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Monte Carlo Study of Local Orientational Order in a Semiflexible 
Polymer Melt Model 
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ABSTRACT To  investigate the character of local chain packing in a globally amorphous polymer melt, Monte 
Carlo simulations were performed on model systems consisting of polymers confined to a diamond lattice. 
The necessary condition for the existence of locally ordered domains is shown to be the presence of local chain 
stiffness, which in these systems is manifested by the energetic preference of trans (t) over gauche (g) states. 
These locally parallel domains are not unique static structures but rather are defined only in a statistical 
sense and exist over a rather broad temperature range. The  local domain structure appears to be insensitive 
to the molecular weight, provided that the chain length exceeds the domain size. It is also found that, to  
a very good approximation, within a given chain, two subchains belonging to two different domains are 
statistically independent. The local domain structure becomes enhanced, a t  fiied chain stiffness, by inclusion 
of attractive interactions between nonbonded nearest neighbors and/or by increasing the polymer density. 
The locally ordered melt is shown to be globally disordered over a broad temperature range, with the dimensions 
of an individual chain very close to those obtained from ideal chain statistics. Various quantities characterizing 
the character of local ordering in these model systems are examined, and the applicability of these results 
to real polymer systems is discussed. 

I. Introduction 
The possible existence of local orientational order in an 

amorphous polymer melt or glass has long been the subject 
of controversy. Basically, the kinds of models developed 
to describe local ordering can be divided into three classes, 
qualitatively illustrated in Figure 1: (1) the random coil 
model, (2) bundle models, and (3) a locally ordered domain 
model. For the random coil model (Figure lA), espoused 
by Flory,' Flory argued that the dimensions of a chain in 
the melt should be identical with those in the €)-solvent 
and therefore local orientational correlations between 
neighboring chains are negligible. Bundle models assert 
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that in order to achieve the relatively high density of a 
melt, the chains have to pack in a locally parallel fashion.2 
These bundles may consist of highly folded regions within 
a given chain that are randomly oriented with respect to 
each other as the bead-string model of Schoon3 (Figure 
1B) or may consist of molecules that sharply fold to give 
the isotropic, high-density melt in which a given set of 
locally ordered chains maintains orientational correlation 
over relatively large distances as in the meander model4* 
(Figure IC). Finally, the locally ordered domain model is 
midway between classes 1 and 2.' Here the chains are 
assumed on the average to be locally parallel over a per- 
sistence length; however, there is no orientational corre- 
lation between two domains, nor are the locally parallel 
pieces of chains in one domain necessarily the same as 
those in the neighboring domain (Figure 1D). Thus, in this 
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identical with that in the melt infinitesimally above Tg).7 
It was suggested that locally chains tend to align in a 
parallel manner (in agreement with depolarized light 
scattering studies and electron diffraction studies), but 
since there is no orientational correlation between domains 
(each of which is only defined in a statistical sense and 
whose size down a given chain is on the order of a per- 
sistence length), the chain dimensions should be close to 
those in a 0-solvent. Further use has been made to this 
“bundle model” in qualitatively explaining the experi- 
mentally observed 180’ ring flips in polycarbonate glass- 
es.18J9 If the packing of chains in this way is capable of 
achieving the high density of the melt, then it would be 
consistent with all known experimental facts. One major 
objective here is to determine the plausibility of the above 
description of amorphous polymer melts. 

The possible existence of local orientational order seems 
to be predicated on the presence of local chain stiffness. 
I t  is well-known that most real polymers exhibit an 
energetic preference of some conformational states over 
others, thereby introducing an intrinsic limitation on the 
flexibility of the chains. While the effect of chain stiffness 
on the conformation of single chains in dilute solution is 
theoretically well understood,20 the problem of chain 
conformations in a concentrated polymer solution or melt 
is more complicated. Using mean field statistics, Flory21 
has shown that beyond a certain critical local stiffness (as 
measured by the energetic preference for the trans as 
compared to the gauche conformation), a polymer melt 
should undergo a transition from an isotropic random 
phase to an oriented nematic phase. Baumgartner and 
Yoon22 and Yoon and B a ~ m g a r t n e r ~ ~  have performed 
Monte Carlo simulations of dense, athermal polymer 
systems confined to a two-dimensional square lattice and 
a three-dimensional cubic lattice, respectively. Both sys- 
tems appeared to exhibit a first-order, isotropic-nematic 
phase transition, in qualitative agreement with Flory’s 
predictions. In the latter system, they see embryonic or- 
dered regions present in the disordered state at and above 
the transition temperature. However, more recent work 
by P e t ~ c h e k ? ~  and BaumgartnerZ5 indicates that in the 
absence of attractive intermolecular interactions, semi- 
flexibile polymers confined to a square or cubic lattice in 
fact do not undergo a phase transition to a globally ordered 
state. The apparent phase transition reported earlier was 
the result of finite size effects. However, locally ordered 
domains are strikingly evident as the chain stiffness in- 
creases. Thus, it  also appears that the local ordering is 
intimately connected with local chain stiffness and for 
those systems having nonbonded attractive interactions, 
with the liquid crystal phase transition. 

In the present Monte Carlo study, we analyze the in- 
fluence of chain stiffness on conformational properties, in 
particular the evidence for short-range ordering in polymer 
systems as a function of both the density and the strength 
of interaction between polymer segments. We focus here 
explicity on the nature of local ordering in a melt of sem- 
iflexible polymers at temperatures above T,, where the size 
of the locally ordered domain is on the order of the contour 
length of an entire chain. For systems having attractive 
interactions, T, is identical with the isotropic-anisotropic 
phase transition temperature. The analysis of the global 
order-disorder transition forms the subject of the follow- 
ing, companion paper.26 

The model we employ represents a compromise between 
the requirements of computational tractability and our 
desire to reproduce, as much as possible, the qualitative 
features of real polymers. We employ a tetrahedral lattice 

Figure 1. Schematic representation of various models of local 
chain packing in polymer melts: (A) isotropic random coil model; 
(B) bead-string model; (C) meander model; (D) locally ordered 
domain model. In all cases, a single test chain is represented by 
the heavy curve. 

model the local ordering is loosely defined rather than 
sharply defined as in class 2. In the context of a series of 
Monte Carlo simulations of dense polymer systems con- 
fined to a tetrahedral lattice, it  is our purpose to quali- 
tatively investigate the possible validity of these three 
classes of models and to identify the conditions, if any, 
under which each of the various models are valid. 

