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Monte Carlo simulations have been performed on a diamond lattice model of semiflexible
polymers for a range of flexibilities and a range of chain lengths from 50 to 800 segments. The
model includes both repulsive (excluded volume) and attractive segment-segment
interactions. It is shown that the polymers group into two classes, “flexible” and “stiff.” The
flexible polymers exhibit decreasing chain dimensions as the temperature decreases with a
gradual collapse from a loose random coil, high temperature state to a dense random coil, low
temperature state. The stiffer polymers, on the other hand, exhibit increasing chain dimensions
with decreasing temperature until at a critical temperature there is a sudden collapse to an
ordered high density, low temperature state. This difference is due to the relative strength of
the segment—segment attractive interactions compared to the energetic preference for a trans
conformational state over a gauche state. When the attractive interaction is relatively strong
(flexible case) the polymer starts to collapse before rotational degrees of freedom freeze out,
leading to a disordered dense state. When the attractive interaction is relatively weak (stiff
case) the polymer starts to freeze out rotational degrees of freedom before it finally collapses to

a highly ordered dense state.

I. INTRODUCTION

The conformation of a single long-chain polymer in di-
Iute solution is often compared to a random walk in three-
dimensional space. As is well known, the real problem, how-
ever, is complicated by the non-Markovian character of the
polymer conformation due to the physical impossibility of
two polymer units, separated by some distance down the
chain, occupying the same small volume element. This so-
called excluded volume effect depends on the strength of the
“long-range” interactions in the polymer coil. The term
long-range refers to a large distance along the chain contour,
but not to a large separation in space. Actually, the most
common case of uncharged polymers requires consideration
of very small spatial distances, comparable to the size of a
single chain element. It was first shown by Flory® that in a
good solvent and/or at high temperatures, the excluded vol-
ume effect leads to alarge increase of the chain dimensions in
comparison with an ideal random walk. In this case the
mean square end-to-end separation (R 2} scales as

(R?)~n°", (1)

with » the chain length. A similar relation holds for the
mean-square radius of gyration of the polymer coil (S?)
which is more easily available from experimental measure-
ments. Flory’s result has been essentially confirmed by other
more rigorous treatments of flexible polymers based on
mean-field theory,”” renormalization group methods,’ ex-
act enumerations on a lattice for short chains,” and Monte
Carlo simulations for much longer polymers.'®!* Local,
short-range interactions down the chain can be included in
the proportionality constant if the chain length 7 is not too
small.

*) Permanent address: Department of Chemistry, University of Warsaw,
02-093 Warsaw, Poland.
) Alfred P. Sloan Foundation Fellow.
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When the temperature decreases, or when a good sol-
vent is replaced by a poor one (in a poor solvent the attrac-
tive interactions between polymer segments dominate over
the segment—solvent interaction) the chain dimensions de-
crease, and at the & temperature! one obtains the random
walk result

(R*)~n. (2)

A further temperature decrease leads to a collapse of the
polymer coil to a more compact state. There is some evi-
dence®'>'> that in the limit of long flexible polymers the
resulting globule can be characterized by

(R2)~n2/3. (3)

Domb'¢ found that in the long chain limit the collapse
transition temperature was identical to the 6 temperature.
He argued that the collapse transition was first order. More
recent theoretical analysis by Moore!” and the mean-field
theory of Sanchez® predict a second-order, Landau type
transition. Sanchez’s work, as well as other theoretical con-
siderations'’~'® and numerical tests'>'> show that even close
to the @ temperature the polymer conformation differs con-
siderably from a Markov random walk and the distribution
of the polymer segments within the coil is relatively far from
the Gaussian distribution of an ideal unrestricted chain.

It should be pointed out that the above conclusions con-
cerning the thermodynamic character of the collapse transi-
tions have built in (for the case of long polymers) the implic-
it assumption of substantial flexibility of the chain backbone.
Because there is some theoretical®®?°2* and experimen-
tal** evidence of the large importance of local chain stiffness
in the excluded volume effect, it is possible that chain stiff-
ness can affect the character of the collapse transition. In-
deed, a mean-field lattice treatment incorporating ternary
interactions in a virial expansion leads to qualitatively differ-
ent predictions for polymers having different flexibility. In
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the analytical work of Post and Zimm,?' it has been shown
that relatively stiff polymers, like DNA, should collapse
with a sharp discontinuous change of coil size, while more
flexible, synthetic polymers will undergo a collapse transi-
tion with a gradual change of chain dimensions as a function
of temperature. Moreover the results of Post and Zimm are
not restricted to the case of the long chain limit, but also hold
for real polymer chains with a finite degree of polymeriza-
tion.

