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In order to model the short time (and distance) scale motions for dense polymeric systems, we
have performed dynamic Monte Carlo simulations of chains on a diamond lattice at considerably
greater densities than those done previously. Chain dynamics were simulated by a random
sequence of three- and four-bond kink motions and end moves. For times shorter than the chain
diffusion time, the single bead autocorrelation function g(¢) exhibits three distinct regimes: a
short time Rouse-like regime where g(¢) ~¢ '/ a mid-region where g(¢) ~ ¢ #, followed by a
longer time, Rouse-like regime where g(¢) ~t /2. There is a smooth crossover from Rouse-like
dynamics, 8 = 1/2, at low density to smaller values of 5 at higher density, and 8 = 0 at the glass
transition density (¢; = 0.92 + 0.01). It is shown that the major motion of the chains is
transverse to the chain contour rather than along the chain. The observed motion is successfully
analyzed in terms of the motion of defects (holes) through the sample. It is shown that the glass

transition at ¢; = 0.92 is caused by the shutting down of the orientation changing four-bond

motions.

I. INTRODUCTION

In this paper, we examine the local dynamics of poly-
mers packed at high densities. Presumably these are the
same motions which persist in the glassy state after the glo-
bal, long range motions (e.g., overall diffusion) have shut
down. Hence, they are of interest in that they determine the
relaxational properties of glassy polymers.' Since a molecu-
lar dynamics simulation is unfeasible for the number of par-
ticles and range of time scales necessary for such a study, to
obtain a qualitative understanding of these motions, we per-
formed dynamic Monte Carlo (MC) simulations® on a mod-
el system consisting of chains confined to a diamond lattice
where multiple occupancy of lattice sites is prohibited (ex-
plicit details of the simulation method will be described in
Sec. II). Asis well known,? a dynamic Monte Carlo simula-
tion is not the solution of an equation of motion but rather is
the solution of a Master equation defined by the allowed set
of moves and the probabilities of these moves. Thus, we view
these simulations as a set of idealized computer experiments
from which we extract some general physical features of
polymer motions at high density. Since in this preliminary
study, we limit ourselves to the short distance (or time scale)
motions, nothing presented here has any direct bearing on
questions concerning the longer distance diffusive motions,
e.g., the adequacy of the reptation model.?

In Sec. I1, as mentioned above we will present the details
of the methodology of our dynamic Monte Carlo simula-
tions. Here we will discuss the allowed moves, the method of
chain growth and high density packing, and the equilibra-
tion process. Then, in Sec. III we will present the results of
the simulations on densely packed polymer chains; concomi-
tantly we will also extract the relevant physical features and
show how they can be explained in terms of a simple pheno-
menological model. This section is subdivided into two
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parts. The first deals with the character of the motions them-
selves. The second shows how these motions provide both a
prediction of and explanation for the occurrence of the glass
transition in polymers. We conclude in Sec. IV with a brief
discussion of our results and their physical implications. Al-
though these results emerge from the study of a particular
model system, we expect that the major findings will prove
to be more general and robust than the model they came
from. Thus, the description of the motional mechanisms will
be cast in more general terms.

Il. METHOD

In order to be as physically faithful to the real motions of
the carbon backbone of a polymer chain as possible, we have
performed the simulation on chains confined to a diamond
(tetrahedral) lattice. We did not allow multiple occupancy
of lattice sites; hence excluded volume effects (both intra-
and interchain) were included as a hard core steric repul-
sion. No other potential interactions were included; so the
simulation represents an athermal, steric repulsion model of
a dense polymeric system.

The details of our simulation method are presented in
the following order: In Sec. A, we shall describe the dynamic
Monte Carlo model we employed, i.e., the allowed moves. In
Sec. B, we shall describe the method of growing a dense sys-
tem of chains. Finally, in Sec. C, we shall describe the equili-
bration steps and the checks on equilibration made by calcu-
lating various static equilibrium properties. Hence a reader
interested only in the model and the results can readily skip
Secs. B and C and go on to the results described in Sec. II1.

A. Monte Carlo simulation

The diamond lattice is enclosed in a cubic MC box of
length L (L was always taken to be divisible by 4 for reasons
which will be clear below) on a side with periodic boundary
conditions. The size of the box L was chosen to be consider-
ably larger than the root mean square radius of gyration of
the chains (L = 28 in most cases, while a bond length, the
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distance between two diamond lattice points, is v3). One
should recall that due to the openness of the diamond lattice
the number of diamond lattice points in an L > cubic box is
L3/8. After the chain growth and equilibration steps de-
scribed below, the system consists of NV chains each consist-
ing of n connected lattice sites (we will colloquially refer to n
as the chain length) confined to the MC box. The polymer
volume fraction

¢ =8nN/L> (1

is the fraction of the occupied lattice sites. For ease of refer-
ence, we refer to the occupied lattice sites as beads, the unoc-
cupied sites as holes, and the lattice segment connecting two
beads as a bond.