Before proceeding to a detailed discussion of the present 
simulation, it is worthwhile to summarize the successes and 
failures of each of the various models. We begin with the 
widely accepted random coil model, which predicts that 
the dimensions of polymer chains in the melt and a 8- 
solvent are identical. Within experimental error, for a 
number of amorphous polymers, this conjecture has been 
verified by small-angle neutron scatterings8 However, 
certain stiff polymers exhibit a mean square radius of 
gyration, (s2), somewhat larger than that of the unper- 
turbed chain (for example, by about 20% for poly- 
carbonate).g-ll Nevertheless, the qualitative prediction 
that (s2) in the melt and in a 0-solvent should be very close 
certainly holds. 

The problem with the random coil model taken to its 
extreme limit is that it cannot account for the local ori- 
entational order in poly(methy1enes) observed by depo- 
larized Rayleigh light scatteringl2-I4 nor can it rationalize 
the presence of three intermolecular peaks in the radial 
distribution function measured by electron diffraction and 
interpreted by Kargin and co-workers to provide evidence 
of local ordering in the melt.15J6 Moreover, another major 
objection to the random coil model is that it is impossible 
to pack chains at the observed experimental density unless 
a certain amount of local orientational order exists.17 
Motivated by these experimental observations, “bundle” 
models have been proposed which have in common the 
viewpoint that the local orientational order in the melt can 
be treated as a perturbation from an ideal ~ r y s t a l . ~ ~ J ~ - ~ ’  
Thus, these models necessarily produce a relatively long- 
range orientational correlation between chains in the 
“bundle”. However, a necessary corollary to these models 
is that (s2) must be at  least an order of magnitude larger 
in the melt than in the 8-solvent,17 in direct contradiction 
to experiment. Thus, the bundle model in its simplest 
incarnation does not appear to be correct. 

Recently, another model, which qualitatively would seem 
to incorporate the best features of both viewpoints, was 
proposed in the context of an order-disorder model of the 
stress-strain behavior of polymer glasses (systems whose 
orientational order in the absence of strain presumably is 
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interactions) is described in the model by the parameter 
ea, with t, = -Atg (where A is a positive constant), and is 
only allowed between neighboring, nonbonded polymer 
beads. Hence the total configurational energy of the 
system can be expressed as 

representation of the dense polymer system that also in- 
corporates hard sphere-repulsive excluded volume inter- 
actions together with the possibility of a short-range, iso- 
tropic attractive force between the polymer segments. Our 
simulations are complementary to those of Baumgartner 
and Yoon22,23 and B a ~ m g a r t n e r , ~ ~  who studied systems 
composed of n = 10-30 beads confined to square and cubic 
lattices at  a very high volume fraction, 4 (greater than 
95%), and in which collinear (trans) and right angle 
(gauche) rotational states are allowed. We present results 
at  4 = 0.5 and 7.5 for tetrahedral lattice systems with n 
= 12, 24, 48, and 98 along with the possibility of an at- 
tractive interaction between nonbonded nearest-neighbor 
beads. It should be reiterated that in all sample lattice 
models of dense polymeric systems the lattice bonds or 
chain segments cannot represent the simple chemically 
bonded units (e.g., the C-C bonds of p ~ l y e t h y l e n e ) . ~ ~ , ~ ~  
The chain segment must be considered as an effective unit 
which in some sense is a compromise between the average 
breadth of a chain molecule (i.e., excluded volume) and 
the “statistical” segments which depict the flexibility of 
a polymer chain. Hence, torsional potentials, or as used 
here the energy difference between a gauche and trans 
state, are not directly comparable to the torsional poten- 
tials of any real polymer. Perhaps it is best to view lattice 
models of polymers as analogous to cell models of liquids 
or  solution^.^' For these reasons one should not attempt 
to transfer quantitative results from lattice treatments of 
polymers to real polymeric systems but should view these 
and other similar simulations as computational experi- 
ments from which one can obtain qualitative insights. 

The outline of the rest of the paper is as follows: In 
section 11, the model and Monte Carlo procedure are de- 
scribed in greater detail. This is followed by a discussion 
of the results in section 111, which consists of four sub- 
sections. Subsection A discusses the intrinsic stiffness of 
a polymer chain as a function of temperature in the context 
of the wormlike chain Then subsection B dem- 
onstrates the existence of interchain ordering in semi- 
flexible polymers on a local scale and examines the effect 
of polymer concentration and the presence of attractive 
interactions on such ordering. Subsection C addresses the 
question of global disorder and the nature and extent of 
the correlation between the locally ordered domains. We 
conclude in subsection D with a discussion of possible finite 
size effects on the Monte Carlo simulation results reported 
here. Finally, section IV summarizes the conclusions of 
the present paper. 

11. Model and Monte Carlo Procedure 
A. Model. The model system consists of a monodis- 

perse collection of N chains, each composed of n units 
(beads) confined to diamond lattice sites that are con- 
nected by n - 1 bonds. Thus, there are three discrete 
allowed internal rotational states, one trans (t) state and 
two gauche (g’ and g-) states. The trans conformation is 
assumed to be energetically preferred. Hence there are 
n - 3 rotational degrees of freedom in a chain of length n. 
The statistical weights of the three rotational states of a 
given bond are 

wg+ = wg- = exp (-eg/ k B  r )  

wt = 1 (1) 

For convenience, we define a reduced temperature T* = 
kBT/cg. Hard-core repulsive forces between polymer beads 
are introduced by the exclusion of multiple occupancy of 
all lattice sites. The short-range attractive interaction 
(taken to be the same for both intrachain and interchain 

E = vtg + yea 

where v is the number of gauche states in the system and 
y is the number of nearest-neighbor, nonbonded pairs of 
polymer beads. The reference state is the system with tg 

= 0 (or equivalently, at  infinite temperature T*, Le., a 
random, athermal system). 