In the present Monte Carlo (MC) computations, we
study the effect of chain stiffness in polymers of finite length
on the excluded volume effect and also on the character of
the collapse transition. Within the framework of a lattice
model, we make a reasonable approximation to the interac-
tions between polymer segments and include both the repul-
sive and attractive parts of the potential. To our knowledge
this is the first consistent numerical analysis of the excluded
volume effect together with the effect of local chain stiffness
that has been applied to the collapse transition in model
polymers of reasonable length. Within the statistical accura-
cy of the Monte Carlo method, and in the range of the valid-
ity of lattice models, the results should be exact. Therefore,
the present analysis should have relevance to the properties
of real dilute polymer systems.

One further feature of the collapse transition which we
investigated was the nature of the collapsed state. As we
shall show, for flexible polymers the collapse is to an essen-
tially Gaussian, tight random coil as one would expect.
However, for finite length polymers which have a consider-
able degree of stiffness, the polymer collapses into an or-
dered state. This collapse into an ordered state from a ran-
dom coil is similar to the denatured to native transition in
globular proteins. The physical origin of this ordered col-
lapse transition is discussed below.

The remainder of the paper is arranged in the following
way. In Sec. II the assumptions of the model (subsection A)
and the sampling MC procedure used (subsection B) are
described. Then, the simulation results are discussed in Sec.
II1. Subsection A describes excluded volume effects in semi-
flexible polymers. We compare our results with third order
mean-field theory in subsection B. In the subsection C, the
effect of chain stiffness on the structure of the collapsed, low
temperature, phase is discussed. The major conclusions of
the present work are summarized in Sec. IV.

Ii. MODEL AND SAMPLING PROCEDURE
A. Description of the model

The model under consideration is the diamond lattice
representation®>% of the rotational isomeric states (RIS)
model of the polymer conformation with excluded volume.
For computational convenience we have assigned the bond
vectors the following form: /; = 8, for bonds starting from
an odd lattice point, and /; = — S, for bonds starting from
an even lattice point. The index / enumerates the bonds down
the chain wherei = 1,2,....n — land the 8, withk=1,2,3,
4 are the diamond lattice vectors. Using an integer represen-
tation of all the polymer beads, the set { B, } has the follow-
ing form:

Bl = [1:1:1]’ ﬁz = [l’ —-1,-1],
Bi=[-11,—-1],and B,=[—1,— 1,1].

Every sequence of the three bonds defines an isomeric state
for which, with a constant tetrahedral bond angle, there are
three available conformational states: ¢, trans, g_, gauche
minus, and g, , gauche plus. The conformation of the entire
chain requires that n — 3 rotational degrees of freedom be
specified. A symmetric rotational potential has been as-
sumed in the present computation, where €, is the energy
separation of a gauche and a trans state. Thus the statistical
weights of the rotational isomeric states are

o) =lo(g+)=w(@—)=exp(—¢€/k;T) . (4)

We consider only €, >0. The interactions between polymer
beads are described by the potential

w; r; =0, i#j
V(rij)= €5 li—jl#1, (3
0; ri;>1

rij=ly

where r;; is the distance between ith and jth beads in the
chain, / is a lattice bond distance and is equal to 3'/2 in our
units, and €, is the attractive parameter; only €, <0 has been
considered. Hence, any conformation with m, gauche states
and m, contacts between nonbonded polymer segments,
with no multiple occupancy of any lattice site, has the con-
figurational energy

E=ms, + mye, . (6)

For the purpose of convenient comparison of the prop-
erties of chains of various lengths we define the average den-
sity v of nearest nonbonded neighbors. The numerical value
of v is the same as the average number of binary contacts per
polymer bead for the lattice under consideration (coordina-
tion number ¢ = 4) and

2m

- ¢ . 7
T ag-2 +2 )

Similarly, we define the fraction of gauche states per
degree of rotational freedom

Sfe=m,/(n—3). (8)

Both the parameters vand f, measure the local packing and
conformational order within the polymer, with convenient
values for limiting cases. Namely v=0 and f, =0 for a
rigid rod molecule, and v = 1 for a Hamiltonian walk, while
the value of f, depends on the geometric properties of the
Hamiltonian walk.?’

B. Monte Carlo sampling procedure

There are a variety of Monte Carlo procedures which
have been applied for sampling self-avoiding random walks
(SAW’s) of various types. Probably the most commonly
used are the simple sampling (SS) method,'* Rosenbluths’
method?® (RR), and the scanning method®® which extends
the RR procedure. Though all of these static sampling meth-
ods have been very successful in numerous applications they
are unsuited to the present problem for the following reason.
We expect that the collapsed structure of semiflexible poly-
mers, with a high preference for trans conformations, could

J. Chem. Phys., Vol. 85, No. 6, 15 September 1986

Downloaded 27 Apr 2005 to 128.205.53.57. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Kolinski, Skoinick, and Yaris: Collapse transition of semiflexible polymers 3587

be partially ordered, presumably with a high local density of
polymer segments. Therefore we need a sampling procedure
that possesses the ability to sample with similar accuracy the
broad expanse of configurational space available to a ran-
dom coil as well as the much smaller region of configuration-
al space accessible to a collapsed structure. This seems to be
difficult to achieve by means of a static method. Hence a
dynamic sampling technique'? has been used, within the
framework of an asymmetric Metropolis scheme.

