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INTRODUCTION

Knowledge-based potential functions are used in many different types

of computational protein studies, including protein structure pre-

diction,1–5 protein design,6–9 docking applications,10–13 and pro-

tein folding mechanism studies.14–17 Many atomistic potential func-

tions18–20 and coarse-grained potential functions21–24 have been

developed. The use of these potentials has grown significantly, and they

are of interest because their use can significantly reduce the computa-

tional cost of modeling and prediction of protein structures. A major

challenge in computational biology is to derive better coarse-grained

potentials that are able to perform as well as atomistic potentials, yet

are computationally much less expensive.

Many different coarse-grained potentials have been extensively

applied in the assessment of protein models and the native structure

recognition. One of the most widely used two-body potentials are the

Miyazawa-Jernigan potentials.22 Betancourt and Thirumalai25 suggested

that pair-wise potentials are not likely to be sufficient for threading

applications. The alternative multibody potentials, in principal, are able

to take account of more complex three dimensional interactions, reveal-

ing the effects of dense residue packing. In particular, they can capture

the strong cooperativity operative within protein structures. Three-body

potentials were proposed and developed by Munson and Singh26 and

also by Li and Liang,27 and they all showed improvements over two-

body potentials. Four-body potentials were first derived in the context

of Delaunay tessellation by Krishnamoorthy and Tropsha,28 and they

demonstrated that these potentials also perform better than two-body

potentials.

The four-body contact potentials developed by our group29 incorpo-

rated sequence information and considered in detail the interactions

between backbones and side chains through a simple geometric con-
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ABSTRACT

Multibody potentials have been of much in-

terest recently because they take into account

three dimensional interactions related to resi-

due packing and capture the cooperativity of

these interactions in protein structures. Our

goal was to combine long range multibody

potentials and short range potentials to

improve recognition of native structure

among misfolded decoys. We optimized the

weights for four-body nonsequential, four-

body sequential, and short range potentials

to obtain optimal model ranking results for

threading and have compared these data

against results obtained with other potentials

(26 different coarse-grained potentials from

the Potentials ‘R’Us web server have been

used). Our optimized multibody potentials

outperform all other contact potentials in the

recognition of the native structure among

decoys, both for models from homology tem-

plate-based modeling and from template-free

modeling in CASP8 decoy sets. We have com-

pared the results obtained for this optimized

coarse-grained potentials, where each residue

is represented by a single point, with results

obtained by using the DFIRE potential, which

takes into account atomic level information

of proteins. We found that for all proteins

larger than 80 amino acids our optimized

coarse-grained potentials yield results compa-

rable to those obtained with the atomic

DFIRE potential.
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struction (see Methods for the model description). We

also developed them to distinguish between different lev-

els of solvent accessibility of the residues.

These four-body potentials (both sequential and non-

sequential) have been successful in recognizing the native

structure among most of the misfolded decoy sets from

Decoys ‘R’Us data set. However, these potentials fail to

recognize the native structures of some significant num-

ber of proteins.

In this article, we have improved the performance of

the four-body contact potentials by combining the four-

body sequential29 with the four-body nonsequential

potentials30 and with short range potentials. For the

short range knowledge-based potentials, we consider the

identity for two consecutive amino acids along the

sequence, and the pairwise couplings between their vir-

tual torsion and bond angles.31 The results for the rank-

ings of the best models are obtained by combining these

three sets of potentials, and optimizing globally the

weights for each component in the sum.

Different measures of the quality of model selection

predictions such as: rankings of the native structure for

the decoy sets, RMSD values of the best ranked model

and correlation coefficients all show that both the four-

body sequential and the four-body nonsequential poten-

tials on average perform better than or as well as two-

body coarse-grained potentials. After optimization, how-

ever, the resulting residue-level coarse-grained potentials,

that is, the weighted sum of four-body sequential, nonse-

quential potentials, and short range potentials performs

better than all other coarse-grained potentials and almost

as good as much more detailed (but computationally

more costly) atomistic empirical potentials.

