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INTRODUCTION

Thanks to worldwide efforts in structural genomics,1–3 we now know

over 75,000 protein tertiary structures.4 This number is only a small frac-

tion when compared with the number of known protein sequences. Com-

putational methods can predict structures for more than a half of newly

sequenced proteins by means of template-based modeling with a suffi-

ciently high accuracy.5–8 For some of the remaining proteins, it is possi-

ble to predict their structures in a de novo fashion if they are small and

structurally simple.9–14 Thus, the problem of protein structure prediction

is practically gradually being solved, and it may be completely solved in

the near future. Obviously, for the most difficult (and ‘‘atypical’’) cases of

monomeric structures and to a much larger extent for the plethora of

possible protein–protein (protein-nucleic acid, protein-carbohydrate, etc.)

complexes, structure prediction will remain a challenging task for deca-

des.9,15–17 The knowledge of protein tertiary structures facilitates fast

developments in various branches of molecular medicine and biotechnol-

ogy.18,19 It, however, becomes more and more obvious that to under-

stand the underlying molecular mechanisms of life, we need to see bio-

molecules ‘‘in action.’’

Protein dynamics, resulting from a specific flexibility of their structures,

has drawn much attention recently in both theoretical and experimental

molecular biology. Studies of dynamics of protein structures and their

assemblies are important for understanding the mechanisms of protein

function in various cellular processes,20,21 in particular, ligand binding,

enzymatic reactions,22 conformational diseases,23 and protein–protein

interaction.24 The understanding of protein flexibility is also important

for practical applications such as development of computer-aided meth-

ods of enzyme design25,26 and drug development.27

In X-ray protein crystallography, which determines the Cartesian coor-

dinates of atoms in proteins, uncertainties/fluctuations of atomic positions

are provided in the form of B-factors.28 The B-factor measures the mobil-

ity of atoms, but it also reflects some inherent aspects of crystallographic
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ABSTRACT

It is crucial to consider dynamics for

understanding the biological function of

proteins. We used a large number of molec-

ular dynamics (MD) trajectories of nonho-

mologous proteins as references and exam-

ined static structural features of proteins

that are most relevant to fluctuations. We

examined correlation of individual struc-

tural features with fluctuations and further

investigated effective combinations of fea-

tures for predicting the real value of resi-

due fluctuations using the support vector

regression (SVR). It was found that some

structural features have higher correlation

than crystallographic B-factors with fluctu-

ations observed in MD trajectories. More-

over, SVR that uses combinations of static

structural features showed accurate predic-

tion of fluctuations with an average Pear-

son’s correlation coefficient of 0.669 and a

root mean square error of 1.04 Å. This cor-

relation coefficient is higher than the one

observed in predictions by the Gaussian

network model (GNM). An advantage of

the developed method over the GNMs is

that the former predicts the real value of

fluctuation. The results help improve our

understanding of relationships between

protein structure and fluctuation. Further-

more, the developed method provides a

convienient practial way to predict fluctua-

tions of proteins using easily computed

static structural features of proteins.
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techniques. Moreover, fluctuations estimated by B-factors

are influenced by the molecular environment of the crys-

tal structure. Protein mobility in solution could differ

qualitatively from that in a crystal. Eastman et al.29

showed that B-factors are an accurate measure of fluctua-

tions for stable parts of proteins, but significantly under-

estimate motion in flexible regions. Somewhat more

straightforward measures of structure fluctuations could

be derived from nucleic magnetic resonance (NMR)

experiments, although resulting estimates can be flawed

by various limitations of actual measurements and by the

computational schemes of their interpretation.30–33

Therefore, these methods do not fully reflect actual fluc-

tuations of proteins.

Molecular dynamics (MD) is the most straightforward

method for theoretical studies of dynamic aspects of

molecular systems. Because of the progress in comput-

ing technology, it is now practical to simulate protein

systems in a timescale of tens of nanoseconds. Never-

theless, such simulations remain costly. With a signifi-

cantly less computational requirement, the internal

motion of a protein can be approximated by the nor-

mal mode analysis of a harmonic model of proteins.34

Another possibility is to use simulations using coarse-

grained representations of protein structures. A simple

approach is the Gaussian Network Model (GNM) and

its derivatives.35–38 Long-time simulation at an inter-

mediate resolution can be achieved using simplified

protein models such as UNRES39 and CABS.40 These

models enable a low-resolution study of dynamics (or

stochastic dynamics) in timescales by a few orders of

magnitude longer than possible by all-atom MD.41–44

A weak point of studying dynamics using coarse-grained

models is a lack of straightforward scaling between the

models’ time and the real time. Thus, all-atom MD

simulations should always be used as a reference for

coarse-grained dynamics.

