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ABSTRACT

The development of automatic approaches for the comparison of protein sequences has
become increasingly important. Methods that compare profiles allow for the use of infor-
mation about whole protein families, resulting in more sensitive and accurate detection of
distantly related sequences. In this contribution, we describe a thorough optimization and
tests of a profile-to-profile alignment method. A number of different scoring schemes has
been implemented and compared on the basis of their ability to identify a template protein
from the same SCOP family as a query. In addition to sequence profiles, secondary structure
profiles were used to increase the rate of successful detection. Our results show that a
properly tuned one-dimensional threading method can recognize a correct template from
the same SCOP family nearly as well as structural alignment. Our benchmark set, which
might be useful in other similar studies, as well as the fold-recognition software we devel-
oped may be downloaded (www.bioshell.pl/profile-alignments).
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1. INTRODUCTION

The alignment of protein or genomic sequences is one of the most common research tool for

modern molecular biologists. The methods of sequence alignment have obtained much attention since

they have been developed in the 1970s and the 1980s (Needleman and Wunsch, 1970; Smith and Waterman,

1981). Global and local alignment algorithms were followed by the development of models describing

evolution of one sequence into another. These considerations resulted in the two commonly used approaches

that describe point-mutation events: Blossum (Henikoff and Henikoff, 1992) and Pam (Dayhoff et al., 1978)

substitution matrices. These matrices—an indispensable part of any sequence alignment tool—have found a

wide application in genome annotation, protein classification, studying protein evolution, phylogenetic

analysis, and protein design. Sequence alignment is also the foundation of methods for secondary ( Jones,

1999) and tertiary (Kolinski, 2004) protein structure prediction.

Due to enormous experimental efforts, the size of available databases has increased drastically. This

imposes a considerable challenge for computational methods. Help has come from novel implementations

(Oehmen and Nieplocha, 2006) and hardware development (Blazewicz et al., 2011). Considerable progress

has also been made on theoretical grounds. In their seminal article, Gribskov et al. (1987) introduced a
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sequence profile that is a matrix that contains N · 20 amino acid probabilities and describes a family of

protein sequences rather than a single sequence of N amino acid residues. Originally, profiles were used to

enhance the search in a database of sequences by means of profile-to-sequence alignment methods. These

were in turn generalized by Pietrokovski (1996) into profile-to-profile alignments. Since then a search has

been performed as alignments of a query profile with a database of precomputed sequence profiles, where

each of these profiles describes a single family of proteins. Progress therefore went through three types of

methods: sequence-to-sequence, e.g., Blast (Altschul et al., 1990) and FASTA (Lipman and Pearson,

1985); profile-to-sequence, e.g., Psi-Blast (Altschul et al., 1997) and SAM-T98 (Karplus et al., 1998); and

profile-to-profile alignment. The former two utilize a substitution matrix to assess the effect of mutations.

The latter one requires a function that compares two profile columns, where each column is a vector of 20

real values (21 when a profile also describes gap probability). Numerous functions have been proposed for

this purpose (Yona and Levitt, 2002; Pietrokovski, 1996; Sadreyev and Grishin, 2003; von Ohsen et al.,

2003; Rychlewski et al., 2000; Panchenko, 2003; Panchenko et al., 2000); some of them perform better than

the other, as assessed in several independent studies (Ohlson et al., 2004; Wang and Dunbrack, 2004). The

specificity of the search can be enhanced by the use of additional information (e.g., secondary structure or

surface exposure). Such data may come either from experiments or from machine learning methods, and

results in a better distinguishing between pairs of homologous and non- homologous proteins.

In this article, we describe the design, optimization, and benchmarking of a protocol that aligns a query

protein sequence with a database of protein domains. The main purpose in devising such a computational

tool is to provide template structures for comparative modeling protocols. These are based on the as-

sumption that, if similarity between two sequences is high enough, the two proteins share a common fold.