METHODS

Geometric construction for
considering interactions

For each four consecutive amino acids (i, i 1 1, i 1 2,

i 1 3) along the sequence (in black in Fig. 1), we calcu-

lated the geometrical center (red) of their four side chain

centers (Ca for Gly). Blue residues are residues in close

proximity to the geometrical center. Six planes can be

defined by the combinations of all possible pairs of these

four points and the red center point, and these planes

subdivide the space surrounding the red point into four

tetrahedra. Each tetrahedron has a common vertex,

which is the geometrical center of four side chain centers.

Each of the four contacting bodies for our four body

potentials are obtained as follows. One triplet of amino

acids from a tetrahedron is taken along the sequence

with another amino acid, which is not along the

sequence but within a cutoff distance from the quartet’s

geometrical center (blue residue in Fig. 1). This amino

acid is considered to be in contact with the triplet within

a cutoff distance of 8 Å. The cutoff distance 8 Å was

selected because it gives the best threading results com-

pared to other values of cutoff distances that we consid-

ered. One example of four-bodies is marked in Figure 1

by the four residues in black boxes. We use tetrahedra to

capture long-range interactions between nonbonded side

chains and groups of backbone residues. In case of these

sequential four-body potentials, we require the triplet of

amino acids to be sequential, but for the nonsequential

four-body potentials this requirement is no longer neces-

sary. Optimized potentials in this article combine both

the sequential and nonsequential four-body potentials

Figure 1
Model description of the four-body potentials; Black points represent four sequential residues and the red point is the geometric center of these

residues. Blue residues are in close proximity with the geometric center. Six plans can be defined by all the possible combinations of pairs of black

points and the central point, which subdivide the space around the red point into four tetrahedra. Four-body sets are selected such that a triplet of

residues is selected from sequential residues (black nodes) and the fourth node is a residue, which is not along the chain but within 8 Å from the

center point (blue node). One example of the four contacting bodies is shown by the four residues in black boxes.
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along with short ranged pair-wise potentials mentioned

earlier.

Extensive studies have been carried out, where the per-

formance of different knowledge-based potential func-

tions was compared20,32,33 on large data sets of protein

models. The way the evaluations have been done is by

finding the success in the ranking of the native structure

as the conformation with the lowest energy and also by

computing average Z-score between the energy of the

native structure and the next most favorable structure

(the larger the average Z-score the better the evaluation).

We have used CASP8 models as decoy sets (see Sup-

porting Information) for the evaluations of how well

two-body and four-body potential functions perform in

identifying native (or near native) protein structures.

Twenty-three different two-body (more details about

these potentials can be found in Pokarowski et al.34) and

sequential29 and nonsequential30 four-body potentials

were used. The targets were divided into two subsets

according to the method used to generate decoys for

each target. One set is comprised of models that were

obtained using homology (template-based) modeling

(153 cases), and the other set of models is obtained from

template-free modeling approaches (12 cases).

The four-body sequential, the four-body nonsequential

and the short ranged potentials were combined in simple

linear way by using the following formula:

V ¼ w4-body-seqV4-body-seq

þ w4-body-nonseqV4-body-nonseq þ wSRVSR (1)

Optimization of the weight of each term was performed

to find an optimized potential for computational applica-

tions.

The optimization was carried out using particle swarm

optimization35 (PSO) technique. We set the weight of

the four-body sequential term to 1.0 (w4-body-seq 5 1)