A number of computational methods for predicting

protein fluctuations have been published; however,

almost all of them evaluated their prediction results

mainly in comparison with the crystallographic B-factor

of proteins. As discussed earlier, the B-factor does not

fully capture the mobility of proteins in solution. As we

show in this work, the fluctuations observed in MD and

the B-factor correlate rather poorly, as was also con-

cluded in a previous work.29

There are a series of works that use GNM or its var-

iants for predicting B-factors of proteins.35,38,45,46

Micheletti et al.47 extended GNM by adding Cb atoms

(bGM). The fluctuations of residues predicted by bGM
were compared to the fluctuations from the MD simula-

tion of HIV-1 protease. The self-consistent pair contact

probability method, which is similar in its spirit to

GNM, was used to predict fluctuations and compared

with B-factors.48 Zhou and coworkers49 developed an

all-atom mean-field model to predict fluctuations.

Structural features of proteins were also investigated

that can indicate fluctuations represented by B-factors.

These features include solvent accessibility of residues,50

distance from a residue to the center of mass of the pro-

tein,51 eigenvectors of the square distance matrix,52 and

predicted local fragment structures.53 An alternative

direction pursued was to predict B-factors from protein

sequences. Machine-learning methods, such as Support

Vector Machine,54,55 the random forest algorithm,56 or

an artificial neural network,57 were used to predict fluc-

tuations using sequence information and structural fea-

tures that can be predicted from sequences, such as the

secondary structure and the accessible surface area of res-

idues.

In this work, we used support vector regression (SVR)

to investigate the relationship between protein structure

and dynamics. We used various structural characteristics

as well as structure fluctuation profiles predicted by

GNM as input for SVR. The target reference is the dy-

namics observed in long MD simulations for a represen-

tative set of 592 globular proteins. To the best of our

knowledge, this is the first time that protein fluctuations

have been investigated on such a large dataset of MD

simulations. In this context, we also analyzed differences

of protein dynamics deducted from the B-factors and the

in-solvent dynamics computed by MD simulations. A

more practical purpose of this work is to provide a fast

(essentially instantaneous in comparison with MD) and

reliable method that can be used for predicting fluctua-

tions of protein structures. Unlike existing works men-

tioned earlier, we predict the real value of residue fluctu-

ations rather than simply showing correlation between

predicted and actual fluctuations values. Remarkably, our

method predicts fluctuation highly accurately with an av-

erage error of less than 1.1 Å. The correlation coefficient

of our prediction with the actual fluctuations observed in

MD simulations is higher than that of GNM. We also

found that some of the static structural features, such as

residue contact number, have higher correlation with the

residue fluctuation in MD simulation than B-factors do.

The developed software for predicting fluctuation, named

flexPred, has been made freely available for the academic

community.

MATERIALS AND METHODS

Dataset of molecular dynamics trajectories

The molecular dynamics (MD) trajectories of proteins

were selected from MoDEL (Molecular Dynamics

Extended Library).58 Of 1897 entries in the database, the

following entries were discarded: trajectories for protein

structures solved by NMR, those which include more

than one protein chain in the simulation, and trajectories

for proteins whose length differ from the corresponding

entries in the Protein Data Bank (PDB).4 These MD
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trajectories were computed using AMBER,59 GRO-

MACS,60 or NAMD61 force fields. If more than one

simulation is available for a protein, we used the first

one with an earlier entry date in the database. The

MoDEL trajectory files were uncompressed with the

PCASuite software.62 Eight hundred and thirty-seven tra-

jectories remained after this filtering process. From this

subset, we removed redundant proteins using the PISCES

server63 with a sequence identity cutoff of 35%. The

final number of trajectories is 592. This dataset contains

proteins from all main classes in the CATH database64:

111 proteins in the a class (18.75%), 149 proteins in the

b class (25.17%), 256 in the ab class (43.24%), and 76

in the few secondary structure class (12.84%). The length

of the proteins ranges from 21 to 994 residues (Fig. 1).

The simulation time was 10 ns for most of the proteins

(96.11%), while the rest of the proteins had shorter tra-

jectories: 5 (0.33%), 2 (2.36%), and 1 ns (0.5%), and

one protein each with 6.5, 6.0, 5.5, and 4.5 ns.