Periodic boundary conditions were employed in the 
simulation. If there are N chains of length n in a Monte 
Carlo (MC) box of length L,  one can define the volume 
fraction of polymer in the model system as 

4 = N n / V )  (3) 

with V = L3/8. The factor of 8 arises from the use of an 
integer representation of the bead coordinates. As a 
consequence, the length of a bond, 1, equals 3lI2. 

B. Summary of Monte Carlo Procedure. A standard 
asymmetric Metropolis scheme30 was used in the simula- 
tion algorithm. The following modifications of the chain 
conformation were employed to sample the configuration 
space:31 (i) “reptation” type motions32 where a randomly 
chosen end segment is clipped off and then added to the 
opposite chain end in a random direction; (ii) a random 
rotation of a small end portion of the chain (1-2 bonds); 
(iii) three-bond kink motions, resulting from the permu- 
tations of the chain segments in a randomly chosen part 
of the chain (only a sequence containing a gauche con- 
formation can be affected by this kind of modificationsee 
ref 33 for further details). Each Monte Carlo cycle consists 
on the average of one attempt to make a reptation step 
and several attempts (from two to ten, depending on 
conditions) a t  kink flips per polymer chain. Reptation 
dynamics, in particular, provides a very efficient means 
of sampling broad regions of configuration space.32 It does 
however suffer a defect in that it can lead to self-trapped 
configurations, the so-called “double-ended cul-de-sac”. It 
is widely felt that this defect is negligible-the origin of 
this feeling is the mainly a posteriori checks where the 
results of a reptation dynamics MC simulation are com- 
pared to an analytic result (see, e.g., ref 34). We hope to 
further minimize such situations by including end rotations 
(step ii above). In particular, we checked our algorithm 
by performing a single-chain calculation for tg = t, = 0. 
This athermal result (which is published elsewhere35 as 
part of a work on single-chain collapse transitions) is in 
very good agreement with previous analytic and numerical 
self-avoiding-walk calculations. 

At  every temperature, the simulation was run for a 
sufficient number of cycles to ensure proper equilibration. 
In most cases, due to the high acceptance ratio of the 
Metropolis scheme for the densities studied, 5 X lo5 to 1 
X lo6 cycles per polymer chain were sufficient to achieve 
equilibration. Equilibrium information for the system was 
then extracted from a run lasting twice the equilibration 
time. The sequence of simulations as a function of tem- 
perature started from an athermal system with eg = 0. At 
high temperatures where the properties of the system are 
rather insensitive to temperature, relatively large tem- 
perature increments between successive temperature states 
where employed. As the temperature of the system was 
lowered further, small temperature increments were em- 
ployed in “cooling” the system. In the vicinity of Tt*, 
“heating” sequences were also employed; the discussion of 
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Figure 2. Plot of (p , *p , ) /pz  vs. (i - j l  for a system having 6 = 
0.75, n = 24, T* = 0.714, and tg = 0 (-t,/4) in the filled (open) 
circles, respectively. The solid (dashed) curve is the linear fit to 
the Monte Carlo data extrapolated through (i - j l  = 0. 

the properties of the system near and below Tt* (which 
we remind the reader is the phase transition temperature 
for systems with attractive interactions) is deferred to the 
following paper.26 

In section 111, we examine equilibrium data obtained 
from long runs (preceded by appropriate equilibration) in 
a decreasing temperature sequence. For the n = 24 (n = 
48) systems, after every 10 (250) cycles the contribution 
of various properties to the equilibrium averages was 
calculated. 

111. Results 
General Considerations. The majority of results 

presented below are for systems composed of chains of 
length n = 24 confined in a Monte Carlo box of length L 
= 24. Thus, the direct influence of the finite size of the 
Monte Carlo box should be eliminated. For n = 24, we 
studied two densities, $ = 0.5 and 4 = 0.75. To examine 
the role of intersegmental attraction on local domain 
structure at each density, E, was set equal to zero and -E 14, 
the latter providing attractive interactions somewhat fess 
than are present in a (We remind the reader 
that tg is taken as the independent energy variable.) To 
more completely characterize the nature of and extent of 
correlation in the local chain packing, a less extensive series 
of simulations were also undertaken for N = 216 chains 
with n = 48 confined to a Monte Carlo box of length L = 
48, i.e., packed at  4 = 0.75, again with both t, = 0 and 
3 4 4 .  The latter set of results when combined with the 
discussion of the effect of periodic boundary conditions 
in subsection D leads us to conclude that the qualitative 
picture of local chain ordering developed below should hold 
for dense systems of very long chains confined to a tetra- 
hedral lattice and, perhaps, for polymer melts in general. 

A. Intrinsic Chain Stiffness. Because, in these model 
simulations, the polymers are confined to a diamond lat- 
tice, the well-known odd-even effect of the mutual orien- 
tation of the chain bonds is expected. To eliminate this 
lattice artifact the local orientation of the chain backbone 
is defined by averaging over two successive bonds: 

(4) 

where 1, is the ith bond vector. In case of wormlike 
chains,B (b;Cc,)should decay exponentially with increasing 
distance down the chain countour li - j l .  Thus 

( 5 )  

CL, = 1, + 4+l 

( c L , ~ ~ )  / p 2  = exp(-li - j l /P )  

Table I 
Persistence Length for Chains of n = 24 Beads as a 

Function of Tem~erature' 
4 = 0.5 9 = 0.75 

T* Z, = 0 C, = -eg/4 t, = 0 t, = -ts/4 

1 3.2 3.2 3.2 3.3 
0.833 3.7 3.8 4.0 
0.714 4.6 4.7 5.3 
0.667 4.9 5.1 5.5 >nC 
0.625 5.7 7.1 
0.588 > nc >nb 
0.5 8.0 
0.417 16.5 
0.4 >nb 

Calculated by employing eq 5. At this value of r" in a system 
lacking attractive interactions, the bundle length exceeds the chain 
contour length; however, these systems are still globally isotropic. 

with pz the equilibrium value of (fii.cli) and which equals 
for diamond lattice systems in units of bond length and 

where P is the persistence length (expressed in units of 
bond length). 

