dominant
term, while topological constraints for polymer chains are as-
sumed as a secondary factor.3, 4 Other theories consider the
topological constraints as the most important factors con-
trolling polymer dynamics. Herman and co-workers describe
polymer dynamics in melts, as a lateral sliding of a chain
along other5, 6 chains until complete mutual disentanglement.
Despite the success in explaining the power-laws for viscos-
ity, the model has some limitations. First of all, memory ef-
fects are ignored, that is, polymer segments are treated in-
dependently. Also, each entanglement/obstacle is treated as a
separate entity, which is certainly a simplification of the mem-
ory effect problem. In addition to that, correlated motions of
segments are addressed within the framework of renormalized
Rouse-chain theory,7 without calling any topological entan-
glements in advance. This approach leads to the generalized
Langevin equation characterized by distinct memory kernels
describing local and nonlocal segment correlations8–10 or to
the Smoluchowski equation in which the segments’ mobility
is treated as a stochastic variable.11 Both models describe the
polymer segments motion at a microscopic level. An interest-
ing alternative is to solve the integrodifferential equation for
the chain relaxation with a sophisticated kernel function.12

The design of the kernel function is based on a mesoscopic
description of the polymer melt. These theories explain some
experimental data, although the description of the crossover
between the Rouse and non-Rouse behavior is not satisfac-
tory. Obviously, within the scope of a short note we cannot
review all theoretical concepts of the polymer melt dynamics.
Here we focus just on the interpretation of the observed single
segment autocorrelation function.

The most popular theory of entangled polymers is the
reptation theory by De Gennes.13 According to this theory a
long polymer chain moves in a fluctuating tube imposed by
entanglement with other chains. The theory assumes that the
overall shape of such a tube resembles the Gaussian random
coil and that the main component of motion of polymer seg-

ments follows the contour of the tube. The reptation theory
explains approximately the scaling of the diffusion coefficient
and viscosity with the polymer length. There are however
some problems with the interpretation of experimental find-
ings by the reptation theory. The critical polymer length for
the onset of reptation is different for diffusion coefficient and
viscosity measurements. Moreover, cyclic (ring) polymers in
noncatenated solution diffuse about two times faster than lin-
ear polymers of the same length.14 According to the reptation
theory ring polymers should not diffuse at all, or at least their
diffusion should be much slower than that observed. Similar
conclusion was made by Phillies under the assumptions of
nonpower-law behavior of self-diffusion in many systems.3

On the microscopic level, the reptation theory predicts
that the mean-square displacement of polymer segments on a
time scale shorter than the longest relaxation time of the poly-
mer chain follows t1/4 scaling with time.13 In many publica-
tions concerning computer simulation of multichain systems,
the presence of such a regime (with a slope of 0.25 or inter-
mediate between 0.25 and 0.5) for the polymer segment time
autocorrelation function has been interpreted as a proof of the
reptation concept.15–20 In the past, we performed stochastic
simulations of polymer motion in a coarse-grained model of
long entangled polymers.21, 22 These simulations clearly in-
dicated that the t1/4 scaling of the monomer autocorrelation
function does not mean necessarily a reptationlike type of
motion. Analysis of time evolution of averaged chain con-
tours, in the melt, demonstrated that the long chains do not
follow the tube motion, although for polymer matrix, such a
motion can emerge as a dominant one.22 In melts lateral mo-
tion dominated. Obviously, for very short times a series of
chain snapshots may look like a tube. Such picture reflects the
very local chain motion, without “reptationlike” sliding along
the hypothetical tube. Inspired by these simulations Skolnick
et al.23, 24 proposed a very simple single-chain theory of sub-
diffusive polymer dynamics. The theory assumed Rouse-like
local motion of model polymers with two types of monomers:
conventional Rouse segments and high friction segments, cor-
responding to entanglement constraints from other chains. In
fact, the introduction of high friction for some segments is
not an analog of the cage effect of correlated liquids. The rea-
son for that is the low concentration and the random distribu-
tion of these slow-moving segments, while all instantaneous
contacts are neglected.23, 24 Also, the distance scale of such
slow motion in polymers is much larger than for cage effects.
Macroscopic predictions derived from such an analytical
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FIG. 1. Conformational updating of model chain. (a) Two-bond kinks, chain
end rotations and three-bond random permutations. (b) Snapshot of lattice
chain. (c) Smoothened chains contours at t = 0, t = 8.0 × 104 (left side,
nearly overlapping), t = 1.2 × 106, and t = 5.4 × 106 (right side), with slow
moving beads marked as heavy circles.

model were equivalent to predictions of the reptation theory,
although the microscopic picture was qualitatively different:
the local motion of the model chain was isotropic.

In this note we describe very simple simulations showing
that the t1/4 regime does not require reptationlike motion (or
any spatially restrained motion, like in Herman’s work5). The
basic assumptions are the same as in Skolnick’s theory,23, 24

though the results of simulations are free of any additional
approximations, except statistical (small) inaccuracies of the
Monte Carlo dynamics. Additionally, the simulations are for a
“real” chain, with excluded volume and without chain contour
crossing (the Rouse chain is a “phantom” chain).