Definition of fluctuation

The fluctuation of amino acid residue i is defined in

two ways. It can be defined as a root mean square devia-

tion (RMSD) of the mean position of an atom in an MD

trajectory:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ðDRiÞ2

�s MD

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT
tj¼1

xiðtjÞ �
�
xi

�� �2
vuut ð1Þ

where xi(tj) is the Cartesian coordinates of the Ca atom

of residue i at time tj in the trajectory, T is the number

of time frames in the trajectory, and <xi> is the average

position of the Ca atom of residue i in the trajectory.

We also used the coordinates in the PDB file as the refer-

ence:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ðDRiÞ2

�s ref

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT
tj¼1

xiðtjÞ � xrefi

� �2vuut ; ð2Þ

where xrefi is the coordinates of the Ca atom of residue

i in the PDB file. The distance of residue positions is

computed after superimposing the PDB structure on

each frame. If alternative positions of the atom are

recorded in the PDB files, the first position of the atom

was used. As shown in Figure 2, these two definitions

give similar fluctuations of residues, but not identical.

The correlation coefficient of the two fluctuation values

is 0.86. The fluctuation value is smaller when the mean

of a trajectory is used as the reference [Eq. (1)] in almost

all the cases (99.9%). Unless noted, we use the second

definition of fluctuation [Eq. (2)] in the results that will

be shown below, because we compare the fluctuations

from MD with B-factors and GNM, both of which are

attributed to PDB structures.

Structural features of proteins

We considered the following static protein structural

features.

1. B-factor (temperature factor).28 The B-factor reflects

dynamic motion, the static disorder of the atom in

the crystal structure, and also errors in model build-

ing. The B-factor values are taken from the PDB file.

2. Square of the distance between a residue and the pro-

tein center of mass, which is defined as follows:

Figure 1
Histogram of the length of proteins in the dataset. There are in total

592 proteins.

Figure 2
Average fluctuations of proteins in MD trajectories using two

definitions. x values show fluctuations of residues relative to the crystal

structures of proteins in the PDB [Eq. (2)], while y values are

fluctuations relative to the mean structure of each MD trajectory [Eq.

(1)].

Predicting Protein Fluctuation
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r2i ¼ xi � 1
�
N

XN
j¼1

xj

8>>>>:
9>>>>;

2

; ð3Þ

where xi is the position of the Ca atom of residue i. A

previous work showed that this parameter has good cor-

relation with the B-factor.51,52

3. Residue contact number, which is defined as the num-

ber of surrounding residues, whose Ca atom is closer

than a cutoff distance. The contact number was also

shown to correlate well with the B-factor.65,66

4. Number of hydrophobic/hydrophilic residue contacts,

where the number of residue contacts is separately

counted for hydrophobic and hydrophilic residues.

Hydrophobic/hydrophilic residues are those which

have a positive/negative value on the Kyte–Doolittle

hydrophobicity scale.67

5. Solvent accessibility surface area (Å2). This parameter

is defined as water exposed surface of a residue. We

used the DSSP program68 to compute the accessibility

surface area of amino acids, which are then normal-

ized with the value in the tripeptide with glycines on

both sides of the target amino acid residue.69

6. Residue depth, which is defined as the distance of the

Ca atom or the average distance of all the atoms in a

residue to the closest water molecule.70 Protein sur-

face was computed with the MSMS program.71 The

hsexpo program was used to compute residue depth.72

7. Lower/upper half-sphere exposure of a residue,72 which

is defined as the number of contacts within a half-

sphere of a radius of 13 Å centering at either the Ca or

the Cb atom of the residue. The sphere is divided into

half by a plane perpendicular to the Ca–Cb vector.

8. Secondary structure. Each residue is classified into

eight classes, that is, seven secondary structure types

defined by DSSP68 or other.