We use the three- and four-bond conformational jumps
depicted in Figs. 1(a) and 1(b), respectively, as the basic
MC moves. Iwata and Kurata have shown* that all motions
on a diamond lattice where at least two beads jump can be
formed from a sequence of such elemental three- and four-
bond jumps. As is apparent from the picture, a three-bond
jump only exchanges orientations of the two segments
G *—G ¥. On the other hand, a four-bond jump creates
new orientations within the chain. The single possible new
orientation of the four-bond unit is randomly chosen from
among the three possible orientations of the parallel pair of
bonds of the four-bond unit and is accepted if none of the
three sites are occupied. At the ends of a chain, we allow one-
or two-bond motion of the end beads with the orientation
again randomly chosen, as depicted in Figs. 1(c) and 1(d).

In order to completely specify the model, we must not
only give the possible moves but also the probabilities as-
signed to the various moves. Except for a few specific cases
which will be discussed separately, we assign the a priori
probability of a three-bond jump to be 0.3. As we shall show
below the results are invariant to this particular choice of a
priori probability.® The ratio of two-bond to one-bond end
moves was taken as 2:1.

Fig. 1. Elementary conformational jumps for tetrahedral polymers: (a)
three-bond motion G *—G ¥, (b) four-bond motion (with a random
choice of the new orientation of the bonds), (c) two-bond motion of end
units (with a random choice of the new orientation of the bonds), (d) one-
bond motion of end units (with a random choice of the new orientation of
the bonds).

The simulation then proceeds as follows:

(i) After the system has been equilibrated, we start with
a given spatial configuration of N chains, all of length 7 at a
density ¢.

(ii) We then attempt to move a randomly chosen bead.
The type of move is randomly chosen according to the a
priori probabilities, as is the orientation in the case of four-
bond and end jumps.

(iii) If the move is allowed, i.e., the new positions are
unoccupied, the move is made. If the move is disallowed, i.e.,
the new positions are already occupied, we leave the bead at
its original position.

(iv) We then repeat steps (ii) and (iii) for another ran-
domly chosen bead and continue until we have attempted on
the average to move each bead once, this constitutes one MC
time step. That is, a MC time step is the attempt at N Xn
micromodifications (including 2N end moves) of the config-
uration of the chains. From this new configuration, we then
go back to step (ii) to generate the next time step, etc. To
enable us to take the desired averages, the configuration at
each time step is stored. In addition, to avoid any problems
of an initial configuration biasing the results, we repeat the
whole procedure over again several times starting with a
freshly grown and equilibrated system of chains.

One of the most important average- time dependent
properties of the system of densely packed chains which we
shall calculate is the single bead autocorrelation function

g(1) =n“<i [r.(®) —r,~(0)]2>, (2)

i=1]

where the averaging is over all of the chains in the system and
r; (¢) is the coordinate of bead / at time ¢. There is a difficulty
with using Eq. (2), as it stands, since the beads at the ends of
the chain have considerably higher mobility than those near
the middle. This is illustrated in Fig. (2) where we have
plotted a representative single bead autocorrelation function
for each bead

gi(t)=<[l'.~(t)—i‘:(0)]2) 3)
for a chain of n = 98 at a density of ¢ = 0.75. It is apparent
from Fig. 2 where we have plotted g; (¢) vs i at a fixed time ¢
that the increased end mobility is damped out approximately
10 beads in from an end. Hence, since we want our chains to
represent the much longer chains of a real polymeric system
where end effects are negligible, we shall modify Eq. (2) by
eliminating the 10 end beads at each end of the chain from
the calculation of g(¢). Namely,

n— 10

glty=(n— 20)“( > [r(®) —r,.(O)]2>. 2"

i=11
Unless explicitly stated, we shall always use the modified Eq.
(2') for the single bead autocorrelation function g(¢). Other
similar correlation functions will be defined below as we
have occasion to need them.

B. Method of growing a dense system of chains

The key to generating a densely packed, amorphous sys-
tem of chains is to grow them in an initially disordered (qua-
sirandom) configuration. This results in an equilibration
step which can be performed in a manageable amount of
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FIG. 2. Individual bead autocorrelation function as a function of bead num-
ber i for a chain of n = 98 at density ¢ = 0.75 after an elapsed time of 8250
MC time steps. The average was only over 63 chains so the statistics are not
as good as for the other correlation functions.

computer time. A counter example to such a chain growing
strategy would be to start with a set of N trans chains packed
in parallel (with folding when necessary) into a regular crys-
talline structure and where the unoccupied space surrounds
the chains up to the edges of the MC box. Clearly for such a
high density system, the amount of time necessary to go from
such an ordered system to a representative disordered sys-
tem (if it could be done at all) would be mind boggling.

The chain growing algorithm we used is a necessary
compromise between growing the chains quickly so that the
amount of computer time is reasonable, and growing the
chains slowly enough that they can equilibrate as much as
possible during the growth stage (with a consequent saving
of computer time during the subsequent equilibration step).
There is a degree of arbitrariness in the algorithm described
below, as will become apparent; however, these arbitrary
features were chosen with the above compromise in mind.
Furthermore, we have checked that these arbitrary proce-
dures have no effect on the “measured” properties of the
equilibrated system.

The algorithm for the semisimultaneous growth of the
chains is:

(1) The N chains are initiated at N random lattice posi-
tions modulo 4 in our MC box. That is we chose N random
positions in a box (L /- 4)* and then multiplied all the coordi-
nates by four. This avoids very close clustering of initiation
points.