Let us assume that the polymer chain is in some configu-
ration. Then one can perform a small modification of the
chain conformation which is associated with the energy
change AE;; = E; — E;, where E, is the configurational en-
ergy [Eq. (6)] of the ““old” state and E ; is the energy of the
“new” one. The new conformation is then accepted provided
the Boltzmann factor connected with the micromodification
is larger than a random number chosen from a uniform dis-
tribution over the range (0,1). This leads to a probability of
acceptance of the trial conformation

p.; =min{l,exp( — AE,;/k;T)} (9

and the distribution of states tends to an equilibrium Boltz-
mann distribution in the limit of long MC sequences.

Two versions of the sampling MC algorithms have been
used. In the first one the following modifications of the chain
conformation were employed:

(i) “reptation” type motion, where a randomly chosen
end segment is clipped off and then added at a ran-
dom direction to the opposite chain end;

(ii) a random rotation of a small end portion of the

chain (1-2 bonds);

(iii) three-bond kink motions, resulting from the per-
mutation of the chain segments in a randomly cho-
sen part of the chain (only a sequence comprising
a gauche conformation could be affected by this
kind of modification—see Ref. 12 for some de-
tails).

Successions of the micromodifications (i)—(iii) were
randomly mixed, with an average frequency of attempts
(i):(ii):(iii) :: 1:1: xn, where x is some arbitrary fractional
number (we used x ranging from O to 0.1). Thus for our
sampling algorithm the major mode of chain motion is repta-
tion because of its high efficiency in sampling configuration-
al space.

The second algorithm we used differs from the first one
in that the direction of reptation down the chain contour is
kept unchanged until the first unsuccessful move. Then the
reptation direction is switched to the opposite direction.
Both MC algorithms give the same results, but the second
seems to be more efficient, especially in the low temperature
range.

For each set of the initial parameters of the model (i.e.,
n, €,/kpT, and €,/kpT) long runs consisting of 0.5-
3.0 X 107 reptation type steps, with a corresponding number
of other micromodifications, have been performed. The
chain conformations have been stored in two complemen-
tary lists; the first contained a sequential set of the Cartesian
coordinates of the polymer beads, and the second was the
explicit occupancy list in the periodic L XL XL MC box.

The last list allows the fast detection of the mutual contacts
of the polymer segments. The finite size of the MC box does
not affect the results obtained because the edge length L has
been set to 100 for chain lengths 7<400, to L = 124 for the
more expanded conformations of chains with » = 400, and
to L = 198 for the limited simulations made for chain length
n = 800. Therefore the unphysical interaction of a chain
with its image resulting from periodic boundary conditions
are at worst highly improbable and in fact impossible in most
cases.

Various properties of the chain were recorded every
250-500 cycles of the simulation algorithm. Thus, the result-
ing number of states used for calculating the equilibrium
properties of the system varied from 2 X 10* to 6 X 10%. All
measured quantities were calculated as arithmetic averages
over such a trajectory, due to equilibrium character of the
sampling procedure employed. Every sampling MC run was
preceded by a suitable equilibration run to ensure that sys-
tem was really in thermal equilibrium. Much shorter runs
were observed to be necessary for the relaxation of the sys-
tem (from one temperature to another one) than those used
in sampling. At higher temperatures, the sampling interval
we used (250-500 cycles) gives good statistical indepen-
dence of the sampled states, while at lower temperatures,
since the evolution of the system is slowed down by strong
intrachain interactions (below the collapse transition), the
statistics are probably somewhat poorer. Therefore below
the collapse transition successive “photographs” of the
chain conformation cannot be considered as statistically un-
correlated. For that reason “cooling” cycles followed by
“heating” cycles were performed several times in the vicinity
of the phase transition for a given set of initial parameters of
the stiff polymer chains, using a different stream of random
numbers for each cycle. This allowed us to estimate the level
of statistical importance of the results and the stability and
uniqueness of the structure of the dense collapsed states.

Hi. RESULTS AND DISCUSSION

A. Conformation of the model polymers and the
collapse transition

Generally speaking the conformation of the polymer
chain in solution depends on the chain length and the short-
and long-range interactions. Various parameters describing
the local ordering of the polymer segment within the coil, as
well as the global conformational characteristics were esti-
mated from MC simulations described in the previous sec-
tion. The size of the polymer coil was measured using the
mean-square end-to-end separation (R ?);

(R?) =((r, —r)?), (10)
and the mean-square radius of gyration {S?);

5% =2 3 = £,

n \i=1

11

where r; is the vector locating the ith bead in the chain, rcy
is the vector locating the center of mass of the coil, and ¢ )
denotes an ensemble average over the trajectory of the MC
run. Higher moments of the end-to-end separation and the
radius of gyration, as well as the polymer segment density
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TABLE 1. Average properties of chains of length # = 50.
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TABLE III (continued).