9. Fluctuations predicted by the GNM.35,36 GNM is a

coarse-grained model, where Ca atoms are connected

by springs. GNM has been used for investigating pro-

tein dynamics including the prediction of B-factor val-

ues of proteins.38 We downloaded GNM codes from

the Jernigan laboratory (http://ribosome.bb.iasta-

te.edu/). Fluctuations were computed with a residue

contact distance cutoff of 16 Å73 and without using

cutoff.38 Residue contacts in a protein are represented

as the Kirchhoff matrix in GNM:

Cij ¼
�1 if i 6¼ j and rij � rc
0 if i 6¼ j and rij � rc

� PN
i;i 6¼j

Cij if i ¼ j

8>><
>>:

9>>=
>>; ; ð4Þ

where rij is the distance between two atoms, i and j, and

rc (516 Å) is the cut-off value. GNM without cutoff uses

the following modified Kirchhoff matrix:

Cij ¼
r�2
ij if i 6¼ j

� PN
i;i 6¼j

Cij if i ¼ j

8><
>:

9>=
>;: ð5Þ

In both methods, the average fluctuation of residue

i over time is defined by

ðDRiÞ2
	 
 ¼ C C�1

ii

� �
; ð6Þ

where C is constant.

Support vector regression

We combined the structural features listed above to pre-

dict fluctuations using support vector regression (SVR).

The LIBSVM package74 with Gaussian kernels was used.

Because it was not feasible to test all the possible combina-

tions of features, features were added or changed one at a

time starting from the one which has the largest correla-

tion coefficient with residue fluctuation. We performed

fivefold cross validation using the dataset of trajectories.

The default set of parameters in libsvm, C 5 64.0, g 5 1,

and e 5 0.5, was used, which was shown to perform best

among others tested in the first few feature combinations

in the five-fold cross validation (data not shown).

Evaluation of fluctuations prediction

Pearson’s correlation coefficient was used to examine

how well individual features or predicted fluctuations

correlated with actual fluctuations in the MD trajectories.

Average correlation coefficients were computed using all

the trajectories in the dataset.

In addition, the error of predicted fluctuations was

quantified as the RMSD to the reference trajectory fluc-

tuation:

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

DRpred
i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDRiÞ2
	 
q ref

8>>: 9>>;2
vuut ; ð7Þ

where N is the length of the protein, DRpred
i is predicted,

and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDRiÞ2
	 
q ref

is actual fluctuation [Eq. (2)] of resi-

due i.

Availability of the developed program

The program for predicting the fluctuation of residues

in a protein structure is made freely available for the aca-

demic community at http://kiharalab.org/flexPred/. Both

the web server and the source code written in Python are

available. It takes a PDB file of a query protein for input

data and outputs a predicted fluctuation value for each

residue. The computational time for a protein is typically

within a couple of seconds to 20 s depending on the

length of the protein.
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RESULTS AND DISCUSSION

The relationships between structural features and resi-

due fluctuations are examined in several aspects. First,

we compare the correlation coefficient of individual static

structural features with actual fluctuations. Then, we

explore different combinations of features to make accu-

rate prediction of fluctuations using SVR. Then, the ac-

curacy of the fluctuation prediction by SVR and by

GNM is further examined. Finally, we also consider the

structural variation of models by NMR in comparison

with prediction as well as the fluctuations observed in

MD trajectories.

Correlation of static structural features of
proteins with fluctuations

In Table I, we compared the correlation coefficient of

individual structural features with the fluctuation of resi-

dues observed in the MD trajectories. Eight different dis-

tance cutoff values, 6, 8, to 16 Å, were used for the resi-

due contact number. The top of the table shows the cor-

relation of the B-factor (0.484). Interestingly, several

static structural features, namely, the distance to the cen-

ter of mass and the contact number computed with the

cutoff of 12–22 Å, have more significant correlation with

the fluctuations than the B-factor. Among the static fea-

tures, the largest correlation coefficients were observed

for the residue contact number (15 and 16 Å). These

results indicate that the motion of chains in the MD tra-

jectories is better captured by the coarse-grained topolog-

ical structures of proteins rather than the B-factor.

As a reference, we also show the correlation of the

fluctuations predicted by GNM (bottom rows of Table I).

GNM showed higher correlation than the other structural

features. Note that GNM actually simulates dynamic

motion of protein structures; thus, it has a different na-

ture from the other static features compared in the table.

Consistently, with the previous work by Yang et al.,38

GNM without using a distance cutoff showed higher cor-

relation than GNM with a distance cutoff.

Because the residue contact number (with a 16 Å cut-

off) and the square of distance to the center of mass

showed two largest correlation coefficients among the

static structure features examined, we used these two fea-

tures as the basis for combinations of input features for

training SVR in the next section.