Most commonly, comparative modeling methods heavily rely on a query-template alignment. Relevant

structural parts of the template are copied to the query according to the alignment. Missing fragments are

reconstructed in the subsequent step of the modeling. Reliability of such an approach strongly depends on

the quality of the alignment. Therefore, sequence alignment methods used in comparative modeling are

usually optimized for alignment accuracy. This however may lower the template detection sensitivity. All

the alignment-related problems can be alleviated by a novel comparative modeling method recently pro-

posed by Kolinski and Gront (2007). The method requires only specifying the template structure (or

structures, as the method can utilize multiple templates); the a priori alignment is not required. Therefore,

in this study, we have optimized an alignment method to maximize the chance for correct selection of a

template. To achieve the highest possible sensitivity, we performed alignment of sequence profiles com-

bined with secondary structure profiles. For the sake of speed, we limited ourselves to dynamic pro-

gramming algorithm with affine gap penalty.

2. METHODS

2.1. Benchmark set

The optimization process described in this contribution has been based on the most recent Astral

database (Chandonia et al., 2004). The database consists of protein domain structures extracted from the

PDB content according to the SCOP classification (Murzin et al., 1995). Redundancy had already been

removed from the set in such a way that amino acid sequences of any two domains from the database are

identical in at most 40%. In order to transform the Astral database into a well-balanced benchmark set, we

performed the following steps:

(i) We considered only these SCOP families that are represented in Astral by at least 4 domains. Any

domain that belongs to a Family which does not satisfy this condition was excluded from the

benchmark. In this way, we could easily divide the dataset into a train set and a test set.

(ii) Then, the best four Family representing structures (according AreoSpaci score) were divided into

training and testing sets by putting two randomly selected domains into the first set and the

remaining two into the other.

The procedure resulted in a benchmark set comprising two subsets: train and test (1082 domains each).

The former set was used to determine the optimal values for the necessary parameters and the latter one to

assess the quality of our method. Any of these 1082 domains may be used as a query in a search for

homologues domains. The way that the benchmark set was constructed ensured that there was exactly one
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correct answer that shared the same SCOP Family with the query. Moreover, the training and testing sets

were of the same size, which helped to avoid any bias during the optimization procedure.

In the course of this study, to provide homology sequence redundancy on the 30% level, several

additional domains were excluded from the benchmark. In order to keep the benchmark consistent, we also

removed all other domains that belong to the same SCOP Family as the problematic ones. The reduced

benchmark set therefore comprised two subsets of 935 domains.

2.2. Profile generation

For each domain, a sequence profile was computed by PsiBlast with the following settings: matrix,

Blossum62; gap open, - 11; gap extend, - 1; number of iterations, 5; and profile e-value threshold, 10 - 5.

Resulting checkpoint files that contained raw observed amino acid frequencies (twenty real values) at each

position in a sequence were modified by adding pseudocounts qi in a manner similar to that used by Tatusov

et al. (1994):

qi =
X20

j = 1

pjfj exp (kB62j‚ i)

where k = 0.001, pj is the observed frequency for jth amino acid in a profile column, fj is the frequency of jth

amino acid in the whole SwissProt database (Boeckmann et al., 2003) and B62 detones Blossum62 matrix.

A sequence profile computed for an amino acid sequence of NL residues is thus a matrix NL · 20. Its

rows represent twenty-dimensional probability vectors, normalized to 1.0. This study also utilizes sec-

ondary structure (SS) profiles, which are NL · 3 matrices. The three columns provide the probability of

finding a helix, strand, or loop at a given position in the protein. Two kinds of secondary structure profiles

were derived for each domain: one computed from the structure by the DSSP program (Kabsch and Sander,

1983) and the other predicted by PsiPred ( Jones, 1999). The DSSP program is a definition rather than a

predictor: it assigns secondary structure symbols based on the hydrogen bond network observed in a tertiary

structure. The resulting probabilities were therefore either 1.0 or 0.0. Profiles of this type were utilized

when a domain served as a template in an alignment calculation. Since the secondary structure of a query

protein is not known, in this case we used a profile predicted by PsiPred.