and vary the weight coefficients for the other two terms

w4-body-nonseq and wSR by using PSO. The main philoso-

phy behind PSO lies in the observation of swarms of

birds or bees. The optimal solution is searched for by

maintaining a population of candidate solutions (also

called particles) and the best found positions for each

particle and the whole population are remembered by

the algorithm. Particles scan the search-space according

to a simple movement formula, which takes into account

the best-found solution by individual particles and the

whole population. For the case of optimizing only two

parameters, there are other possible methods to optimize

them and get similar results. However, in the case of

optimization of a function in a higher dimensional space,

this method has significant advantage over the other,

because in comparison to, for example, grid methods, it

is computationally more efficient, and in comparison to

simulated annealing methods it does not require any

arbitrary assumptions. For each combination of terms we

calculated the average RMSD for the best ranked model

and the Z-scores for all CASP8 targets. Heat maps for

average best ranked models RMSD and Z-score were

computed for varying weights w4-body-nonseq and wSR of

the optimized potentials for proteins modeled using

(homology) template-based methods, and using tem-

plate-free modeled targets. The native structure rankings

obtained for the optimized potentials were compared to

those obtained using other coarse-grained potentials and

for the atomistic DFIRE potentials.20 The Decoys ‘R’Us

dataset32 was used for comparison with atomistic poten-

tials. Both single and multiple decoy sets were used in

this assessment. A single decoy set consists of a pair of

structures: native structure and decoy structure, and mul-

tiple decoys set contain many decoys for each target

structure. We have excluded the multiple loop set from

our assessment because of the poor amino acid packing

in loop regions, and also excluded the ifu decoys set,

because multibody potentials do not perform well for

small structures. (For small proteins there are problems

with proper tessellation. Residues at the surface cannot

be tessellated correctly without taking into account

neighboring solvent molecules.)

The RMSD values between the native structure and

the best fitting decoy for each decoy set was computed

with the TM-score algorithm.36 Spearman’s, Pearson’s,

and Kendall’s correlation coefficients were calculated for

all the target-decoy pairs by using potential energies and

RMSD values to the native conformation. All incomplete

decoys were removed from the sets. Z-scores were also

calculated for decoys to evaluate the separation between

the native structure and other structure sets in energy

space. Pearson’s correlation coefficient is expressed as the

covariance of two variables normalized by their standard

deviations:

qP ¼
Pn
i¼1

ðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðxi � �xÞ2 Pn
i¼1

ðyi � �yÞ2
s ð2Þ

Because Pearson’s correlation coefficient assumes linearity

between the two variables (in the context of this article:

energy and RMSD), it would be more suitable to use al-

ternative correlation measures. In particular, it seems

appropriate to use rank order correlation coefficients.

Spearman’s rank correlation coefficient is a nonparamet-

ric measure of the statistical dependence between two

ranked variables. In the case of existence of tied ranks

(when two different observations have the same value-in

case of this study, when two structures with different

RMSD have the same energy) qS is computed from the

same formula as for qP. In the case where there are no

tied rankings Spearman’s correlation coefficient is com-

puted from the simpler formula:

Multibody Potentials for Native Structure
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qS ¼ 1�
6
Pn
i¼1

d2i

nðn2 þ 1Þ ð3Þ

with di 5 xi 2 yi being the difference between the ranks

on the two variables for the same structure model.

Kendall’s s coefficient is a measure of rank correlation,

that is, the similarity of the ordering of the data when

ranked by different quantities, defined as:

s ¼ nc � nd
1
2
nðn� 1Þ ð4Þ

where nc is the number of concordant pairs, nd is the

number of discordant pairs, and the denominator is the

total number of pairs. We call the two pairs of variables

[Ei, RMSDi] and [Ej, RMSDj] concordant with each

other, if Ei > Ej; then RMSDi > RMSDj (or vice versa),

otherwise we consider them to be discordant.

The three correlation coefficients are calculated for

each target using energy and RMSD values away from

the native target structure for each target decoy. Then all

coefficient values are averaged over all targets in each of

the two categories to obtain average values for each

potential function.

RESULTS

Performances of different individual
potential functions for model ranking

Tested potentials are all knowledge-based coarse-

grained potentials and they usually capture the statistics

of contacts based on the coordinates of Ca (sometimes

Cb) atoms. Therefore they do not take into account the

atomic details of proteins. We observe that for template-

based modeled targets, the BT potential derived by

Betancourt and Thirumalai25 performs best in compari-

sons with other two-body potentials and the two four-

body potentials individually (in terms of correlation

coefficients, average Z-score and average RMSD). The

best RMSD values are in the range of 4–5 Å (See Table

I). Four-body potentials perform well in the identifica-

tion of native structures and there are a few other two-

body potentials, which show similar performances with

RMSD in the 4 Å range.