SVR models for predicting residue
fluctuation using static structure features

Next, we used SVR to predict the fluctuation of resi-

due positions in the MD trajectories using various com-

binations of static structural features. Fluctuation predic-

tions by GNM (at the bottom of Table I) were not

included as features. Fivefold cross validation was per-

formed, in which SVR parameters were trained on four-

fifths of the dataset, while prediction was made for the

rest of the one-fifth of the dataset. This procedure was

repeated five times to make prediction for all data in the

dataset. Starting from the combination of the residue

contact number (with 16 Å cutoff) and the square of dis-

tance to the center of mass, which are the two features

that showed the highest correlation with fluctuations

(Table I), 17 different feature combinations were tested

by adding one feature at a time (Table II).

Among the 17 feature combinations examined, all

except for two (the feature set 1 and set 17) showed

higher correlation with actual fluctuations than GNM

(Table I). The largest correlation coefficient, 0.669, was

achieved for the feature set 15, which uses the residue

contact numbers with different distance cutoffs. In terms

of average RMS, all the feature combinations predicted

residue fluctuations within an RMS of 1.1 Å, ranging

from 1.042 to 1.092 Å. The smallest RMS was achieved

for feature sets 6, 7, 12, 13, and 14, which combine

the residue contact numbers, the square distance from

the center of mass, and the B-factor. Sets 6 and 7

Table I
Correlation Coefficients Between Structural Features and Fluctuations

Structural features

Number of
proteins with
P-value < 0.05

(%)a
Avg. corr.
coeff.b

B-factor 565 (95.4) 0.484 (0.504)
Distance to center of mass 584 (98.6) 0.509 (0.514)
Square of distance to
center of mass

586 (99.0) 0.545 (0.549)

Contact number (cutoff 6 �) 571 (96.5) 20.374 (20.384)
Contact number (8 �) 591 (99.8) 20.480 (20.481)
Contact number (12 �) 590 (99.7) 20.554 (20.556)
Contact number (15 �) 587 (99.2) 20.568 (20.571)
Contact number (16 �) 571 (96.5) 20.567 (20.571)
Contact number (18 �) 587 (99.2) 20.562 (20.565)
Contact number (20 �) 585 (98.8) 20.555 (20.559)
Contact number (22 �) 584 (98.6) 20.545 (20.551)
Accessible Surface Area (ASA)c 580 (98.0) 0.404 (0.407)
ASA normalized 590 (99.7) 0.476 (0.477)
Residue depth (residue mean)d 559 (94.4) 20.352 (20.371)
Residue depth (Ca) 553 (93.4) 20.339 (20.359)
Half upper sphere exposure (Ca)e 568 (95.9) 20.385 (20.398)
Half lower sphere exposure (Ca) 567 (95.8) 20.389 (20.402)
Half upper sphere exposure (Cb) 537 (90.7) 20.339 (20.363)
Half lower sphere exposure (Cb) 561 (94.8) 20.383 (20.399)
Prediction by GNM (cutoff 16 �)f 586 (99.0) 0.643 (0.648)
Prediction by GNM (no cutoff) 591 (99.8) 0.646 (0.646)

The largest correlation coefficients among the static structural features are high-

lighted in bold.
aThe number of proteins that have significant correlation coefficient to the fluctu-

ations (with P-value < 0.05) are counted. The total number of trajectories

(proteins) is 592.
bThe average value calculated only for the subset of proteins with P-value < 0.05

is shown in the parentheses.
cAccessible surface area (Å2) of amino acid residues without normalization. The

next row is the correlation with the normalized accessible surface area.
dThe residue depth computed as the average distance for each atom in the residue

and the distance for the Ca atom (next row).
eThe lower/upper half-sphere exposure of a residue using the Ca or the Cb atom

to determine the position of the plane which cut the sphere to half.
fFluctuations predicted by GNM [Eq. (6)].
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additionally used information about the secondary struc-

ture. The RMS and the average correlation coefficients

(Table II) correlate moderately with a correlation coeffi-

cient of 0.627 (Fig. 3). Figure 4 shows the distribution of

the average correlation coefficients between predicted and

actual fluctuations [Fig. 4(A)] and the average RMS [Fig.