2.3. Scoring methods

During the parameter optimization step, the following profile-to-profile scoring schemes were consid-

ered: (1) regular sequence alignment, (2) dot product, (3) L1 score, and (4) Picasso3. The best method with

the optimal set of parameters was used in the production version of the protocol.

2.3.1. Sequence alignment. A substitution matrix was used to define the score for aligning the ith

position from query sequence and the jth position from the template. A number of substitution matrices

(Blossum, Pam) were tested, and Blossum62 (denoted as B62) was selected as the best one.

2.3.2. Dot product. Dot product (DP), one of the simplest formulas used to assess the similarity

between two sequence profile columns ith and jth, is defined as:

SDP(i‚ j) =
X20

a = 1

Qi‚ aTj‚ a

where Qk,a or Tk,a is the frequency of the appearance of amino acid a in kth column from the query and the

template profile, respectively.

2.3.3. L1-score. L1-score similarity measure is simply the L1 distance between profiles’ corre-

sponding columns:

SL1(i‚ j) = 1 -
X20

a = 1

jQi‚ a - Tj‚ aj
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Despite its very simple formulation and great computational efficiency, we are not aware of any study that

compares the L1 score with other functions that are commonly used in the field. The function however has

been used to guide fragment selection for modeling (Gront et al., 2011) with the Rosetta program.

2.3.4. PICASSO3. This is one of the log-odds based method, introduced by Heger and Holm (2001).

The original function is not symmetric, which means that results depend on which sequence is treated as a

query and which one as a template. This ambiguity was removed by Mittelman et al. (2003) by introducing

a symmetrical score equation for aligning the ith and jth amino acids from query and template sequences:

SPic(i‚ j) =
X20

a = 1

Tj‚ a ln
Qi‚ a

pa

+
X20

a = 1

Qj‚ a ln
Ti‚ a

pa

where pa is the expected frequency of appearance of the ath amino acid, computed in this work by

averaging the whole SwissProt database.

2.3.5. Structure alignment. Besides the methods for profile-to-profile alignments, we used a struc-

ture alignment algorithm to match the query-template pairs. In a real-life application, the three-dimensional

structure for a query protein remains unknown; the structure-based comparison was used in this study as a

reference. Since three-dimensional structure provides much more information than just a sequence profile, we

had expected it would define the upper bound for profile-based methods and serve as a reference point for the

comparisons. Structure alignments were computed with TM-align—a method that employs a heuristic iter-

ative algorithm (Zhang and Skolnick, 2005) which maximizes TM-score, a parameter defined as:

SStr =
1

LT

XLA

i = 1

1

1 + ( di

d0
)2

where LT is the length of the shorter protein, LA is the length of the alignment, di is the distance of two

corresponding amino acids in the alignment (after structures superposition), and d0 is estimated from the

following formula:

d0 = 1:24
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LT - 153

p
- 1:8

2.4. Accuracy measures

Two numerical measures of success were used. The first one, denoted further as a hits ratio (HR), is the

fraction of correctly matched Family or Superfamily members for the best scoring query-template pair. In

other words, if one wants to assign a given query sequence to a SCOP Family or Superfamily just by

copying the annotation of the top scoring template, HR is the chance for this annotation to be correct. The

second parameter, Area Under Curve (AUC), measures the area under Receiver-Operator Curve (ROC).

AUC quantifies the probability of scoring a randomly chosen positive case higher than a negative one

(Fawcett, 2006). A random predictor would feature AUC = 0.5. The first criterion fit the overall purpose of

our work better; hence, it was used as the criteria for all the parameter optimization procedures. The second

parameter was used for additional characterization of the results.