€/ksT (R?) (5% (v (fe) €/kgT (R?) (s%) ) (fe)
le, /e, =4 €, /€| =2
0.0 410.5 64.26 0.0530 0.6329 0.5 2225 357.8 0.0603 0.5342
1.0 616.6 94.49 0.0284 0.4191 0.6 2230 362.3 0.0619 0.5123
2.0 12117 166.2 0.0144 0.2146 0.75 2186 356.6 0.0648 0.4821
1.0 2282 374.2 0.0713 0.4292
1.1 2167 360.2 0.0777 0.4022
1.16 2115(43)  350.9(4.8) 0.0851(30) 0.3948(17)
1.21 1988(47)  338.7(3.6) 0.0914(7) 0.3911(36)
TABLE II. Average properties of chains of length n = 100. 1.28 1908(35) 321.1(9.2) 0.1008(27)  0.3728(21)
1.32 1873 314.7 0.1029 0.3722
1.4 1437 257.1 0.1422 0.3496
2 2
€/ksT (R (5% ™ 2 L5 1041 185.8 0.2459 0.3130
1.6 743 135.5 0.3683 0.2635
le /€, =4 1.8 804 156.7 0.3750 0.2289
0.0 941.8 148.5 0.0576 0.6297 e, /€,| = 4/3
b s s ppsne oAl 02 2078 333.6 0.0658 0.5963
: ‘ : : ‘ 0.4 1960 319.3 0.0769 0.5593
0.52 1879 307.7 0.0823 0.5369
0.6 1821 299.4 0.0899 0.5234
0.68 1636 273.6 0.1023 0.5096
TABLE III. Average properties of chains of length n = 200. 0.72 1568 264.2 0.1061 0.5024
0.76 1482(13)  251.4(2.1) 0.1161(10) 0.4944(23)
e /k.T (R? (s ) ) 0.8 1407 239.5 0.1248 0.4877
£ /s 0.84 1309(50)  227.8(3.4) 0.1366(26) 0.4789(19)
€, =0 0.9 1043 188.0 0.1673 0.4716
0.0 2148(11)*  344.1(3.9) 0.0595(7)  0.6290(8) 0.96 863.8 157.1 0.2029 0.4602
o1 2246 354.5 0.0553 0.6080 1.0 693.9 130.0 0.2304 0.4553
025 2334 3713 0.0494 0.5770 Ll 413.4 85.9 0.3139 0.4394
0.625 2707 432.9 0.0344 0.4924 1.4 205.9 55.8 0.4954 0.3329
0.8 2944 4705 0.0280 0.4517 16 188.3 60.3 0.5196 0.2991
10 1288 5212 0.0223 0.4083 20 161.4 523 0.5505 0.2884
1.25 3814 606.3 0.0158 0.3534 le, /€, =1
. 76 772.1 X .
; g 2235 loog 7 g %Zg g %gg 0.2 1972 316.6 0.0733 0.5985
25 10622 1548.6 0.0020 0.1389 0.3 1948 315.8 0.0798 0.5815
' ) ' ‘ 0.4 1743 283.0 0.0932 0.5667
leg /€. =4 0.45 1636 2713 0.1011 0.5573
0.8 2861 429.9 0.0409 0.4618 0.55 1369 236.8 0.1253 0.5391
1.0 2955 477.0 0.0361 0.4169 0.6 1183 205.4 0.1462 0.5362
L5 3611 571.6 0.0287 0.3119 0.7 811.9 149.9 0.2068 0.5238
16 4262 675.7 0.0264 0.2886 0.75 591.4 115.0 0.2465 0.5149
1.8 4669 738.4 0.0250 02511 038 462.7 95.5 0.2937 0.5093
20 5283 829.6 0.0282 0.2165 09 270.7 64.1 0.3708 0.4910
2.1 5444 855.6 0.0373 0.1980 1.0 209.4 53.1 0.4473 0.4419
22(T1)® 6076 951.6 0.0373 0.1818 L5 89.3 4Ll 0.5330 0.4107
22(T1)°  (654)° 2889 0.4643 0.0888 20 474 40.8 0.5395 0.4061
23 (1114) 294.1 0.4387 0.0989
24 (125) 3179 0.4513 0.0633 *Standard error of simulation; 2148(11) means 2148 + (11).
le. /e,| =3 ®Stable random coil state obtained from cooling sequence.
€e/€al = ¢Stable collapsed structure obtained from heating sequence.
0.45 2314 370.9 0.0529 0.5386 9Data for (R 2) in the ordered state has a large relative error, but the abso-
0.6 2386 386.9 0.0489 0.5036 lute error is only a few times larger than for the expanded state. In this case
0.9 2622 419.9 0.0458 0.4432 {S?) is more reliable than (R 2).
1.2 2977(50)  482.1(7.1) 0.0422(2)  0.3774(2)
1.4 3245(49)  529.8(7.7) 0.0402(1)  0.3339(2)
1.5 3356(14)  544.2(3.0) 0.0406(2)  0.3150(3)
1.65 3635 585.8 0.0454 0.2864
1.74 3901 635.2 0.0449 0.2680 distribution within the coil were also analyzed.