(2) We always pick the chain we will attempt to modify
by using a random permutation algorithm.

(3) We attempt to grow (propagate) the chain by add-
ing a bead (a bond) in a random orientation at one of the
chain ends (which is also chosen randomly). Of course, we
avoid multiple occupancy of lattice sites.

(4) When the average size of the chains reaches six
beads, we then shift over to a combined propagation, repta-
tion, and kink motion algorithm. A reptation step is
achieved by clipping a bead off one end of the chain (chosen
randomly) and adding it on to the other end in a random
orientation (if a hole exists at the desired lattice point). The

kink motions refer to the set of MC moves (and a priori
probabilities), i.e., three- and four-bond jumps and end
moves discussed in Sec. II A and depicted in Figs. 1(a)-
1(d). Combining these sets of moves with the chain propa-
gation step allows the chains to move and relax as they are
growing. The combined algorithm is:

(a) We continue to pick the chain that will undergo
micromodification by using the random permutation algo-
rithm as in step (2) above.

(b) If for the chain picked, n; (£)<n; (t), where n, (t) is
the length of the chain in question and 7, (¢) is the average
length of chains at that time # in the chain growing process,
we attempt to initiate a chain propagation step.

(¢) If (b) is satisfied, we randomly decide whether to
attempt a chain propagation step with an a priori probability
of 1/2. While 1/2 is clearly arbitrary, this step serves to slow
down the chain growth to allow for equilibration.

(d) If step (c) results in chain propagation, then we
randomly pick an end and affix a new bead to it whose bond
is randomly oriented. Again for the propagation attempt to
be successful, it must not violate the prohibition against dou-
ble occupancy of lattice sites.

(e) If step (c) results in the failure to propagate the
chain, we attempt a reptation step, again subject to the dou-
ble occupancy restriction.

(f) We then attempt to perform the kink motions on the
chain in question. Both one- and two-bond end chain jumps
are tried as described in Sec. II A.

(g) The interior three- and four-bond jumps are also
performed as in Sec. I A except that the decision over
whether to initiate an internal jump attempt for a particular
bead is made with an initial a priori probability of between
0.1 and 0.2. This is again a somewhat arbitrary attempt to
increase the amount of equilibration during the chain
growth process.

(h) We continue to sample the chains using the random
permutation algorithm. When we come to the point where
the chain picked has a length n, (f) = n, the desired chain
length, we omit the chain propagation steps (b)—(d) and go
directly to the reptation step (e).

(1) We continue the procedure until all chains are
length n. We are then ready for the equilibration step.

C. Equilibration

The equilibration procedure we used is: (1) As we step
through the chains, for each chain we attempt a reptation
step as described in Sec. II B. (2) We then attempt to move
the bead in the chains using the three- and four-bond jumps
and end moves as described in Sec. II A. One complete cycle
through all of the chains in the system constitutes an equili-
bration time step. It should be noted that the reptation move
is a much more efficient move for equilibration than the
three- and four-bond jumps. That is, it relaxes configura-
tions faster since it allows the chains to sample a greater
amount of configuration space more quickly.S

Of course as the density increases, the fraction of al-
lowed moves goes down and the equilibration time increases.
In order to speed up the equilibration process at higher den-
sities, we modify step (1) for #3075 to:
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(1) For part of the equilibration time, we put a small drift
on the reptation by biasing the a priori probability in a parti-
cular, but arbitrary, direction. We then shift the drift bias
and repeat the drift procedure in a different direction. Other-
wise the procedure is the same as above. This modification in
the equilibration procedure allows chains to more easily es-
cape from trapped configurations.

The time necessary for equilibration is relatively short
dueto the chain growing procedure we have used. For exam-
ple for a short chain where » =25 at a medium density
¢ = 0.5, equilibration is complete in ~ 10 equilibration
time steps. The time obviously increases with increasing den-
sity and even more with increasing chain length. For exam-
ple, at n = 147, the longest chain length used in this study
and ¢ = 0.75, ~ 10° times steps are required for equilibra-
tion.

Of course, one can never prove that an equilibrated sys-
tem has been achieved; however, before trusting the results
for the dynamics, as a minimum one should use various tests
to check whether the static properties are properly de-
scribed. .

We used both internal and external checks. One such
internal check is that the ratio of allowed to attempted three-
and four-bond jumps had to remain constant with time and
not drift as they do for incompletely equilibrated samples.
Futhermore, these ratios had to be the same for different
runs (i.e., different chain growth and equilibration steps) at
the same chain length and density. In addition, the ratio of
trans to gauche configurations had to be the statistically cor-
rect value, which they were to within 19 for the size of the
systems studied.

A further check is given in Table I where we present the
hole clustering probability for n = 98 chains packed at var-
ious densities. It is apparent from line two of each entry in
this table, that the mean field results get worse as density
increases as would be expected.” Moreover, looking at the
third line in each entry we see that the conditional probabil-
ity of adding a new hole to an already existing cluster of holes
remains essentially constant at a given density (making due
allowances for the poorer statistics at higher densities and
larger cluster sizes) as it must.