For the targets from template-free modeling, the per-

formance (in terms of correlation coefficients or average

values of Z-score or RMSD) is worse than that for the

homology-based modeled proteins (See Table II). Poten-

tials that perform best for template-free modeled targets

also perform best for homology template-based modeled

targets but do not yield results that are as good as the

latter. This is due to the fact that the template-free mod-

eled structures submitted to CASP8 deviated significantly

more from the native structures than template-based

homology models, and were usually poorly packed and/

or poorly folded. Therefore empirical potentials, which

are derived based on real globular proteins interactions,

cannot be applied well to these cases.

Rankings, RMSDs and correlation coefficients results

all show that the four-body sequential and four-body

nonsequential potentials on average perform better than

or as well as two-body potentials.

Performance of the optimized potentials.

The heat map shows the average RMSD (expressed by

color) from the native structure for best ranked homology

models, where w4-body-nonseq is plotted on the x-axis and

wSR on the y-axis, both in steps of 0.05 (see Fig. 2). Addi-

tional heat maps are given in the Supporting Information

(Figures S1–S3). The best weights in linear combination of

four-body nonsequential, four-body sequential, and short

range potentials correspond to the yellow regions in Figure

2. The weight for four-body sequential potentials is equal

1.0. It can be seen that all heat maps (see Supporting In-

formation Figures S1–S3) show the same region of best

weights, and there can be several values that give similar

results. The optimized weights obtained for the four-body

nonsequential and short-range potentials are about 0.28

and 0.22, respectively for the template-based modeled

Table I
Model Ranking Results for CASP8 Template-Based Homology

Modeled Targets

Potential Spearman q Pearson q Kendall s Z-score
Top Ranked

RMSD

4B OPT POT 0.36 0.40 0.24 1.33 3.7
BT 0.46 0.49 0.33 1.50 4.1
4B POT 0.33 0.38 0.23 1.29 4.6
SKJG 0.44 0.43 0.31 1.41 4.6
MJ3 0.40 0.40 0.28 1.29 4.6
VD 0.41 0.43 0.29 1.40 4.6
4B G POT 0.31 0.36 0.21 1.10 4.7
TEl 0.43 0.46 0.31 1.41 4.7
SKOb 0.43 0.44 0.30 1.48 4.8
MJ3h 0.46 0.48 0.33 1.40 4.9
BFKV 0.45 0.48 0.33 1.45 4.9
Qm 0.39 0.37 0.27 1.25 5.0
SKOa 0.42 0.40 0.29 1.42 5.2
MS 0.38 0.40 0.27 1.25 5.2
Qa 0.38 0.36 0.26 1.09 5.4
TD 0.44 0.45 0.32 1.27 5.4
RO 0.24 0.26 0.16 0.46 5.9
TEs 0.42 0.45 0.30 1.39 6.1
GKS 0.30 0.31 0.21 1.16 6.3
Qp 0.41 0.39 0.29 1.22 6.5
HLPL 0.39 0.38 0.28 1.18 6.7
SR 0.21 0.25 0.15 0.77 6.9
MJ2h 0.32 0.30 0.23 0.81 8.1
MSBM 0.07 0.05 0.05 0.02 8.6
MJPL 0.30 0.26 0.22 0.75 9.3
TS 0.28 0.24 0.20 0.66 9.4

We show averages computed for all homology modeled CASP8 targets. Abbrevia-

tions and definitions of potentials are explained on our Web-Server (http://gor.

bb.iastate.edu/potential) and in Pokarowski et al.34
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(homology) targets. For template-free modeled targets the

corresponding weights are different and equal 1.01 and

0.56, respectively. The weights obtained for homology

modeled targets were used in assessing the quality of our

optimized potential using Decoys ‘R’Us data set.