:-33 gzg; g;g-g g-gg’;i g'iig(l) The average values of the most important conforma-
. . ) ) . - 2 2 :
186 3176 566.0 0.0722 0.2414 tional quantities ((R?), (§?), (v), and ( Se )‘) for chain
1.89(T1)® 2833 488.4 0.1387 0.2188 lengths n = 50, 100, 200, 400, and 800 are listed in Tables I-
1.89(T'1)°  (1831.8) 389.4 0.2941 0.1693 V. The most extensive computations were made for chain
}gi Egﬁ(‘); gz; gﬂ;é 8};22 lengths n = 200 and n = 400 over a wide range of potential
2:1 (834.5) 126.8 0.3887 0.1287 energy par?meters of the model, while more llml?ed param-
2.4 (316.9) 289.3 0.4747 0.0816 eter sampling was performed for the shorter chains and for
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TABLE IV. Average properties of chains of length n = 400.

€/kpT (R? (s?) {v) (fe)
Ieg/en I =4
0.0 4882(31)* 777.8(2.4) 0.0609(2) 0.6285(3)
0.5 5448 867.2 0.0496 0.5253
0.8 6033 964.1 0.0431 0.4599
1.0 6072(113) 985.6(22.1) 0.0390(5) 0.4158(5)
1.4 7639 1231.1 0.0316 0.3315
1.8 8790 1436.0 0.0286 0.2505
2.0(T1)* 11010 1755.1 0.0395 0.2142
2.0(T1)° (1370)¢ 539.6 0.4991 0.1002
2.1 (658) 538.5 0.4274 0.1177
2.2 (1156) 561.0 0.4957 0.0988
2.4 (307.0) 466.6 0.5488 0.0865
le. /€] =3
0.45 5155 832.1 0.0538 0.5385
0.6 5237 846.2 0.0524 0.5058
0.9 5497 904.6 0.0486 0.4418
1.2 5898 974.1 0.0469 0.3771
1.5 6547 1086.8 0.0496 0.3146
1.74(T1)® 5988 999.1 0.0690 0.2694
1.74(T'1)° (1530) 271.7 0.4721 0.1474
1.8 (1085) 232.7 0.4704 0.1580
1.95 (764) 175.8 0.4987 0.1503
2.1 (1429) 158.9 0.5351 0.1377
2.4 (1562) 154.0 0.5471 0.1373
*-dSee footnotes to Table ITI.

the longest one, n = 800. This allows us to discuss the effect
of chain length together with the effect of stiffness, quality of
solvent and/or the temperature on chain conformation and
the character of collapse transition. The independent vari-
able in our simulations is the dimensionless ratio €, /kp T,
the reduced conformational energy of a gauche isomeric
state. For a given ratio of €, to €,, the nearest neighbor
interaction parameter, we computed (R 2), (S?2), (v), and
(f¢) [Egs. (10), (11), (7), and (8), respectively ]. Togeth-
er with the chain length n, the two last parameters determine
the configurational energy of the model system. For a small
subset of results, we give the numerical values of the stan-
dard deviation of the mean values listed in Tables I-V. Three
independent MC runs were used for this purpose. In general
the data for the expanded state above the collapse tempera-
ture are more accurate, with the relative statistical error of
(R ?) and {(S?) below 2% in most cases. The error of (v) is
generally below 1% and the error of { f, ) is well below 1%
of the mean value. At low temperatures below the collapse
transition, the uncertainty in the data is larger. The values of

TABLE V. Average properties of chains of length n = 800.

€/kyT (R?) (5% (v (fe)
le,7€,| =4
0 11223(52) 1757(7) 0.0675(23) 0.6279(4)
1.0 12738(242) 2067(24)  0.0470(4) 0.4154(11)
1.4 15265(613)  2443(90) 0.0453(46) 0.3304(4)
1.6 15648(484) 2534(25) 0.0446(52) 0.2904(5)

10° r —rrT T
€,70
10Y _ E
E E°°0 5
R ]
o
o
v -4
10° L (n-1)"1% ]
102 . M | NN N
10 100 1000

n-1

FIG. 1. Log-log plot of the mean-square end-to-end distance (R 2) vs chain
length n — 1 for the SAW (¢, =0and ¢, =0).