External checks on equilibration were done by checking
static expectation values with previously calculated values.

1925

6.5

In(R®
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In(n—1)

FIG. 3. Mean square end-to-end separation (R 2) as a function of chain
length (n) at various concentrations. The self-avoiding walk solid line
(SAW) was taken from the MC calculation in Ref. 8, while the nonreversal
random walk dashed line (NRRW) was taken from Ref. 9. The triangles
are for a single chain in the MC box (except for the two longest chains with
n = 70 and 98 which have two chains in the MC box). The black dots are for
¢ = 0.75 and the diamonds are for ¢ = 0.8214. The error bars are the stan-
dard deviation for a single run. Where no error bar is shown, the error is less
than the size of the symbol.

An example of this is given in Fig. 3. Here we show the mean
squared end-to-end separation for the chain as a function of
chain length for various densities. The low density results
(which are not really the subject of this paper but were calcu-
lated to check the methodology) lie on the theoretical self-
avoiding walk random (SAW) curve,® as they should. Simi-
larly, the high density results lie on the curve obtained from
the second-order, nonreversing random walk theory
(NRRW), of Domb and Fisher.® More detailed analysis of
the concentration dependence of the coil dimensions are pre-
sented for a chain length » = 49. In Fig. 4, we plot the mean
square end-to-end distance (R 2) and the fourth reduced mo-
ment of the distribution of the end-to-end vector
0(4,2) = (R*)/{R?)* vs volume fraction of polymer ¢.
With increasing ¢, the size of the polymer coil decreases
monotonically and approaches, in the bulk density limit, the
theoretical value for an NRRW consisting of n — 1 = 48
bonds. Meanwhile, o(4,2) increases from the value for
SAW’s at infinite dilution to the value for NRRW at very
high concentration. These results extend the findings of pre-
vious MC simulations of three dimensional, monodisperse

TABLE 1. Statistics of hole clusters in a diamond lattice system. Chain length n = 98.

Type of “clusters” ¢ =025 ¢=0.5 $=075 $=0.8214

P(1) 0.75 0.5 025 0.178

1. o P()/(1—¢) 10 1.0 1.0 1.0
P(2) 0.646 0.3324 0.101 4 0.055 8

2 (f’ P(2)/(1—¢)* 1.148 1.330 1.622 1749
P(2)/P(1)  0.859 0.665 0.400 0.314
P(3) 0.556 0.2241 0.040 20 0.015 26

3. /05 P(3)/(1 —$)° 1313 1.793 2.573 2.679
P(3)/P(2)  0.860 0.674 0.396 0273
P(4) 0.481 0.1503 0.01576 0.003 93

4. o’gb P(4)/(1 — $)* 1519 2.404 4.035 3.865
P(4)/P(3)  0.864 0.670 0.392 0.258
P(5) 0.414 0.0995 0.005 753 0.001 12

5. P(5)/(1—¢)° 1.744 3.183 5.861 6.174
P(5)/P(4)  0.861 0.662 0.365 0.285
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FIG. 4. The mean square end-to-end separation (R ?) and the fourth re-
duced moment, o(4,2) = (R *)/{R 2)? as a function of density ¢ for chain
length # = 49. In both cases we have normalized the result to the value at
zero density. (R32), the mean square end-to-end separation at ¢ =0, is
400.3. g,, the fourth reduced moment at ¢ = 0, is 1.4313. The arrow corre-
sponds to the result of the NRRW theory of Ref. 9.

polymer systems'’ to considerably longer chains and could
be taken as proof of appropriate equilibration of our model
systems. For the longer chains we. studied (n =98 and
n = 147), similar behavior was observed; however, the scat-
tering of the data for (R ?) and 0(4,2) at high density is
greater.

Iil. RESULTS

This section is divided into two subsections, the first
discusses the nature of the short time motions and the second
discusses the onset and origin of the glass transition.

A. Short distance motions

In Fig. 5 we show a log-log plot of the single bead auto-
correlation function at a density ¢ = 0.75. It is apparent that
there are three distinct regimes.! At short times g(¢) ~1'/2,
characteristic of Rouse-like dynamics.'> The middle time
regime is characterized by g(t) ~t#, where B =0.33 for

gy~

In(t)

FIG. 5. Single bead autocorrelation function as a function of time for var-
ious chain lengths at a density ¢ = 0.75.
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this density. The third regime is again Rouse-like in the sense
thatg(¢) ~¢ '/2. At still longer times not shown in Fig. 5 and
not germane to the subject of this paper, g(¢) ~¢. This is the
time regime characteristic of diffusional motion of the chain
as a whole and will not be discussed further here.

Figure 5 also shows the chain length dependence of
g(2). While the results for » = 49 are clearly different from
the others, the results for n = 98 and 147 are nearly coinci-
dent throughout the first # }/2 region, the ¢ # region and per-
haps into the onset of the second ¢ /2 region. These are the
regions we will be interested in this paper, and it appears that
both qualitatively and quantitatively we have reached
asymptotia with respect to chain length for describing the
motions in this time regime. Thus we feel justified in using
chains of n = 98 to study the density dependence of the mo-
tions which is the major focus of the rest of the paper. More-
over, the fact that we are examining a region where the mo-
tion becomes independent of chain length indicates that this
regim is probing local motions of the chain rather than over-
all chain movement.