2.5. Implementation and optimization

In the optimization process, any domain from the train subset was aligned with any other domain in this

set, which required 935 · 934 alignment calculations. Subsequently, Family HR was reported based on

these 935 cases. This procedure was applied to assess any alignment scheme attempted in the experiment.

An alignment scheme is defined by two affine gap penalty parameters (open, extend) and a scoring system:

one of the four profile-to-profile similarity measures or one of several substitution matrices. Moreover, each

of these combinations was used both in a global and in a local alignment mode. An example of such an

optimization for a single scoring method is shown in Figure 1, which presents the Family HR value as a

function of affine gap penalty parameters. Each square in this plot denotes the HR found after 935 · 934

local alignment computations with Picasso3 scoring scheme. In order to test all the combinations of the

parameters, the optimization required the all-versus-all profile alignment procedure to be performed more
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than 1500 times. Each of these runs resulted in a single Family HR value. The best scoring sequence-to-

sequence alignment as well as the best scoring profile-to-profile alignment were also assessed on the test

subset. All these alignment calculations as well as data analysis were performed with BioShell package

(Gront and Kolinski, 2006, 2008). In fact, after initial tests, the relevant BioShell routines were optimized,

which resulted in significant reduction in the CPU time required for this project. In addition, all-versus-all

structural alignments were computed with TM-align program. Based on obtained TM-score values, HR and

AUC parameters were evaluated in the same manner as for the sequence-based alignment.

3. RESULTS AND DISCUSSION

The performance of profile-to-profile alignment methods has been discussed previously (Ohlson et al.,

2004; Wang and Dunbrack, 2004). Although the benchmark set as well as the optimization procedure

utilized in this experiment differs considerably from previous studies, in general our findings summarized

in Table 1 agree with the previous results. The first section of the table presents the best results obtained

after exhaustive optimization of gap parameters, the second part (i.e., the last three rows) provide validation

on the test set. Each method was applied both in global and local alignment (g or l, respectively).

In the course of optimization, we found Blossum62 to be the best performing substitution matrix. Using the

matrix in the global alignment of domain, sequences yields HR of 35.4%. Not surprisingly, any profile-to-profile
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performing parameters’ combination
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Table 1. Performance Results for the Alignment Methods

Gap Hit Rate ROC area

Method Open Extend Family Superfamily Family Superfamily

B62 g - 10.0 - 1.0 0.354 0.361 0.709 0.587

B62 l - 6.5 - 2.5 0.320 0.324 0.698 0.604

DP g - 0.3 - 0.2 0.583 0.602 0.909 0.784

DP l - 0.2 - 0.1 0.582 0.546 0.868 0.720

L1 g - 0.3 - 0.2 0.664 0.693 0.944 0.814

L1 l - 0.4 - 0.2 0.660 0.688 0.940 0.781

Pic g - 2.0 - 0.6 0.729 0.700 0.948 0.817

Pic l - 1.7 - 0.5 0.729 0.779 0.964 0.865

Pic ls - 1.5 - 0.6 0.790 0.836 0.974 0.907

Str – – N/A 0.738 0.817 0.990 0.939

Pic l - 1.7 - 0.5 0.748 0.780 0.955 0.870

Pic ls - 1.5 - 0.6 0.779 0.820 0.957 0.908

Str – – N/A 0.752 0.835 0.984 0.936

Assessment of the scoring schemes: B62, sequence alignment (with the best performing matrix BLOSUM62); DP, Dot Product; L1,

L1 measure, and Pic, Picasso3, used in global and local (g and l) alignment, respectively. The best performing method (Pic l) was

combined with secondary structure information (ls variant). The first section of the table refers to parameter optimization runs done on

a train set, the second (last three rows) to a test set. The sequence-based methods were also compared to structure alignment (Str). All

the quality assessment parameters (Hit Rate and area under ROC curve) are in the range [0.0, 1.0].
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alignment method is superior to the sequence alignment. The best of the profile similarity scoring methods

considered here, Picasso3 yields HR of 0.73 (0.78) on the Family (Superfamily) level, respectively. The

combination of Picasso3 (local alignment with optimal gap parameters) score with SS profiles similarity boosts

these rates further to 0.79 (0.84), respectively. This simply means that when a query protein is aligned as

described above with representative protein domains from SCOP database, there is 84% chance that the top

scoring template comes from the same SCOP Superfamily as the query. The scoring function in this case was

defined as SPicSS(i‚ j) = SPic(i‚ j) + cSSS
L1 (i‚ j). The value of the constant c = 0.5 was optimized on the train set.