(R ?) for the lowest flexibility system below the transition
especially exhibit a significant scatter (these values have
been listed in parentheses, and only the order of magnitude
should be considered valid). However, even here, the abso-
lute error of (R 2) is only few times larger than that observed
in high temperature range.

The data in the first row of every Tables I-V correspond
to the case of simple athermal SAW’s on the diamond lattice
(e, =€, =0). It gives us an opportunity to compare our
results with the results of previous work and provides a test
of the sampling method used in present computations. In
Fig. 1 the mean-square end-to-end separation (R 2) has been
shown as a log—log plot vs the number of bonds (n — 1). Our
results for the case of an athermal system are well fit by
(R?*)=A(n —1)" with4 = 4.037 and y = 1.186, which is
in good agreement with other theoretical and numerical

104 ¢ g ———————
103-:-
FaN s
o
s |
v -
102:-
10! N | e
10 100 1000

n-1

FIG. 2. Log-log plot of the mean-square radius of gyration, (S?) vs chain
length (n — 1) for the SAW (¢, =0 and €, = 0) and for a stiff polymer
(leg /e, | =4) at e, 7k T=1.
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work. For example, the above can be compared with
y = 1.184 +- 0.004 of Ref. 30.

The main interest of the present studies is the effect of
chain stiffness and of solvent quality on the properties of
finite length chains. However a limited analysis of the effects
of chain length can also be done using the data in Tables I-V.,
In Fig. 2, the chain length dependence of the mean-square
radius of gyration (S'?) is compared for a flexible athermal
SAW (€, = ¢, = 0) in the solid curve with the correspond-
ing dependence for relatively stiff polymers in a moderately
poor solvent (€, = — €,/4) in the dashed curve. The data
for the athermal SAW is well fit by a power law relation
similar to that used for (R ?) in Fig. 1 (¥ = 1.186). The semi-
flexible polymers also seem to satisfy a power law with a
smaller value of the exponent y. The value ¥ = 1.078 for the
case €,/ky T =1, |€,/€,| = 4 is considerably smaller than
is observed for a chain of unlimited flexibility with the same
lattice restrictions, the same attractive force and a similar
range of chain lengths.'® This shows that limiting the flexi-
bility for finite length chains leads to a significant decrease of
the excluded volume effect on the coil dimensions. Note that
an extrapolation to large » limit of this case with ¢,/
ks T = — 0.25 suggests that an attractive interaction of the
magnitude |¢, /€, | = 4 would compensate for the effect of
local stiffness on the chain dimensions and results in an a-
thermal SAW for chains of the order of ~2 X 10° statistical
segments. However, it is not clear if such an extrapolation is
valid, i.e., that the exponent found in the window of » = 100
to »n = 800 for semiflexible chains holds in the limit of infi-
nitely large n.

We now wish to look at the temperature behavior of the
excluded volume as a function of the flexibility of the poly-
mer chain. We shall compare the MC results to an ideal RIS

Kolinski, Skolnick, and Yaris: Collapse transition of semiflexible polymers

model.*! The mean square radius of gyration for a finite
length chain on a diamond lattice is given in the RIS model

_pnt+4, 0, + 11 +4, 0,,

(SH/1*(n—1) =

Ay —4, A =4,

(12a)

with
o-— A1 Mooz
n(1—A4,)32 n(l1—24)) nn—1(1—-A4,)?
(12b)

and
A, [ 24, 421 =A771Y
0,= - .
n(l—24,)% n(l—24,) nn—1(1-4,)2
(12¢)

Here, 4 = cos(8) the bond angle parameter (in the case of a
diamond lattice u = 1/3; 5 = (cos ¢#), the average rota-
tional angle, which for a chain on a diamond lattice can be
computed from

1 —exp(—¢€,/ksT)
1 +2exp( —€,/kpT)

and A4, and 4, are the two first eigenvalues of the Flory aver-
aged rotation matrix

A =Hpul =) £ [£*(1 —g)* + 4912} . (12e)

In Fig. 3 we compare the temperature dependence of
(S?) for the ideal RIS model [as given by Eq. (12)] with a