Before any further discussion of the various time re-
gimes shown in Fig. 5 and their density dependence given in
Fig. 6, we must investigate the types of motions we are prob-
ing. However, before doing so, there is a loose end that must
be cleared up. In Sec. IT A, we stated that the results of the
simulation were invariant to the choice of a priori probabili-
ties for the three- and four-bond jumps. Figure 7 presents a
log-log plot of g(¢) vs ¢ for n = 98, ¢ = 0.75 and using three
different a priori probabilities of three-bond jumps, 0.15,
0.30, and 0.65. As can'be clearly seen the results are insensi-
tive to the choice of a priori probability. The reason for this is
that in a dense system most of the attempted moves are un-
successful, either because there are no vacancies to jump into
or because the chain in question is not in a configuration
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FIG. 6. Single bead autocorrelation function as a function of time for several
densities at a chain length n = 98. The time dependence of the 1 ? regime
(see the text) is listed for each curve.
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FIG. 7. Single bead autocorrelation function as a function of time for several
different values of the a priori probability of three-bond jumps (see the text)
for a chain length » = 98 and a density ¢ = 0.75.

allowed to move into the available vacancies. Hence, the sys-
tem itself determines the fraction of three- and four-bond
jumps, independent of our choice. In fact for the three cases
depicted in Fig. 7 the fraction of accepted three-bond moves
was 0.077 with differences in the next significant figure.
Hence unless something drastic is done to the a priori proba-
bilities, the results are independent of the choice.

The next question we address is what is the nature of the
chain motion? Is the motion down the chain, i.e., along the
chain contour (c), or transverse to the chain, i.e., across the
sample(s)? To this end, Figs. 8 and 9 present log-log plots of
the mean square displacement of correlated elementary con-
formational jumps across the sample (g,) and down the
chain (g,.), respectively vs time at several densities for
chains of » = 98. In Table II, we give the conformational
jump statistics along the chain and across the sample, again
for n = 98 as a function of density. Examining Figs. 8 and 9
we see that the mean-square-jump displacement possesses
three time regimes, exactly analogous to the three regimes in

o =025
o =0.5
» =075

4
In(t)

FIG. 8. The mean square displacment of jumps across the sample as a func-
tion of time for several concentrations at a chain length #» = 98. The time
dependence of the r* regime (see the text) is given for each curve.

1927

7
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FIG. 9. The mean square displacment of jumps down the chain as a function
of time for several concentrations at a chain length n = 98. The time depen-
dence of the #* regime (see the text) is given for each curve.

the single bead autocorrelation function—a short time ¢ ! re-
gime, a middle time #* regime and a longer time, second ¢!
regime. However the middle regime has a larger value of
(for the same value for ¢) for motion across the sample than
for motion down the chain. Thus, the jumps move faster
across the sample than they move down the chain. By com-
paring columns 2 and 3 of Table II we see that the probability
of a jump across the sample is larger than the probability of a
jump down the chain. Hence, since there are more jumps
going faster transverse to the chain than along the chain, we
conclude that the dominant motion is transverse to the chain
and across the sample.

To aid in the visualization of the transverse motion we
show two representative, before and after “snapshots” of the
motion of one of the chains in a dense system of chains of
¢ = 0.75 in Figs. 10 and 11 for n = 49 and 98, respectively.
In both figures the time is sufficiently long that the mean
displacement of a single bead is on the order of the radius of
gyration, so that one can see appreciable net displacement,
and is well into the second ¢ '/2 regime of the single bead
correlation function, see Fig. 5. In Fig. 10 we show the snap-
shots for a shorter chain, n = 49, where, since the picture is
less cluttered, it is somewhat easier to see the relative motion.
Figure 11 shows the same sort of before and after snapshots
for the more representative n = 98 chain. It is apparent on
looking at these pictures (and we have examined many
more) that relatively large parts of the chain have moved a
long distance in a direction on the average perpendicular to
the local chain axis. However the positions of several of the
beads (see in particular Fig. 11) have remained unchanged.
In fact a detailed examination of the time trajectory shows
the number of immobile beads has decreased but a few such
fixed beads remain over the entire course of the second
Rouse-like regime. Hence we cannot yet be in the true global
diffusion reégime [g(¢) ~¢].

The physical reason that the major motion is across the
sample rather than down the chain is quite easy to under-
stand. In order for a chain to undergo a jump, it must bein a
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TABLEI1. Statistics of correlated conformational jumps for chains with n = 98-jump propagation probabili-

ty*.
Conditional probability
Down Across Sy -

¢ the chain the sample reverse jump p(s,ec)® ples)t

0.25 0.335 0.585 0.080 0.377 0.532

0.50 0216 0.703 0.081 0.277 0.655

0.75 0.193 0.683 0.124 0.289 0.623
0.8214 0.189 0.668 0.143 0.320 0.572

*Total probability of a correlated jump, sum of columns two, three, and four is unity.
® Probability that an observed cross sample succession of jumps was preceded by a jump propagating down a

chain.