A representative plot of (pi .pj ) /p2 vs. li - jl for 4 = 0.75, 
T* = 0.714, and n = 24 is shown in Figure 2. The lower 
solid curve (where there are no nearest-neighbor interac- 
tions) clearly exhibits the characteristic behavior of a 
wormlike chain. However, as seen in the upper, dashed 
curve, at the phase transition temperature T* = 0.714, the 
value of (pi.M,) for the globally isotropic system with 
nearest-neighbor interactions and having E, = -cg/4 de- 
viates from simple wormlike chain behavior, if one con- 
siders long distance down the chain. Nevertheless, the 
broad range of linear behavior allows one to estimate the 
persistence length P even in this case. The numerical 
values of P as a function of temperature for 4 = 0.5 and 
4 = 0.75 with and without attractive interactions are 
presented in Table I. For all the systems under consid- 
eration, P increases smoothly with decreasing temperature 
up to a transition temperature Tt* where the persistence 
length P jumps abruptly to a value considerably greater 
than the chain length. In the vicinity of the transition 
temperature, all the systems exhibit a similar deviation 
from wormlike behavior as is the case for that with T* = 
0.714 and ea # 0 displayed in Figure 2. This phenomenon 
as well as the effect of concentration and intersegment 
interaction on the observed chain stiffness (compare the 
data in rows four and five of Table I) strongly suggests that 
a cooperative change in chain packing occurs at low tem- 
peratures which, however, are still above the transition 
temperature to a globally ordered phase. I t  has been 
theoretically36 demonstrated that the stiffness of a worm- 
like polymer dissolved in a nematic medium could be 
considerably greater than if it were dissolved in an isotropic 
solvent. Partially ordered domains or bundles could con- 
ceivably provide such a nematic environment. 

B. Nature of Local Ordering of the Chains. Several 
questions on the character of the local ordering need to 
be addressed. First, what are the conditions under which 
local ordering of chains occurs? When such ordering exists, 
what is the size of a locally ordered domain? Does inclu- 
sion of attractive interactions make the local domain 
structure better defined? Can systems that possess sig- 
nificant local order be globally random? A sufficient 
condition for global disorder would seem to be lack of 
significant orientational correlation between different parts 
of a chain contained in two nearest-neighbor domains. If 
this is the case, then we would expect the dimensions of 
a single chain in the dense melt to be quite close to those 
of an ideal chain. In what follows, we address each of these 

Below the isotropic-anisotropic phase transition temperature. 
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4’0.75 

~ / /  
. , * I  - - - +  I I I 1  I I l l  Figure 3. Geometry employed to examine the mutual orientation 

of subchains of various lengths as a function of their spatial 
distribution. The scripta i and j refer to two different subchains, 
Ci is the center of mass vector, and hi is the end-to-end vector 
of the ith subchain, respectively. r.. is the vector connecting the 
centers of mass of subchains i an$ j .  

points in turn. We begin with systems lacking attractive 
interactions between polymer segments and then subse- 
quently analyze those containing attractive interactions. 

Local Interchain Orientational Correlations. In 
order to establish and estimate the range of local ordering 
in a melt of semiflexible polymers, we examined the mutual 
orientation of subchains of various lengths concomitant 
with their spatial distribution. Interchain correlations were 
probed via the following procedure. First, two subchains 
(or blobs) were extracted from randomly chosen chains. 
Then the distance between their centers of mass and the 
angle between their end-to-end vectors were measured. An 
example of the relevant geometry is shown in Figure 3. 
Subchains of length nB equal to 3, 5, 7, 9, and 11 beads 
were considered. Because the end-to-end vectors for short 
subunits of semiflexible polymers should be, on the av- 
erage, close to the local orientation of the chain backbone, 
the measured angle 8ij between the end-to-end vectors of 
subchains i and j ,  hi and hj defined in Figure 3, should 
reflect the mutual orientation of the subchains and was 
computed from 

COS (8,) = (hi*hj)/((hil.(hjl) (6) 

and the degree of local ordering was measured by calcu- 
lating the second Legendre polynomial 

where the angular brackets denote an ensemble average 
of cos2 (Bij) as a function of rij,  the distance of separation 
of the centers of mass of the blobs. Discrete intervals of 
rij were used. The global order parameter p2 was computed 
from an ensemble average of the angle between the 3-bead 
blob vectors defined by eq 4, where the averaging involves 
all the vectors pim, where i is the bead position in the chain 
and m is the chain number. 

The radial distribution functions g(r) for the separation 
of the centers of mass of the various subchains i and j were 
computed in a manner similar to the distance-dependent 
order parameter described above. That is 

g(r )  = w(r) /u ,  ( 8 4  

with 

u, = Y3r( ( r  + $)3 - ( r  - $)”) (8b) 

In eq 8a, w is the probability of finding the center of mass 
of blob j at a given distance from the center of mass of blob 

4z0.75 

1 /TLO 0 . 5  

a I 
,. ... .... . ... . . 0.0 ..... 

t - 4  i 
- 0 . 5  I I I I  I I I 1 1 1  

0 1 2 3 Y 5 G 7 8 9 1 0  

rl l  

Figure 5. Plot of Pp(By), the local order parameter defined in 
eq 7 ,  vs. rL,, the distance of separation of the centers of mass of 
two subchains, for subchains of length nB = 3 , 7 ,  and 11 in the 
dotted, dashed, and solid curves, respectively. In all cases n = 
24, 

i, where the spatial increment Ar was set equal to unity 
(in lattice units), which is smaller than the length of a 
single polymer bond, I ,  which equals 3ll2, and u, is the 
volume between r + Ar /2  and r - Ar/2.  Thus, g(r )  is 
normalized to approach the value 1 when rl, becomes large. 
However, it should be noted that although rlj, the distance 
between the centers of mass of the blobs, takes on values 
from a discrete set of numbers, only a small fraction belong 
to the set of points on the diamond lattice. Hence, while 
the choice of the particular spacing of Ar is somewhat 
arbitrary, nevertheless it seems to be reasonable. 