The four-body nonsequential potentials don’t necessar-

ily perform better than the sequential potentials, but after

optimization, the resulting potentials perform better than

either of the two individually, better than all other

coarse-grained potentials (with an average RMSD

approaching �3.7 Å for the homology modeled targets),

and almost at the same level of performance as fully at-

omistic potentials. For template-free modeled targets the

Betancourt and Thirumalai25 potentials perform almost

as well as the optimized potentials but for template-based

modeled targets the improvement of the RMSD for the

optimized potentials is significantly better.

For the misfolded, asilmarh, and Pdberr and sgpa data sets

from the Decoys ‘R’Us database the optimized potentials

identify all native structures from these datasets and thereby

performs as well as the other atomistic potentials (data not

shown) like RAPDF32 atomic KBP19 and DFIRE (in the case

of the DIFIRE-B potential, there was one mismatch). In Table

S1 (see Supporting Information), the native structure ranks

and the Z-scores are compared for the above atomistic poten-

tials and for our optimized potentials using multiple decoy

sets. Optimized potentials are able to predict all native struc-

tures in the lattice-ssfit decoy set and they fail to identify only

two native states in the 4-state reduced decoy set. Average Z-

scores for the optimized potentials for these decoys is 1.87.

Multibody potentials perform well if protein structures are

large enough, sufficiently compact, and well-packed with

many multibody contacts (see Discussion). [Note added in

proof: Our potentials performed equally well in blind test of

CASP9, especially in the category of template-free modeling].

Table II
Model Ranking Results for CASP8 Template-Free Modeled Targets

Potential Spearman q Pearson q Kendall s Z-score
Top Ranked

RMSD

4B OPT POT 0.19 0.17 0.13 1.3 7.5
BT 0.19 0.16 0.14 2.14 7.7
MJ3h 0.15 0.12 0.11 2.02 8.4
4B G POT 0.14 0.14 0.09 1.2 9.1
BFKV 0.17 0.13 0.13 1.98 9.2
Qm 0.19 0.14 0.13 1.7 9.3
MJ3 0.22 0.18 0.15 1.66 9.6
Qp 0.16 0.04 0.13 1.43 9.7
TD 0.16 0.1 0.13 1.78 9.9
4B POT 0.17 0.19 0.12 1.29 10.3
HLPL 0.16 0.03 0.13 1.32 10.3
MS 0.22 0.18 0.14 1.56 10.3
SKOa 0.21 0.15 0.14 2.01 10.4
TEl 0.15 0.12 0.11 1.7 10.6
SKJG 0.2 0.16 0.13 1.88 10.8
MSBM 0.1 0.06 0.07 1.05 10.8
TEs 0.15 0.11 0.1 1.59 10.9
VD 0.16 0.14 0.12 1.58 10.9
SR 0.15 0.13 0.1 0.91 11.1
GKS 0.16 0.12 0.11 1.33 11.1
SKOb 0.19 0.13 0.13 1.94 11.4
MJPL 0.15 20.02 0.12 0.88 11.4
TS 0.15 20.02 0.12 0.81 11.6
MJ2h 0.16 20.003 0.13 1 11.8
RO 0.12 0.13 0.08 0.46 12.3
Qa 0.19 0.16 0.12 1.52 16.2

We show averages computed for all template-free modeled CASP8 targets. Abbre-

viations and definitions of potentials are explained on our Web-Server (http://

gor.bb.iastate.edu/potential) and in Pokarowski et al.34

Figure 2
Heat map for the average RMSDs for best ranked models, for homology modeled targets from CASP8, for different weights of the four-body

nonsequential and short-range potentials where the color gives the value of RMSD (Å). Right: Heat map for the full range of parameters. Left:

Enlarged heat map for the best range of parameters.
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DISCUSSION

Coarse-grained potentials cannot be expected to recog-

nize protein native structures with 100% accuracy regard-

less of the type of modeling used to generate structural

models. This limitation could be due to the sample of

structures used to derive the knowledge-based potentials,

the geometric characterization afforded by the models

used and the optimization methods used to generate

models or the importance of long distance ranges of

interactions that are not considered in their derivations.