¢ Probability that an observed succession of jumps down the chain was preceded by a jump propagating across

the sample.

configuration in which such a jump is possible and it must
have vacancies to jump into. For example, the middle of a
stretch of an all-trans conformation cannot perform a three-
bond jump. In addition, a three-bond jump requires two ad-
jacent holes to jump into, while a four-bond jump requires
three adjacent holes. Once a chain has for example under-
gone a three-bond (two-hole) jump, it leaves two holes in its
formerly occupied position. Hence whether the adjacent
chain can now also undergo a three-bond jump depends only
on whether its conformation will allow such a jump and not
on the availability of two holes to jump into. On the other
hand, the occurrence of another three-bond move in the
same chain and adjacent to the first one requires another set
of two holes as well as the correct conformation. Hence the
probability of two successive cross-sample three-bond jumps
is proportional to p(2), where p(2) is the probability of hav-
ing a two hole cluster (see Table I) while the probability of
having two successive jumps down the chain is proportional
to p(2)>. Since from Table I, p(2) is a small number at high
densities, the motion is much greater in the transverse direc-
tion. Similar considerations hold for four-bond jumps.

FIG. 10. Two superimposed snapshots of a polymer chain of length n = 49
separated by 20 000 MC time steps. This simulation was at a density
¢ = 0.75. An arrow points to an example of a bead which has not moved
during the time course of the simulation. The two ends of the chain are
shown by a triangle and a hexagon.

Hence we have the picture of successive jumps moving from
chain to adjacent chains, essentially perpendicular to the lo-
cal chain axis.

It is easier to visualize the motion by focusing on the
complementary motion of clusters of holes randomly mov-
ing through the sample rather than focusing on the chain
motion directly. However, a note of caution must be invoked
when thinking of the motion as hole motion. Since a hole
cluster can only jump when a chain has jumped, the motion
of the hole clusters has topological constraints imposed on it
by chain connectivity. Hence, the motion of the hole clus-
ters, while random, is highly constrained and not at all like
the free diffusion of defects in “normal” (i.e., small mole-
cule) crystalline solids. Keeping this cautionary note in
mind (and we shall have to make use of it later) we have the
picture of clusters of holes diffusing through the sample and
moving locally perpendicular to the chain axis. Single holes
can only contribute to end motion so they do not move far on
their own. Two-hole clusters move by three-bond jumps,
three-hole clusters can move by four-bond jumps or they can
be split up by a three-bond jump into a two-hole cluster and

FIG. 11. Two superimposed snapshots of a polymer chain of length n = 98
separated by 45000 MC time steps. This simulation was at a density
& = 0.75. Arrows point to two examples of a bead which has not moved
during the time course of the simulation. The two ends of the chain are
shown by a triangle and a hexagon.
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an immobile single hole. A single hole can only become mo-
bile by coalescing with a two-hole cluster to become a three-
hole cluster. Jumps down the chain are caused by a succes-
sion of hole clusters passing for the most part through the
chain.

Utilizing this picture of hole clusters jumping (diffus-
ing) through the sample, we are now in a position to analyze
and understand the various time regimes in the single bead
autocorrelation function. At short times, we see clusters of
holes, mostly two-hole clusters (see Table I) diffusing across
the chain axis jumping from chain to chain. Such a diffusion
of hole clusters exhibits the standard diffusive linear propor-
tionality of the mean square displacement on time. This is
the origin of the first linear time regime exhibited in Fig. 8.
As is well known,!? a defect diffusion description (in this
case a hole cluster) causes a Rouse-like 7 !/ dependence for
the single bead correlation function as exhibited in Figs. 5
and 6.

However, a two-hole cluster cannot diffuse very far be-
fore it runs into a segment of chain that due to its configura-
tion is unable to undergo a three-bond jump. One example,
of many such configurations, would be an all-zrans stretch.
The only thing that the two-hole cluster can do is diffuse
back in the direction it came from, until it runs into another
chain conformation which cannot undergo a three-bond flip.
Thus we have a picture of two-hole clusters diffusing across
the chains and constrained within a box by chain conforma-
tional restrictions. These configurational barriers to two-
hole diffusion can be relaxed, but this requires configuration
changing four-bond jumps. That is, in the hole cluster pic-
ture, it requires the passage of a three-hole cluster (or per-
haps several three-hole clusters). Since three-hole clusters
are relatively rare in dense systems (See Table I) the time
scale for the destruction of a barrier to two-hole motion is
long compared to the two-hole diffusion (or jump) time. Of
course, the passage of a conformation changing three-hole
cluster not only destroys configurational barriers but also
creates new ones. Thus, the two-hole cluster now finds itself
confined to a new configurational box in which it can diffuse
until the configurational constraints relax following the pas-
sage of another three-hole cluster.

We have schematically illustrated this process in Fig.