4(B)] for each protein, which were predicted using fea-

ture set 12. Remarkably, the majority (70%) of proteins

fluctuations were predicted within an RMS of 1.0 Å. The

strong advantage of the developed SVR models is that

Table II
Summary of Fluctuation Prediction Using SVR Models with Different Feature Combinations

Feature set Features useda
Number of proteins with

P-value < 0.05 (%) Average corr. coeff.b RMS (�)c

1 C(16), D2 584 (98.6) 0.638 (0.644) 1.075
2 C(16), D2, B 587 (99.2) 0.654 (0.658) 1.067
3 C(16), D2, B, C(18) 587 (99.2) 0.655 (0.659) 1.060
4 C(16), D2, B, C(18), Sec 589 (99.5) 0.661 (0.664) 1.048
5 C(16), D2, B, C(18), Res-type 586 (99.0) 0.652 (0.657) 1.063
6 C(16), D2, B, C(18), Sec, C(12) 589 (99.5) 0.665 (0.668) 1.042
7 C(16), D2, B, C(18), Sec, C(12), C(8) 588 (99.3) 0.667 (0.668) 1.042
8 C(16), D2, C(18), C(12), C(8), C(6) 588 (99.3) 0.656 (0.660) 1.053
9 C(16), D2, B, C(18), C(12), C(8), C(6) 588 (99.3) 0.666 (0.669) 1.045
10 C(16), D2, B, C(18), C(12), C(8), C(6), Sec 589 (99.5) 0.665 (0.667) 1.043
11 C(16), D2, B, C(18), C(12), C(8), C(6), Acc 587 (99.2) 0.665 (0.669) 1.045
12 C(16), D2, B, C(18), C(12), C(8), C(6), C(20) 588 (99.3) 0.666 (0.670) 1.042
13 C(16), D2, B, C(18), C(12), C(8), C(6), C(20), C(22) 588 (99.3) 0.667 (0.670) 1.042
14 C(16), D2, B, C(18), C(12), C(8), C(6), C(15), C(20), C(22) 588 (99.3) 0.666 (0.670) 1.042
15 C(16), B, C(18), C(12), C(8), C(6), C(20), C(22) 588 (99.3) 0.669 (0.673) 1.073
16 C(16), C(18), C(12), C(8), C(6), C(15), C(20), C(22) 587 (99.2) 0.660 (0.665) 1.092
17 C(16), B, C(18), C(12), C(8), C(6), C(20), C(22), HP 587 (99.2) 0.647 (0.651) 1.092

The largest correlation coefficients among the static structural features are highlighted in bold.
aC(x), the residue contact number with x Å distance cutoff; B, B-factor; D2, square of the distance between the Ca atom to the protein center of mass; Sec, the second-

ary structure; Acc, normalized accessible surface area; HP, the number of hydrophilic/hydrophobic contacts, Res-Type, amino acid type of residues.
bThe average correlation coefficients between predicted and actual fluctuations. Values calculated only for the subset of proteins that have significant correlation with

P-value < 0.05 is shown in the parentheses.
cThe RMS [Eq. (7)] was averaged over all the proteins in the dataset.

Figure 3
The average correlation coefficient and RMS of predicted and actual

fluctuations. Predictions were made with SVR using 17 different feature

combinations (Table II).

Figure 4
Distribution of (A), corelation coefficients; (B), RMS (Å) of predicted

and actual fluctuations computed for 592 proteins in the dataset.
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they predict the real value of fluctuation, unlike GNM,

which predicts only the relative magnitude of residue

fluctuations that need to be rescaled to obtain actual

fluctuation values.

Incorporating dynamic features to SVR
models

We further investigated whether adding GNM as an

input feature can improve fluctuations prediction with

SVR. We used h(DRi)
2i for the fluctuations from GNM

[Eq. (6)] without a distance cutoff, because it has higher

correlation with the actual fluctuations than

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDRiÞ2
	 
q

does. To each of the feature sets examined in Table II, we

added h(DRi)
2i predicted by GNM and performed five-

fold cross validation. The resulting fluctuation prediction

with and without GNM was compared in terms of the

correlation coefficient [Fig. 5(A)] and the RMS [Fig.

5(B)] with the actual fluctuations.

Adding GNM in the feature set made slight improve-

ment in the RMS of the predicted fluctuations [Fig.

5(B)] except for one case (feature set 12), lowering RMS

on average by 0.010. However, small consistent deteriora-

tion of the correlation coefficient was observed [Fig.

5(A)] when GNM was added. The average decrease in

the correlation coefficient is 0.013. Thus, GNM did not

make significant contribution to improving fluctuation

prediction.