Therefore in order to obtain better quality assessments it

is reasonable to produce decoys using one potential and

assess their quality using other scoring functions. Such

an example can be found in McGuffin.37

The RMSDs and Z-scores of the best predicted (by any

potential) models using decoys for homology-based mod-

eled targets and template-free modeled targets have been

averaged over all targets. The results are shown in Table III.

This suggests that if we obtain RMSD and Z-score values

that are not as good as these average values, then it might

be possible to further improve the potentials used either by

taking a linear combination of potentials or perhaps even

by using a nonlinear combination. For the results presented

in Table III, we knew the answer in advance, but in cases

where there is not a large difference between results from

single potentials, there is a chance that by combining

potentials we might obtain a better performing combina-

tion. We recognize that there may be a significant opportu-

nity for improvements in this field because for the tem-

plate-free modeled targets there is a large gap between the

best average prediction for a single (or optimized) potential,

and those using sophisticated methods to combine them.

Here, we have combined two types of multibody

potentials along with the short range pair-wise potentials

to obtain optimized potentials. The optimized potentials

failed to identify the native structure for several cases of

small protein from Decoys ‘R’Us data set (see Supporting

Information), or in cases where the structure was stabi-

lized by ions (Zn21) or ligands (RNA). For proteins

larger than about 80 amino acids and for those which

are stable alone, our optimized potentials perform as well

as the atomistic potentials. This simply reflects the fact

that the correct packing is essential for protein stability,

whether atomic or coarse-grained. In case when proteins

are large, atomistic potentials in protein folding simula-

tions are simply impractical. Thus, there is a need for ef-

ficient, well performing coarse-grained potentials. We

believe that our optimized potentials will be helpful not

only for threading and model ranking problems, but also

in protein folding simulations.

It is also important to point out that this linear combina-

tion of three potential terms is robust. In Figure 2, where

we show the average RMSD for the best ranked models for

template-based (homology) modeled targets, a yellow island

is observed within which the performances are nearly equal.

It is interesting that the parameters set, which we received

from optimization on template-free modeled targets (con-

sidered in the context of Fig. 2), show no significant differ-

ence, to parameters optimized on homology template-based

models. Thus these potentials can be considered to be uni-

versal and do not depend strictly on what type of modeling

(homology or template-free) is being considered.

Principal component analysis (PCA) is a method to

reduce the number of possibly correlated variables into a

smaller number of uncorrelated variables. Li et al. carried

out a PCA of Miyazawa-Jernigan potentials.38 They used

eigenvalue decomposition, which is the most commonly

used method in PCA. By identifying the first principal

component vector and finding a significant correlation

with the vector of hydrophobicity indices of amino acids

they showed that the dominant driving force for protein

folding is the hydrophobic force. It is much more diffi-

cult, and it requires more work to interpret major princi-

pal components in multibody combined potentials. We

have carried out a PCA using the four-body sequence de-

pendent and nonsequence dependent, short-range, BT,25

MJ3,39 and SKJG40 for the case of the set 1sn3 from

Decoys ‘R’Us. The variances of the principal components

for the decoy energies with each potential are shown in

Table III
Optimal (‘‘naive’’) Average Z-score and RMSD for Best Ranked Decoys

for Hard (Template-Free) and Easy (Template-Based Modeled) Targets

from CASP8

Z-score Top Ranked RMSD

Easy 2.21 1.24
Hard 2.75 2.12

Figure 3
Variances of principal components using four-body sequential,

four-body nonsequential, short range, SKJG, BT, and MT3 potentials.
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Figure 3. Each principal component is a combination of

the above six potentials. It can be clearly seen that there

is a major principal component that has the highest var-

iance. The other five principal components are less im-

portant and, by definition, are orthogonal to the major

principal component, and themselves. This tells that in

energy model space there is a high redundancy of data

(models usually capture common features of the system,

and differ mostly in their details). Correlation coefficients

between two-body potentials were calculated earlier by

Pokarowski et al.34 and Feng et al. found the correlations

between sequential and nonsequential four-body poten-

tials.30 We presume that combining the best performing

potentials that are less correlated should provide the best

results. This is something that we will pursue in our

future studies.
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