12. The two-hole cluster is constrained in a conformational
box of average length / with reflecting walls. Within this box,
it undergoes Brownian diffusion. The cluster can also hop
from box to box with a rate constant X which denotes the rate
of configuration changing jumps. As mentioned above, the
short time (i.e., short compared to the mean time to traverse
the box) mean-square-hole displacement is proportional to
with a proportionality constant reflecting the diffusion con-

Kk
X =1 | | 1Y |
0 ~ae 2/ 3/ al

FIG. 12. A schematic illustration of the “box model” (see the text) for the
diffusion of two-hole clusters. The average length of the conformational box
is / within which the hole clusters freely diffuse with a diffusion constant D.
The rate of hopping from one box to another is given by k. The kinetic
diffusion equation for this model is given in Eq. (4).
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stant (or rate of three-bond jumps). At long times as shown
in Fig. 8, the behavior of the two-hole cluster is again diffu-
sional with a mean square displacement again proportional
to ¢ and the proportionality constant reflects the box hop-
ping rate constant (i.e., the rate of configuration changing
four-bond jumps). This long time defect diffusion regime
again produces a second Rouse-like ¢ /2 regime for the single
bead correlation function such as is shown in Fig. 5.

The intermediate time regime is a pausing regime where
the two-hole clusters have felt the effects of the configura-
tional barriers but not enough time has passed for configura-
tional changing four-bond jumps. As the density increases,
the number of three-hole conformation changing clusters
decreases as shown in Table I, hence the pausing time in-
creases. This is reflected in the decreasing slope for the inter-
mediate time regime with increasing density for the jump
mean square displacement shown in Figs. 8 for g, (¢) vs fand
in the single bead correlation function of Fig. 6.

A mathematical realization of the model illustrated in
Fig. 12 is given by the kinetic diffusion equation

dp; (x,1) 3%, (x,1)
=D
ot ax?
+k [Pi+ (x+ L) —pi(x— I,t)], 4)

where p, (x,t) is the probability that the two-hole cluster is
located at position x within box i at time #, D is the diffusion
constant for motion within the box and k is the rate at which
it jumps from out of box / a distance / (the box length) into
an adjacent box. Solving Eq. (4) using the reflecting bound-
ary condition at the walls of the box, we can use the probabil-
ity to obtain the mean square displacement

(Ax?(t)) =2kt + 1/6
_16 ¢

4
T m=o0

— 2kp; (x,2)

exp{ — [(2m + 1)2D#?/1 |}
2m + 1)* '

™M

(3

The formalism embodied in Eqs. (4) and (5) carries over to
the down chain autocorrelation function of jumps, g, (¢), if
we identify the p, (x,?) as the probability of a conformational
jump at position x in the /th box of length /. The down chain
motion is caused essentially by a succession of cross-chain
holes which allows the elemental jumps to propagate on the
average a distance / before coming to an configurational bar-
rier. This barrier is then relaxed by conformational changes
with a rate constant k.

We have fit Eq. (5) to the simulation results depicted in
Figs. 8 and 9. The phenomenological parameters of this sim-
plified box-jump diffusion model are given in Table III along
with the standard deviation of the fit for a variety of densi-
ties. While D, the short distance hole diffusion constant, and
/, the average distance between configurational barriers, de-
crease with increasing density, k, the rate at which confor-
mational barriers are relaxed, decreases much more rapidly
at high density. This is because ratio of four-bond (confor-
mation changing) jumps to three-bond (conformation pre-
serving) jumps decreases with increasing density. This will
be discussed in greater detail in the next subsection.
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TABLE III. Fit of box diffusion model* to g, (¢) and g, ().

Kolinski, Skolnick, and Yaris: Dense polymeric systems

Down the chain Across the sample
Std° Std®
é k 1 D deviation k I D deviation

0.25 0.58 8.3 0.053 0.13

0.5 0.27 8.4 0.056 0.09

0.75 0.34 6.5 0.043 0.10 0.076 38 0.034 0.07

0.8214 0.010 44 0.035 0.09 0.019 3.6 0.034 0.04
*Equation (5).
®See Figs. 8 and 9.

°This is the standard deviation of a point on a plot of In g(#) vs In 7 as given in Figs. 8 and 9.

B. The glass transition

The kinetic description of the glass transition we shall
adopt is that at the glass transition long distance motions
shut down. That is, above the glass transition, on an experi-
mental time scale long distance diffusive motions are observ-
able. Below the glass transition, due to kinetic frustrations,
the long distance, diffusive type motions no longer occur.
This is the type of description that has emerged from recent
theoretical studies of simple glassy systems.'*!> Here we
want to investigate what kinds of motions are involved in the
shutting down of the long distance motions in polymer
glasses.

From the description we have constructed in the pre-
vious subsection, it is evident that if there were no configura-
tion changing four-bond jumps, diffusion of the two-hole
clusters would be constrained to their short distance con-
figurational box. Hence, there should be no long distance
diffusional motion of the chains.

We checked this by doing a computer experiment and
performed a simulation on chains of n = 98 at a density of
0.75 where we set the a priori probability of four-bond jumps
to zero. The results of this simultation are presented in Fig.
13 as a log-log plot of the single bead autocorrelation func-
tion vs time. We see that beyond the Rouse-like ¢ '/? regime
the correlation function now has a plateau. The chains can-

31 « P3-bond) = 0.3

° no 4—bond jumps

0 2 4 6 8 10
In(t)

FIG. 13. The single bead autocorrelation function as a function of time,
where no four-bond jumps were allowed, showing a glass-like behavior. For
comparison we have also plotted the autocorrelation function where four-
bond jumps were allowed showing a normal liquid-like behavior. Both sim-
ulations were done for chains of length » = 98 at a density of ¢ = 0.75.

not move over long distances in the absence of configuration
changing, four-bond jumps. For short times, however, the
correlation function is the same as when the four-bond mo-
tions are included.