Comparison of SVR model prediction results
with B-factor fluctuation values

In Figure 6, we show four examples of actual and pre-

dicted fluctuations as well as fluctuations derived from

the B-factors. For residue i with a B-factor of Bi, the fluc-

tuation is defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDRiÞ2
	 
q Bfactor

¼
ffiffiffiffiffiffiffi
3Bi

8p2

r
: ð8Þ

The fluctuations from the B-factor were also rescaled to

achieve a smaller RMS with the actual fluctuations (i.e.,

fluctuations from MD trajectories) as follows

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDRiÞ2
	 
q

rescaled
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDRÞ2	 
q

min
þ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDRÞ2	 
q

max
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDRÞ2	 
q

min

8>: 9>; ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDRiÞ2h ip Bfactor

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDRÞ2h ip Bfactor

minffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDRÞ2h ip Bfactor

max
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDRÞ2h ip Bfactor

min

; ð9Þ

where

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDRÞ2	 
q

max
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDRÞ2	 
q

min
are the maximum

and the minimum values of actual fluctuations, andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDRÞ2	 
q Bfactor

max
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDRÞ2	 
q Bfactor

min
are the maximum

and the minimum fluctuation values computed from B-

factor values [Eq. (8)] in the protein. a is a weighting fac-

tor explored from 0.1 to 1.0 with an interval of 0.1 to seek

smaller RMS for the actual fluctuations (Table III). In Fig-
ure 6, a is set to 1.0 for the plots of ‘‘Fluctuation from B-
factor, rescaled.’’ Note that this rescaling obviously changes
the RMS but does not change the correlation coefficient to
the actual fluctuation. The acutal fluctuations in the MD
trajectories are defined by Eq. (2), and predictions were
made using feature set 15 in Table II. The right panel of

Figure 5
Comparison of the prediction performance with and without using

GNM as a feature. h(DRi)
2i predicted by GNM was added to each SVR

feature set listed in Table II. (A) Average correlation coefficient; (B)

average RMS predicted by SVR with and without h(DRi)
2i from GNM

are plotted.
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Figure 6
Examples of predicted fluctuations in comparison with B-factor-derived fluctuations and MD simulation fluctuations. Left panels show the values

of fluctuations: red, fluctuations observed in the MD trajectories; green, predicted fluctuations; dotted blue line, fluctuations computed from

B-factors; dotted magenta line, rescaled fluctuations from B-factors (a 5 1.0). The correlation coefficients and RMS are summarized in Table III.
Right-hand panels show the magnitude of fluctuations in a color scale with blue indicating lower fluctuations and red for higher fluctuations. A, B,

1mof; C, D, 1dq3; E, F, 1gpc; G, H, 1a1x.
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each protein visualizes the magnitude of actual fluctua-

tions in a color scale from blue to red with blue showing

small while red for large fluctuation.

The first example, retrovirus coat protein (PDB ID:

1mof) [Fig. 6(A,B)], exhibits a large fluctuation at two

termini and at the end of the long helix. Prediction by

SVR captured fluctuating residues and the magnitude

fairly well with a correlation coefficient of 0.80 and an

RMS of 1.55 Å. The fluctuations derived from B-factor

have lower correlation with the actual fluctuations (corre-

lation coefficient of 0.69) with a larger RMS of 1.91 Å

even after rescaling. In the second example [Fig. 6(C,D)]

of homing endonuclease PI-PfuI (PDB ID: 1dq3), overall

fluctuation is not large but shows high peaks of fluctua-

tion at loop regions. The predicted fluctuations have a

correlation coefficient of 0.81 while the fluctuations from

B-factor have a moderate correlation of 0.50. The third

example, DNA-binding protein gp32 (PDB ID: 1gpc)

[Fig. 6(E,F)], has the largest fluctuation at the loop of

residues 150–160 and over 3 Å fluctuation at the other

loop regions, which are captured well by the prediction.

Predicted fluctuations have a correlation coefficient of

0.78 and a small RMS of 1.04 Å. In contrast, the correla-

tion of fluctuations from B-factor is 0.55 with a larger

RMS of 1.93 Å. The last example, MTCP-1 (PDB ID:

1a1x) [Fig. 6(G,H)], is a b-barrel protein with a long

loop at residues 50–60. Relatively large fluctuation was

observed at the N-terminus and at the loop regions that

connect b-strands (e.g., residues 35–40), which are well

predicted. The overall RMS of the prediction is 0.79 Å,

and the correlation coefficient with the actual fluctua-

tions is 0.82, better than the fluctuations derived from B-

factors.