(12d)

l 2 O O T T T T T T T T T T T T T T T T T T T T
[ } n=200 |
1000 - v ] .
3\ €0 o &g/ €] =]
'+ ideal chain o eg/€,| =473
I L _ - FIG. 3. The temperature dependence of the
800 - ! € /€| =2 .
I K h . I 9 0‘ mean-square radius of gyration for a chain com-
5 " /¢ I -3 i posed of n = 200 beads with various ratios of
A | N\, © l 9 "o the stiffness parameter ¢, to the attractive inter-
Y] . / = action €,. The dotted line corresponds to the
Yy 600 | leg/ ol =4 :
v theoretical results for the RIS model [Eq.
| I (12)]. The points where the lines obtained from
asmooth interpolation of the MC data intercept
yoo I the theoretical one for an ideal RIS chain gives
the 6 temperature for the system under consi-
| deration.
200 |
0.0 0.5 1.0 1.5 2.0 2.5
kgT/€,
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semiflexible polymer in an athermal solvent (¢, =0 but
with excluded volume), and with three examples of a semi-
flexible polymer with an attractive force (poor solvent case)
for n = 200. It can be noted that with decreasing tempera-
ture (which decreases the flexibility of the chain backbone)
the ideal and excluded volume athermal polymer results ap-
proach each other. This means that the excluded volume
effect on polymer size for fixed chain length decreases with
increasing stiffness. In treating polymers with nonzero at-
tractive interactions, the degree of stiffness of the polymer is
given by the relative strengths of the attractive interaction
and the gauche-trans energy separation—that is by the ratio
|6 /€, |- When |€, /€, | is large, the polymer is quite stiff and
expands with decreasing temperature, very much as was the
case without attractive interactions, until at some critical
temperature the stiff polymer chain suddenly collapses. This
is illustrated in Fig. 3 for |, /€, | = 4. Flexible polymers, on
the other hand, show a monotonic decrease in size with de-
creasing temperature and the collapse to a tight random coil
is continuous. This is illustrated in Fig. 3 for |e,/¢,| = 1.
The borderline case (between stiff and flexible) where the
chain size is essentially temperature independent over a wide
temperature range until the collapse (which now occurs
continuously over a relatively narrow temperature range) is
illustrated in Fig. 3 for |¢, /€, | = 2. This general behavior
can be quite readily understood. At very high temperature
(ksT/€,—>0) the energetic parameters are unimportant
and all chains obey self-avoiding random walk statistics. For
a stiff polymer, as we decrease the temperature the energetic
bias of trans states over gauche begins to take over and rota-
tional degrees of freedom are frozen out. As trans stretches
begin to appear, the polymer slowly unfolds itself from the
completely flexible random coil configuration and the size
increases. As the temperature further decreases the stiff
polymer collapses into an ordered configuration since it can
decrease its free energy by having a large number of attrac-
tive interactions at the expense of only a small number of
gauche states (bends). This will be further illustrated below
in Sec. ITI C where we discuss the nature of the collapsed
state. Any polymer with nonzero attractive interactions
seems to eventually collapse if it is long enough (if itis not, it
becomes a stiff rod). For flexible polymers, as the tempera-
ture is lowered the attractive forces dominate, and the poly-
mer decreases its free energy by contracting, increasing the
energetic contribution to the free energy at the expense of the
entropic term. Thus, the difference in the temperature be-
havior depends on whether local rotational degrees of free-
dom (stiff polymer chain) or the effective size of configura-
tional space (flexible polymer chain) closes down first.

The critical collapse temperature T, is well defined for
stiff polymers. The estimated values of kT, /€, are com-
pared in Table VI for the most extensively studied systems of
n = 200 and n = 400 for |¢,/¢,| = 3 and 4. Since the col-
lapse from an expanded random coil to a compact random
coil is continuous for the more flexible polymers we do not
estimate 7', for these systems. Table VI also contains ap-
proximate values (the statistical error is unity in the last
digit) of the theta point (k38 /€, ) estimated as the point
where repulsive interactions are compensated by attractive

TABLE VL. Critical values of k; T /€, and the  point estimated from (S 2y
dependenceon k, T /¢,

Chain length leg7€,]  kpTc/ey  kplre,  kzlle,
n =200 4 0.45 0.63 2.50
200 3 0.53 0.83 2.50
200 2 N 1.19 2.38
200 4/3 cee 1.72 2.30
200 i Ve 2.22 222
n =400 4 0.50 0.62 2.46
400 3 0.57 0.83 2.50
n =800 4 0.66 2.65

ones, and the simulated mean square radius of gyration, (S ?)
becomes the same as the RIS model (S?) given by Eq. (12).
For ease of comparison with previous MC work on flexible
polymers we also list the corresponding values of k5 8 /¢, . It
can be noted that the & point as a function of €, increases as
the chain stiffness increases. In other words, a smaller attrac-
tive force per segment is necessary to compensate for the
hard core repulsions in stiff polymers, than in more flexible
ones. Actually all the values of k5 8 /€, (with the exception
of the most flexible polymer studied; €, = €, ) are consider-
ably greater than those found for the case of diamond lattice
polymers of unlimited flexibility (i.e., €, = 0 in our nota-
tion) which was estimated by Kremer et al'’ to be
2.25 4 0.05. Since the statistical accuracy of the present esti-
mation of the @ point is also about + 0.05 the observed shift
of the @ temperature is significant and gives further evidence
for the smaller importance of excluded volume in semifiexi-
ble polymers.