Based on the above, we now propose that the glass tran-
sition can be described by a free-volume theory very much
like that originally proposed by Fox and Flory'® (and many
people since).!” When the density gets high enough (i.e., the
free volume gets small enough) the probability of having
three-hole clusters is sufficiently small that there are no
longer any configuration changing jumps, and the long dis-
tance motions shut down. Hence, we can find the density of
the glass transition by extrapolating our simulation data to
the point where the four-bond motions have shut down. In
Fig. 14, we plot the ratio of accepted four-bond jumps to
accepted three-bond jumps vs In(1 — ¢). The extrapolated
straight line goes to zero at a predicted ¢, = 0.92 + 0.01.

This prediction for ¢ is the same as was found in a
diamond lattice Monte Carlo simulation by Batie, Viovy,
and Monnerie.'® They did a simulation for chains of n = 32
(with one short chain added to the MC box to obtain the
desired density) and found that the single bead correlation
function flattened out, just as in Fig. 13, for a density
between 0.910 and 0.918. They did not, however, present
any analysis of the kinds of motions which freeze out and
thus produce the glass transition.

While experimental estimates of the free volume neces-

0.075
e e n=98
g on=7
_? n=70
g, 0.050 |
Y
-g (1
9]
T
§ 0.025 -}

= 0.92 el
vd
¢
/’
0.000 < T T
-3 -2 -1 0

In(t-¢)
FIG. 14. The ratio of accepted four-bond jumps to accepted three-bond
jumps as a function of In(1 — ¢). This fraction extrapolated to zero gives a
predicted ¢ = 0.92 + 0.01.
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sary to have a glass transition are somewhat fuzzy (since
free-volume itself is a fuzzy concept, in that it can be defined
in a number of ways), our theoretical estimate of 8% free
volume for the glass transition is not inconsistent with the
experimental results.'®

IV. DISCUSSION

Using densely packed chains on a diamond lattice as a
model system to investigate the properties of dense polymer-
ic systems, we have been able to arrive at a simple general
picture for the short time dynamics and the onset of the glass
transition. It remains, however, to ascertain whether, and in
what way, the diamond lattice Monte Carlo system is a rea-
sonably faithful zeroth-order physical model for real, dense,
polymeric systems. The ultimate answer to this question
must await the completion of a large amount of computa-
tional experiments, real experiments, and analytical theory.
However, one indication that Monte Carlo simulation of
polymer dynamics on a diamond lattice is not completely
nonphysical, is that preliminary calculations® in the longer
time diffusive regime give a molecular weight dependence of
the diffusion constant in reasonable agreement with the ex-
perimental value?! of n =21,

We conclude by casting the major findings of this model
study into a lattice independent language which should have
a wider validity than just the model system examined here.

If we subdivide the basic local motional transitions of a
polymer chain into two classes: those which conserve config-
urations, and those which change configurations, the con-
figurational changing class of motions require a larger local
free volume than those which conserve configurations. On
the shortest distance scale, the motion of a dense system of
polymer chains consists mainly of configuration preserving
transitions and is transverse to the local chain axis. The mo-
tion on this short distance scale can be pictured as random
diffusion of small free volume defects (or holes) across the
sample, subject to the topological constraints imposed by the
chain connectivity and configurations.?? This “free” diffu-
sion of holes runs into configurational barriers caused by
chain topologies that cannot undergo configuration preserv-
ing transitions. Hence the hole mobility is constrained by the
chain topology. In order to release this constraint, a larger,
but still local, density fluctuation is required which creates
enough free volume to enable the constraining chain to un-
dergo a configuration changing local transition (or perhaps
transitions). It is these local free volume fluctuations, that
allow for configuration changes, which act as the gating
mechanism for longer distance scale diffusion of free volume
and allows the longer distance and time scale motions.

When the free volume of the system becomes small
enough, these local free volume fluctuations shut down.
Hence the configuration changing transitions can no longer
occur. With no mechanism available to release the configu-
rational barriers, the hole motion is now locally trapped, and
hence there are no long distance, diffusive motions of the
polymer chains. It is the shutting down of these local free
volume fluctuations which signals the onset of the glass tran-

sition. It is not that local density fluctuations no longer occur
below the glass transition, but rather that the density fluctu-
ations that do occur do not create enough free volume to
allow configuration changing transitions.

The idea that the glass transition can be understood in
terms of free volume, as we have already indicated, is of
course by no means new. What is new is that we have for the
first time shown a specific realization of the ideas that have
been around for a long time. Moreover, we have shown that
one can shut down the long distance motion by shutting
down a local motion that allows the long distance motion to
occur. This local configuration changing motion acts as a
gate for the long distance motions and comes naturally out of
the picture necessary for understanding the short time mo-
tion of dense polymeric systems and is not grafted on as an
afterthought to describe the glass transition. Thus the de-
scription of the motions is a consistent one.
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