Consistent with Table I, the fluctuations from B-factors

correlate only moderately with the actual fluctuations.

Fluctuations computed from B-factors using Eq. (8) have

always a larger RMS than the SVR prediction. The agree-

ment of the fluctuations from B-factors can be improved

if it is rescaled individually for each protein as shown in

the second column from the right in Table III; however,

the value of the optimal scaling factor a differs from

protein to protein and thus cannot be known before-

hand. In contrast, our prediction by SVR has a signifi-

cantly higher correlation with the actual prediction, and

it predicts the real value of the fluctuations satisfactorily

without any rescaling.

MD fluctuations and fluctuations from NMR
models

The MoDEL database also contains simulations of pro-

tein structures determined by NMR. We selected 140

nonredundant protein structures determined by NMR

that contain more than 10 models in their PDB files.

Redundant proteins were removed by considering

sequence identity according to the PISCES database.63

Using the 140 proteins, we compared fluctuations

observed in the NMR models, MD trajectories, and the

predicted fluctuations. The results are summarized in

Table IV. The fluctuation prediction was carried out

using feature set 16, which does not contain the B-factor

term (NMR structures do not have B-factors).

It is shown that the prediction has a significant corre-

lation (0.739) with the structural variation of the models

derived from NMR. Interestingly, the correlation coeffi-

cient between the prediction and NMR is highest among

the other two pairs, prediction versus MD and NMR ver-

sus MD.

CONCLUSION

We used a large number of MD trajectories of nonho-

mologous proteins as references and examined static

structural features of the proteins that are most relevant

Table III
Correlation Coefficients and RMS of the Four Example Predictions

PDB ID

Correlation coefficient RMS (�)

B-factor Prediction B-factor B-factor, rescaled a 5 1.0a B-factor, rescaled (a)b Prediction

1mof 0.69 0.80 4.92 1.91 1.91 (1.0) 1.55
1dq3 0.50 0.81 0.94 2.64 0.85 (0.4) 0.71
1gpc 0.55 0.78 1.93 4.32 1.42 (0.4) 1.04
1alx 0.61 0.82 1.60 1.72 1.09 (0.6) 0.79

The data correspond to plots at the left panels in Figure 6.
aFluctuations computed from B-factor were rescaled with a 5 1.0 in [Eq. (9)]. This value corresponds to the curve ‘‘Fluctuation from B-factor, rescaled’’ in Figure 6.
bFluctuations computed from B-factor were rescaled with the weight factor a [Eq. (9)] ranging from 0.1 to 1.0 with an interval of 0.1. Then the smallest RMS obtained

is shown together with the used a value in the parentheses.

Table IV
Comparison of Fluctuations of NMR Models, MD, and Our Prediction

Compared data

Number of
proteins with

P-value < 0.05 (%) Corr. coeff. RMS (�)

NMR versus MD 136 (97.1) 0.651 (0.667) 2.425
NMR versus prediction 138 (98.6) 0.739 (0.747) 1.808
MD versus prediction 138 (98.6) 0.686 (0.693) 2.165

Hundred and forty nonredundant proteins in the MoDEL database were used

whose structures were determined by NMR.
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to fluctuations. We examined the correlation of individ-

ual structural features with fluctuations and then investi-

gated effective combinations of features for SVR to pre-

dict the real value of fluctuation of residues. The main

findings of this work are summarized as follows. First of

all, two types of structural features, the distance to the

center of mass of the protein and the residue contact

number, showed a higher correlation coefficient with

fluctuations than B-factor does. Combinations of static

features used as input for SVR achieved accurate predic-

tion of fluctuations with a correlation coefficient of 0.67

and RMS of 1.042 Å. This correlation coefficient is

higher than GNM to the actual fluctuation. Our method

predicts the structural variation of NMR models also

well. The current study demonstrates that flexibility of

proteins is inherently coded in coarse-grained static pro-

tein structural features, even more than in the crystallo-

graphic B-factors. Thus, protein motion is determined by

its static structure that is coded by its sequence, which

could be considered as an extension of the Anfinsen’s

dogma.75 Indeed, series of studies on GNM has also

demonstrated that motion of a protein is determined by

its structure. However, the current work further shows

that static structural features can predict the real value of

fluctuations, which GNM has not been shown to be able

to do. As the importance of protein dynamics has been

more recognized for biological function, the prediction

method we developed has also a practical value in the

wide areas of biology and biotechnology.
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