Systems without Attractive Interactions. In Figures 
4 and 5,  respectively, the radial distribution function g(r) 
and the corresponding profiles for the order local param- 
eter Pz(8,) for chains of length n = 24 and Cp = 0.75 are 
plotted for subchains of length nB = 3 (dotted curve), nB 
= 7 (dashed curve), and nB = 11 (solid curve) at the high 
(infinite) temperature limit for the system (ea = tg = 0). 
Fluctuations in the order parameter of the sb,ortest sub- 
chain under consideration, nB = 3, reflect the intrinsic 
lattice structure of the model system. For the case of 
longer subchains, nB = 7 and nB = 11, two major features 
should be noted. First there is a strong excluded volume 

= 0.75, and T* = m; i.e. ea = tg = 0. 
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Figure 6. Plot of the radial distribution function g(r) ,  defined 
in eq 8 vs. rij, the center of mass separation of two subchains, for 
subchains of length nB = 3,7,  and 11 in the dotted, dashed, and 
solid curves, respectively. In all cases, n = 24, r j  = 0.75, T* = 
0.625, and e, = 0. 
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Figure 7. Plot of Pz(8,) ,  the local order parameter defined in 
eq 7, vs. rij, the center of mass of two subchains, for subchains 
of length nB = 3,7,  and 11 in the dotted, dashed, and solid curves, 
respectively. In all cases, n = 24, 4 = 0.75, P = 0.625, and e, 
= 0. 

effect between the pairs of subchains. This excluded 
volume effect extends up to distances comparable to the 
subchain size (that is, rij is equivalent to approximately 
three bond lengths) as can be seen in Figure 4. Second, 
when the subchains are very close to each other they tend 
toward a mutually orthogonal orientation (see Figure 5). 
At larger distances, the longer subchains exhibit an es- 
sentially random orientation with a very slight tendency 
toward parallelism at a distance equivalent to the blob size. 
Somewhat similar behavior was observed by Olaj and 
ZiffereP even on the length scale of an entire chain in their 
Monte Carlo studies of two interpenetrating chains. 

At  lower temperatures, as the flexibility of the chains 
decreases, the local packing changes dramatically. How- 
ever, the chains still possess considerable flexibility in that 
the persistence length is appreciably smaller than the chain 
length. Representative results are shown in Figures 6 and 
7 for g(r) and P2(6ij) vs. rij in a system having 4 = 0.75, n 
= 24, and e, = 0 and at a reduced temperature !P’ = 0.625. 
Subchains of size nB = 3, 7, and 11 are denoted by the 
dotted, dashed, and solid lines, respectively. In Figure 6, 
the effective range of the repulsive interaction drops to a 
value close to the chain diameter rather than the mean 
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Figure 8. Plot of Pz(Oij), the local order parameter calculated 
via eq 7, vs. P. The dashed line and open symbols correspond 
to subchains of nB = 3, and the solid line and filled symbols to 
subchains of nB = 11. The circles (diamonds) correspond to the 
order parameter at rij = 3 (10). In all cases, n = 24, = 0.75, T* 
= 0.625, and e, = 0. 

dimension of a blob; i.e., g(r) approaches a value close to 
unity a t  a distance of a single bond length. At  the same 
distance, as shown in Figure 7, there is a steep increase 
in the order parameter. The maximum value of the local 
orientational order parameter for blobs of nB = 7 is Pz = 
0.35 and for nB = 9 is P2 z 0.3. Both the range of the 
average local orientational order parameter and the smaller 
interchain excluded volume effect are evidence of the 
strong tendency of chains to be locally parallel. On in- 
creasing the distance between subchains, this tendency 
decreases. Thus on the basis of the comparison of this case 
with the system of infinite temperature shown in Figures 
4 and 5, we conclude that local chain stiffness is a necessary 
condition for local parallelism between chains. 

The relationship between increasing local chain stiffness 
and the increasing tendency of chains to be locally parallel 
is graphically demonstrated in Figure 8, where we plot 
P2(Oii) vs. temperature for a system at  4 = 0.75 and ea = 
0. (Decreasing temperature corresponds to increasing 
chain stiffness.) The dashed lines (and open symbols) 
correspond to the shortest blob (nB = 3) and the solid lines 
(and filled symbols) to the longest one (nB = 11). Data 
for subchains of size nB = 5,7,  and 9 lie between the curves 
for nB = 3 and nB = 11 and have been omitted for the sake 
of clarity. The circles correspond to the values of the order 
parameter a t  the smaller intersubchain center of mass 
distance rij = 3 and the diamonds to the values of P2 at  
the larger distance ri = 10. 

While the local order parameter Pz can differ appreci- 
ably from zero in the globally isotropic phase, the global 
order parameter P2 is close to zero over the entire range 
of temperatures regardless of the length of blob under 
consideration.26 While there is no global isotropic-to-an- 
isotropic transition for the system lacking attractive in- 
teractions, the short-range order parameter P,(Bi.) exhibits 
a jump at a transition temperature Tt* = 0.615, Lut above 
the transition (the right branches of the two upper curves) 
the degree of ordering is still significant over a wide tem- 
perature range and depends on subchain length. (At T,* 
the persistence length of a chain in the locally ordered 
bundle exceeds the chain contour length.) However, both 
above and below Tt*, the locally ordered domains them- 
selves are still globally disordered. 

Even if one adopts a more rigid criterion and asserts that 
the present data only provide convincing evidence for local 
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Figure 9. Representative configuration of a locally and globally 
random system with @ = 0.75 and tg = 0. See text for further 
details. 

Figure 10. Representative configuration of a globally random 
system having appreciable local order, with 4 = 0.75 and T* = 
0.625. See text for further details. 

ordering of polymer melts for temperatures below T* = 
0.8, the requisite stiffness necessary to effect local paral- 
lelism between chains is typical of many real polymers. 
However, it must be pointed out that the locally ordered 
domains we observe are not rigidly preserved structures. 
The domain or bundle structure reported here reflects the 
fact that semiflexible polymers on average tend to pack 
in a locally parallel fashion which involves several sub- 
chains and where the length of a bundle is somewhat larger 
than the persistence length of the polymer (see Table I). 