In general, these are the results one could expect before conducting the experiment. The most unexpected

result however comes with the performance of structural alignment, which is very well comparable to the

Picasso3 + SS combination, according to the HR parameter. Note, however, that HR is based only on the

best scoring query-template pair. On the contrary to HR, according to AUC parameter structural alignment

is still better than any other method. In fact, structural alignment tends to rank the correct query-template

pairs higher than the best profile alignment method. The latter one however has been extensively trained to

maximize the first-rank hits rate. The ability for ranking the correct query-template pairs of the two

methods: Picasso3 + SS and structure alignment have been compared in the Figure 2. The x and y axes

provide the rank of a correct query-template pair as assigned by Picasso3 + SS and structure alignment,

respectively. Each point in this plot represents a bar of a two-dimensional histogram aggregating the ranked

pairs. The highest peak in the histogram is located at (1,1) and represents all those correct query-template

pairs which both methods (Picasso3 + SS and structure alignment) managed to rank at the first place. There

are also other bars on the x (y) axis. They correspond to the pairs which only structural alignment (only

Picasso3 + SS, respectively) ranked best. The points scattered over the plot tend to locate in its lower

triangle which confirms that structure alignment assigns better ranks to the correct pairs than Picasso3 + SS.

Besides the differences in ranking abilities, the two methods offer similar performances.

Another interesting finding is the good performance of the L1 score. Despite its very simple formulation,

it achieves HR on the Family level just 7% lower than the best method, Picasso3, and it might be

considered for applications where high computational efficiency is required.

4. CONCLUSION

In this contribution, we described an optimization and benchmarking of a profile-to-profile alignment

method. The carefully derived benchmark set we used in this study can be freely downloaded

(www.bioshell.pl). For each protein domain, the archive provides a structure in PDB format, a sequence

profile, and two secondary structure profiles (predicted by PsiPred and defined by DSSP).

FIG. 2. Comparison between the

best method, Picasso3 + secondary

structure (Picasso3-SS), with a struc-

tural alignment. This two-dimensional

histogram shows at x = i and y = j

how often a correct query-template

pair of two proteins from the same

family has been ranked as ith (jth) by

Picasso3-SS (structure alignment),

respectively.
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The fold recognition method that we developed in this study allows rapid assignment of SCOP Family or

Superfamily to a given query sequence with a success rate close to the one achieved by structural align-

ment. This can be understood from the point of view of how evolutionary relationship is defined in the

SCOP database. Homology between proteins is evaluated based on sequence analysis and then manually

curated. It expresses the fact that, at least in some cases, the structure similarity is neither the strongest nor

the only signal for common origin of two proteins. This can also suggest that fold recognition algorithms

have already achieved a fair level of maturity, and there is small room for further improvement (at least on

the benchmark posed by this study). There are however two other very important issues that have not been

addressed here: (i) assessment of statistical significance for a given result and (ii) alignment quality. As for

the first problem, we assumed that the set of templates always contains the correct answer, that is a member

of the same SCOP family as the query. Our benchmark set, due to the way it has been constructed,

obviously satisfies that assumption. The assumption will also hold true in the majority of real-life appli-

cation since the protein fold space is already well covered by structures determined experimentally. Finally,

the problem of the actual alignment between query and template proteins will be handled by an algorithm

used for construction of a structural model for a query protein.
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