The model chain, composed of N segments, is restricted
to the face-centered simple cubic lattice (coordination num-
ber z = 12). Stochastic dynamics of the chain are simulated
via a long series of local random micromodifications. Confor-
mational updates (Fig. 1) include two-bond kinks, three-bond
random permutations, and flips of the end segments. An
arbitrary time unit corresponds to one attempt at local moves
per chain segment on an average. It is assumed that some of
the chain segments (for simplicity uniformly spaced along
the chain) mimic entanglement points, and therefore should
move slower. The local kinks for these slow segments are
attempted with frequency p in respect to the frequency of
kinks of “regular” segments. In the simulations reported
below N = 1200, the number of slow segments is n = 5 and
p = 0.001. Figure 1(c) shows an example of smoothened
chain contours at t = 0, t = 8.0 × 104, t = 1.2 × 106, and
t = 5.4 × 106, with slow moving beads marked as heavy
circles. It is evident that the slow segments move slower
than the regular segments and that the motion lateral to the
chain contour dominates. Figure 2 shows the single bead time
autocorrelation function in log–log coordinates. A line with
slope 1/4 is drawn for comparison.

In other simulations with larger values of parameter p
the slope is different (larger). The assumed p value mimics
the higher apparent friction coefficient, resulting from drag-
ging other chains of a length equal to the length of the probe
chain in the entangled system. The results of the simulation

FIG. 2. Single bead autocorrelation function (mean-square displacement) in
log–log time scale. The lines with slope 1/4, and 1/2 are given for refer-
ence. Dotted and dashed lines mark subchain (between two subsequent heavy,
slow-moving, beads) and full chain mean-square radii of gyration.

presented here clearly demonstrate that the existence of the
t1/4 regime for the autocorrelation function does not does nec-
essarily indicate the topologically restrained, along the chain
contour, mode of motion. Subdiffusive motion with the t1/4

regime emerges due to the different mobility of chain seg-
ments. The illustration given in this note suggests that the
concept of “tube” is not necessary for the mechanistic expla-
nation of dynamic properties of entangled polymer solutions
and melts.

This work was partially supported by the grant from the
Polish Ministry of Science and Higher Education, Contract
No. NN507 326536.

a)Electronic mail: kolinski@chem.uw.edu.pl.
1J. D. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1980).
2L. J. Fetters, D. J. Lohse, D. Richter, T. A. Witten, and A. Zirkel, Macro-
molecules 27, 4693 (1994).

3G. D. J. Phillies, Macromolecules 19, 2367 (1986).
4G. D. J. Phillies, J. Phys. Chem. B. 101, 4226 (1997).
5M. F. Herman and P. Tong, Macromolecules 25, 6638 (1992); 26, 3733
(1993).

6B. V. Panajotova and M. F. Herman, Macromolecules 33, 3932 (2000).
7W. Hess, Macromolecules 21, 2620 (1988).
8U. Genz, Macromolecules 27, 6452 (1994).
9K. S. Schweizer, J. Chem. Phys. 91, 5802 (1989).

10K. S. Schweizer and G. Szamel, J. Chem. Phys. 103, 1934 (1995).
11A. P. Chatterje and R. F. Loring, J. Chem. Phys. 103, 4711 (1995).
12J. F. Douglas and J. B. Hubbard, Macromolecules 24, 3163 (1991).
13P. G. De Gennes, Scaling Concepts in Polymer Physics (Cornell University

Press, Ithaca, New York, 1979).
14P. C. Griffiths, P. Stilbs, G. E. Yu, and C. Booth, J. Phys. Chem. 99, 16752

(1995).
15W. Paul, Chem. Phys. 284, 59 (2002).
16Q. Sun and R. Faller, Macromolecules 39, 812 (2006).
17V. A. Harmandaris and K. Kremer, Macromolecules 42, 791 (2009).
18K. Kremer, G. S. Grest, and I. Carmesin, Phys. Rev. Lett. 61, 566 (1988).
19Z. Wang and R. G. Larson, Macromolecules 41, 4945 (2008).
20H. Lin, W. L. Mattice, and E. D. von Meerwall, J. Polym. Sci., Part B:

Polym. Phys. 44, 2556 (2006).
21A. Kolinski, J. Skolnick, and R. Yaris, J. Chem. Phys. 86, 7164 (1987).
22A. Kolinski, J. Skolnick, and R. Yaris, J. Chem. Phys. 86, 7174 (1987).
23J. Skolnick, R. Yaris, and A. Kolinski, Int. J. Mod. Phys. 3, 33 (1989).
24J. Skolnick, R. Yaris, and A. Kolinski, J. Chem. Phys. 88, 1407 (1988).

mailto: kolinski@chem.uw.edu.pl
http://dx.doi.org/10.1021/ma00095a001
http://dx.doi.org/10.1021/ma00095a001
http://dx.doi.org/10.1021/ma00163a006
http://dx.doi.org/10.1021/jp970345c
http://dx.doi.org/10.1021/ma00050a037
http://dx.doi.org/10.1021/ma992002d
http://dx.doi.org/10.1021/ma00186a052
http://dx.doi.org/10.1021/ma00100a030
http://dx.doi.org/10.1063/1.457533
http://dx.doi.org/10.1063/1.469718
http://dx.doi.org/10.1063/1.470609
http://dx.doi.org/10.1021/ma00011a020
http://dx.doi.org/10.1021/j100045a041
http://dx.doi.org/10.1016/S0301-0104(02)00536-0
http://dx.doi.org/10.1021/ma0514774
http://dx.doi.org/10.1021/ma8018624
http://dx.doi.org/10.1103/PhysRevLett.61.566
http://dx.doi.org/10.1021/ma800680b
http://dx.doi.org/10.1002/polb.20911
http://dx.doi.org/10.1002/polb.20911
http://dx.doi.org/10.1063/1.452366
http://dx.doi.org/10.1063/1.452367
http://dx.doi.org/10.1142/S0217979289000038
http://dx.doi.org/10.1063/1.454212


The Journal of Chemical Physics is copyrighted by the American Institute of Physics (AIP).  Redistribution of

journal material is subject to the AIP online journal license and/or AIP copyright.  For more information, see

http://ojps.aip.org/jcpo/jcpcr/jsp