The validity of the above statements is pictorially il- 
lustrated in Figures 9 and 10, where representative con- 
figurations of two systems, a random one (@ = 0.75, tg = 
0) and a globally random one but with significant local 
order (@ = 0.75, T* = 0.6251, are shown. For purposes of 
clarity, no images of the chains resulting from the periodic 
boundary conditions are drawn. Thus the density of the 
polymer on the sides of the MC box appears to be lower 
than in the center of the box where the pictures reflect the 
“true” density. 

The finding that chains must be locally stiff in order to 
pack in a locally parallel fashion is consistent with a Monte 
Carlo simulation of an off-lattice model of n-alkanes in the 
melt performed by Vacatello and co-workers.= While they 
did not report any appreciable local ordering of chains, in 
fact they do observe the onset of some slight ordering at 
distances that correspond to an rji equal to about 2.7 in 
our reduced units (as shown in Figure 10 of ref 38). In the 
context of our results, this is not at all surprising. At the 
relatively high temperature, 400 K, used in their simula- 
tion, the rotational potential of n-butane that they em- 
ployed does not provide the amount of chain stiffness 
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Figure 11. Plot of Pz(Oij), the local order parameter calculated 
via eq 7 ,  vs. rij for systems lacking attractive interactions in the 
lower dotted curves and for systems having ea = -eg/4 in the upper 
solid curves. The densities are as indicated in the figure. In all 
cases n = 24, n B  = 11, and T* = 0.714. 

required to induce appreciable local parallelism of chains. 
They compare their results to those for molten poly- 
ethylene. It should be noted that 400 K corresponds in 
our reduced units to a reduced temperature T* of 1.58, 
where an individual polymer chain is highly flexible. Thus, 
Vacatello et al.= were in fact probing the high-temperature 
regime of Figure 8, where one would expect and does in- 
deed find fairly negligible local ordering. The close cor- 
respondence between their off-lattice simulation results 
and the lattice simulation results reported here is highly 
suggestive that the qualitative effect of local ordering is 
likely to be a universal property of polymeric systems. 

Effect of Attractive Interactions and Density on 
Local Ordering. Attractive interactions were introduced 
into our model by allowing nearest-neighbor nonbonded 
interactions of strength tar which in the present study are 
set at a value t, = 3/4. For the range of temperatures 
employed here, the values of t, are usually smaller than 
those found at the coil-globule transition for the model 
of a single chain confined to a diamond lattice.33 In other 
words, in the present study, in the melt, the segment- 
segment interactions were always slightly weaker than 
those in a @solvent. At a constant temperature (the same 
chain stiffness), it is found that the inclusion of attractive 
interactions (ea # 0) increases the local ordering as man- 
ifested by an increased short-range order parameter. 
Moreover, at a constant temperature and a t  fixed ea and 
tg, an increase in the polymer concentration also leads to 
an increase in the order parameter. Both these effects are 
illustrated in Figure 11, where for n = 24 and T* = 0.714, 
the order parameter Pz(dij) for subchains of size nB = 11 
is plotted vs. distance for densities @ = 0.5 (@ = 0.75) and 
for two types of segment-segment interactions, ta = 0 in 
the lower (upper) dotted curves and E, = -tg/4 in the lower 
(upper) solid curves. Figure 11 clearly demonstrates that 
at lower densities segment-segment attractions have a 
strong influence on the local ordering of the polymers, even 
in the absence of global ordering. Furthermore, as shown 
in Figure 12, where we plot Pz(BiJ vs. ri, for various tem- 
peratures, for a system having n = 24, @ = 0.5, nB = 9, and 
ta = 0, the local parallel packing of chains is present over 
a wide temperature range. Finally, i t  should be pointed 
out that a melt of chains of length n = 24 and a t  @ = 0.75 
with unlimited chain flexibility (eg = 0) but with a nonzero 
attractive interaction (E, # 0) does not exhibit any tend- 
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Figure 12. Plot of P 2 ( Q ,  the local order parameter calculated 
via eq 7, vs. rij at various temperatures for a system,having n = 
24, 6 = 0.5, nB = 9, and e, = 0. 

ency toward either local or global ordering at  any reason- 
able temperature. Thus, our conjecture that local chain 
stiffness is a prerequisite for the formation of locally or- 
dered domains is confirmed. 

C. Extent of Correlation between Locally Ordered 
Domains. In the previous subsection, the conditions un- 
der which the model predicts that chains tend to pack in 
a locally parallel manner were established. For chains 
having lengths of n = 24, we showed that over a substantial 
temperature range within a given chain, the locally ordered 
domains seem to persist on average for about 10 bonds 
down the chain and seem to have a maximum in orienta- 
tional correlation at  a distance of about 3 bond lengths 
between the centers of mass of two subchains. Proof that 
the ordering is local rather than global is provided by the 
decay of P2(Bi.) with distance, by the fact that g(r) - 1 as 
rij - Q), and by the fact that the global order parameter 
is close to zero for systems having attractive interactions 
and above the phase transition temperature and for sys- 
tems lacking attractive interactions at  all temperatures 
studied. Nevertheless, the possibility remains that down 
a given chain, there exists a strong orientational correlation 
between adjacent locally ordered domains; such correla- 
tions (as in the bead-string3 or meander model4*) could 
yield mean square end-to-end distances, ( R 2 ) ,  appreciably 
greater than that predicted from ideal chain statistics. If 
this would turn out to be the case, it would completely 
eliminate the locally ordered domain model as a viable 
description of real polymer systems. Thus, the examina- 
tion of the extent, if any, of down-chain correlation be- 
tween the locally parallel domains of subchains is the focus 
of this subsection. 

We begin by examining, in Table 11, for polymers con- 
fined to a diamond lattice having n = 24,4 = 0.5 and 0.75, 
without and with attractive interactions, the expansion 
factor a2 as a function of P. Here 

a2 = ( R 2 ) / ( R o 2 )  

where (R:) is computed according to Flory's methodm for 
an isolated chain containing n - 1 bonds, assuming inde- 
pendent rotations and no excluded volume effects. For 
the system having attractive interactions at  all tempera- 
tures where the system is globally isotropic, a2 is seen to 
be less than 1.1, and for most cases, in fact lies with 3% 
of unity. Similar behavior is seen for the systems lacking 
attractive interactions at  temperatures where the size of 
the locally ordered domain is less than the chain length. 

Table I1 
Expansion Fact0l.o ( ( R 2 ) / ( R 2 ) ) 1 ' Z  for Various Dense 
Systems of Semiflexible Polymers Composed of n = 24 

Beads 
@ = 0.5 9 = 0.75 

T* t, = 0 ca = -tg/4 t, = 0 t, = -tg/4 
2 1.0277 1.0118 1.0091 
1.25 1.0122 1.0010 1.0152 
1 1.0094 1.0164 1.0084 1.0205 
0.833 0.9944 0.9984 1.0089 
0.769 1.0140 1.0226 
0.714 1.0078 1.0098 1.0763E 
0.667 1.0028 1.0148 1.0542 1.4965 
0.625 1.047Oe 1.1120b 1.5900 
0.588 1.3942 1.3970 1.5808 
0.5 1.0150 1.4550 1.3907 1.4753 
0.417 1.0936b 1.3476 
0.4 1.2104 1.3000 

(R2) = Monte Carlo data; (R:), the ideal chain value is com- 
puted according to Flory's methodz0 for a finite chain of length n - 
1 = 23 bonds. (Assuming independent rotations and no excluded 
volume.) bLowest temperature where bundle size is less than the 
chain length. Lowest temperature for an isotropic system having 
attractive interactions. 

Table I11 
Representative Properties for a System of Semiflexible 

Polymers Having n = 48 Packed at q4 = 0.75 

Pz(o),,b 
T* ( R z ) M C  azo  7 beads 11 beads 

athermal "an 299.5 1.0793 0.070 0.023 
Ca = 0 1.0 545.6 0.9631 0.119 0.076 
c, = 0 0.714 772.1 0.9981 0.205 0.167 
ea = 0 0.625 1086.9 1.2023 0.354 0.243 

a Calculated via eq 9. 

C, = -tg/4 1.0 547.1 0.9658 0.137 0.098 

Maximum intersubchain local order pa- 
rameter, Pz(Oij), for subchains of length nB = 7 and nb = l l ,  re- 
spectively. 

In other words, even when packing of the chains produces 
appreciable local order, the average dimensions of a given 
chain are very close to that obtained assuming ideal (but 
semiflexible) chain statistics. This is consistent with the 
idea that the domain correlation between locally parallel 
domains decays with distance and that the local parallelism 
between chains is loosely defined rather than strictly 
obeyed as in a meander or bead-string model. 

I t  might be argued that chains of length n = 24 are 
simply too short to produce appreciable deviations in a2 
from unity. In other words, perhaps at this chain length 
there are too few domains per molecule. To preclude this 
possibility, we examined 216 chains of length n = 48 
confined to a Monte Carlo box of length L = 48; thus, the 
system is packed at a density 4 = 0.75. All the qualitative 
conclusions concerning the tendency'of chains to pack in 
a locally parallel manner seen when n = 24 also hold when 
n = 48. This substantiates the notion that beyond a 
certain minimum chain length the formation of these 
locally ordered domains is essentially a local property 
whose characteristics are molecular weight independent. 
Thus, conclusions obtained here may also describe the local 
structure of melts of high molecular weight, semiflexible 
polymers. 

In Table 111, we present a summary of representative 
properties for the system of semiflexible polymers each of 
length n = 48, having a volume fraction 4 = 0.75. Due to 
the larger size of the system, the statistics for the n = 48 
system are not as good as for the n = 24 system. Thus, 
except for the T* = 0.625 results, within the statistical 
error of the simulation (estimated to be about 5%), a2 is 
indistinguishable from unity. The value of a2 = 1.20 when 
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A 
1 1 I /  I , , , ,  Figure 13. Geometry employed to calculate the various inter- 

domain correlation functions. hi is the end-to-end vector of a 
subchain containing nB beads whose origin is at bead i. 

P = 0.625 is statistically significant and reflects the same 
trend as in the n = 24 case for isotropic systems near the 
apparent transition temperature where the chain per- 
sistence length exceeds the contour length. Nevertheless, 
in all cases, a2 is sufficiently close to unity to make the 
qualitative prediction that semiflexible chains in the melt 
essentially have dimensions quite close to those of an ideal 
chain, in agreement with small-angle neutron scattering 
experiments.* 

The next property we examined is the extent of sub- 
chain-subchain correlation down a given chain. Such 
correlation may be measured by examining the ensemble 
average of 

(COS ei,i+k) = (hi*hi+k/lhilIhi+kI) (10) 

as a function of the distance of separation between a 
subchain starting at  bead i and the start of the next sub- 
chain at bead i + k. hi and hi+k are both defined in Figure 
13. In Figures 14, parts A, B, and C, we plot (cos 4i, i+k) 
vs. k for systems composed of chains having ea = 0 and 4 
= 0.75 at  T* = 1.0, 0.714, and 0.625, respectively, and 
where ne (the length of each of the two subchains) is set 
equal to 3,7, and 11 in the dashed, solid, and dotted lines, 
respectively. The slope of (cos c # ~ ~ + ~ )  vs. k provides the 
persistence length Pb for the decay of locally ordered do- 
main-domain correlation. For T* > 0.625, apart from 
some initial correlation a t  short distances, the three sets 
of curves give essentially the same Pb, which equals about 
3.3 when P = 1 and about 4.8 when P = 0.714. In other 
words, the range of correlation between pairs of locally 
ordered domains is very small, being on the order of a few 
bond lengths a t  most. When T* = 0.625 (which is close 
to the apparent transition temperature T,* where the chain 
persistence length exceeds the chain contour length), there 
seems to be some additional orientational correlation of 
the shorter subchains (with ne = 3 and 7) that is enforced 
by the local domain structure. 

On the basis of the above, we conclude that these model 
systems are globally disordered even when significant local 
parallelism of the chains exists because of (a) the decay 
of interchain correlations with increasing separation of the 
subchains, (b) the fact that the global order parameter is 
very close to zero above the phase transition temperature 
(for a more detailed discussion of the transition to the 
ordered phase, please see the following paper),26 (c) the 
observation that in the system with attractive interactions 
in the isotropic phase as well as in the system having ea 
= 0 and whose bundle dimensions are smaller than the 
chain length, the chain dimensions as probed by (R2) are 
consistent with ideal (semiflexible) chain statistics, and 
(d) the fact that the correlation down the chain for the 
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orientational correlation; that is, a melt of infinitely flexible 
chains resembles a bowl of overcooked spaghetti. This is 
in qualitative agreement with the random coil model of 
melts espoused long ago by Flory.' Following introduction 
of local chain stiffness, however, semiflexible polymers tend 
to form locally ordered domains. The domains of such 
locally parallel collections of chains are not well-defined 
or unique static structures but are statistically defined, 
quite fuzzy dynamically fluctuating structures. Beyond 
a certain minimum molecular weight, the characteristics 
of these domains appear to be molecular weight inde- 
pendent. Moreover, to a good approximation within a 
given chain, a subchain that is part of one such locally 
ordered domain is statistically uncorrelated with a sub- 
chain that is a part of another locally ordered domain. 
Furthermore, the local ordering of semiflexible polymer 
chains, at a fixed chain stiffness (temperature), becomes 
better defined on increasing the density of the melt and/or 
with the introduction of an attractive interaction between 
polymer segments. These findings are highly suggestive 
that local ordering is a cooperative phenomenon. Thus, 
we conclude that for the model systems employed in this 
series of simulations, the packing of semiflexible chains 
in the melt is well described by the locally ordered domain 
model schematically depicted in Figure 1D. 

Our simulation results are qualitatively consistent with 
the major experimental features seen in real polymer melts. 
On the one hand, our model systems exhibit chain di- 
mensions very close to that predicted by ideal chain sta- 
tistics, i.e. @solvent dimensions, in qualitative agreement 
with small-angle neutron scattering results;* and on the 
other hand, they exhibit the local ordering in the melt 
indicated by electron diffraction15J6 and depolarized 
Rayleigh light scattering ~tudies. '~-'~ Thus, insofar as this 
diamond lattice model system is a reasonable approxi- 
mation to real melts of semiflexible polymers, a locally 
ordered domain structure composed of partially parallel 
chains is suggested to be a ubiquitous property for many 
polymeric systems, e.g., concentrated polymer solutions 
at low temperatures, polymer melts, and polymer glasses. 
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Order-Disorder Transitions in Tetrahedral Lattice Polymer 
Systems 
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ABSTRACT. Monte Carlo simulations were performed on multichain, semiflexible polymer systems with 
excluded volume confined to a diamond lattice, and the requirements for a phase transition between a globally 
random and a globally anisotropic phase were explored. For chains composed of n = 12 and 24 beads packed 
a t  volume fractions 0.5 and 0.75, a transition to  a globally ordered phase is not observed if the attractive 
interactions are excluded, in agreement with recent work of Baumgartner (Baumgartner, A. J. Chem. Phys. 
1986,84,1905) on square and cubic lattice multichain systems. Inclusion of attractive interactions between 
nonbonded nearest-neighbor pairs of beads produces an isotropic-to-anisotropic phase transition which is 
probably first order. The properties of the isotropic and globally ordered phases are extensively characterized, 
and the ability of simple mean field theory to  treat the isotropic-nematic phase transition is examined. 

I. Introduction 
Our recent Monte Carlo study of a tetrahedral lattice 

model of a polymer melt provides evidence that the 
presence of local stiffness in polymer chains, related to the 
energetic preference for trans over gauche conformational 
states, induces a local ordering of the chains; i.e., on a local 
scale, there is a tendency for polymers to pack in a parallel 
manner, resulting in the formation of locally ordered do- 
mains.' These domains exist over a rather broad tem- 
perature range and are loosely defined, but the domain 
structure becomes more apparent if attractive forces be- 
tween polymer segments are introduced into the model. 
Moreover, in the globally isotropic phase, the subchains 
of a given chain participating in two such domains essen- 
tially lack orientational correlation. One would expect that 
as temperature decreases, the system of locally ordered but 
globally disordered, semiflexible polymers should exhibit 
a phase transition to a globally ordered phase such as was 
predicted by Flory2 using a mean field argument. Baum- 
gartner and Yoon3 and Yoon and Baumgartner4 have 
performed Monte Carlo studies of two-dimensional square 
and three-dimensional cubic lattice polymer systems very 
similar to the system originally considered by Flory and 
have observed what appeared to be a first-order transition 
from a random to a nematic phase that was in qualitative 
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agreement with the theoretical predictions. Some devia- 
tions of the simulations from Flory-Huggins-Miller- 
Guggenheim theory, for instance, a higher transition tem- 
perature and a smaller entropy change at  the transition, 
were reported. In recent work, Baumgartner more care- 
fully examined the nature of the order-disorder transition 
for trimers on a square lattice5 and for polymers packed 
at high density on square and cubic lattices in Monte Carlo 
boxes appreciably larger than the chain length.6 He found 
that finite-length chains lacking attractive interactions do 
not experience a transition between a globally isotropic and 
a long-range, orientationally ordered state. However, such 
systems form locally ordered domains whose size, 6, is on 
the order of the chain length. Introduction of orienta- 
tion-dependent intermolecular interactions is found to 
produce an isotropic-nematic phase transition in three 
dimensions which appears to be of first order. 

In the present work, we describe the order-disorder 
transition in systems of tetrahedral polymers confined to 
a lattice. The effect of density as well as short-range, 
segment-segment interactions on the location and char- 
acter of the phase transition is examined. While Baum- 
gartner and Y o o ~ ~ - ~  required a pair of adjacent nearest- 
neighbor bonds to be parallel in order to have an attractive 
interaction, in what follows, we employ the less restrictive 
condition of allowing an attractive interaction between any 
nonbonded neighboring pair of beads. Since the model and 
Monte Carlo (MC) procedure have been described in the 
preceding paper,' we omit most of the details. 
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