The qualitative difference between the behavior of flexi-
ble polymers and stiff ones can easily be observed in Fig. 3.
The temperature dependence of polymer coil size of the
range of high temperatures is different for the two kinds of
systems. Moreover the sharp, discontinuous, collapse witha
distinct region of metastable states is present for stiff chains.
This is in qualitative agreement with the analytical results of
Post and Zimm.?' Sanchez’s® mean field theory prediction
that the polymer collapse transition is second order does not
contradict our findings since he assumes a priori a highly
flexible chain. Our MC results also show a smooth gradual
collapse transition for flexible polymers.

The behavior of the expansion parameter with chain
length can best be illustrated by comparing the data for
l€, /€, | = 3.0 in Figs. 3 and 4 for n = 200 and n = 400. For
n=200 the (S?) dependence on temperature for
|e; /€, | = 3.0 clearly is behaving like a stiff polymer, while
for n = 400 it has almost become a borderline case. The rea-
son for this change in character with increasing chain length
will be discussed in the next subsection when we discuss the
nature of the collapsed state.

It might at first appear to be somewhat disturbing that
in some of the systems we simulated the mean-square radius
of gyration has a value larger after the collapse transition
than that for an ideal chain of unlimited flexibility, namely
(5?), = 198 and 398 for chains of n = 200 and 400, respec-
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5 | FIG. 4. The temperature dependence of the
B mean-square radius of gyration for a chain com-
i | posed of n = 400 beads with various ratios of
n/‘\ the stiffness parameter €, to the attractive inter-
w 1000 |- I action €,. The dotted line corresponds to the
v 3 l theoretical results for the RIS model [Eg.
| | (12)]. The points where the lines obtained from
| I . asmooth interpolation of the MC data intercept
| | ________________ ] the theoretical one for an ideal RIS chain gives
QIL I ....................... the @ temperature for the system under consi-

S00 - o 7 deration.
i o <><{§> ]
0 1 A 1 i { i I i 1 1 i I 1 1 1 A i 1 4 | L . L L
0.0 0.5 1.0 1.5 2.0 2.5
kgT/€g
tively. This has been observed for n =200 system for and

|€;/€,| = 3.0 and 4.0 and for n =400 for |, /€, | = 4.0.
This is caused by the particular ordered structure of the col-
lapsed state which is discussed later.

B. Comparison with mean-field theory

As mentioned above, mean-field lattice theory has been
shown to be able to reproduce the qualitative difference
between the collapse of flexible and stiff polymers if one in-
cludes third order terms in the virial expansion. Following
Post and Zimm?' the expansion factor @ at the free energy
minimum can be obtained as

ab —a% —Czay =y, (13a)

with 0% = (R2,c)/(R %5 ), where the subscript MC indi-
cates the MC results and RIS the dimension of the rotational
isomeric state model with no excluded volume but with the
proper stiffness for the temperature of interest. Cis the Flory
constant, equal to 3*/2 and z and y are related to the virial
coefficients B, and B, by

7= 2_1/2(3/77)3/2B2n1/2a)3
and

y=3"2(3/7)*Bs0° . (13¢)
Here o is related to the actual length of the statistical seg-
ment via

@®=V3/(Rks)’/V,

(13b)

(13d)

and reduces to (n/{R %;5))* for the lattice model, where
Vp = n is the polymer molecular volume and ¥, = 1 is the
solvent molecular volume.

The virial coefficients B, and B, can be expressed in the
terms of the binary cluster integrals

B,=(1-¢£)/2 (14a)

B, = (1+3g£*—2¢9£%)/3, (14b)
with ¢ = 4 the coordination number of the diamond lattice,

kBj

i fo-

We assume that the potential of mean force w;; between
segments / and j has the form of a free energy

(14c)

By _
kg T
Treating f and s as adjustable parameters we fit our MC
data for a% to Eq. (13). The fit seems to be excellent for stiff
polymers giving the correct reproduction of the discontin-
uous collapse and quite satisfactory for more flexible chains.
A sample comparison of the theoretical @ and MCresults is
given in Table VII. The values of adjustable parameters f
and s are given in Table VIII together with the statistical
error of the fit. Inspection of the data from Table VII shows
that both the energetic and entropic (the term associated
with Ts) contribution to the potential of mean force decrease
with increasing chain stiffness. At high temperatures the en-
tropic term dominates, while at low temperatures the ener-
getic term dominates. Comparison of the » =200 with
n = 400 results indicates that both f and s are essentially
molecular weight independent. In the vicinity of the & tem-
perature, the resulting value of the second virial coefficient
[Eq. 14(b) ] is close to zero while B; is positive, in agreement
with conventional wisdom.'8-1%-!

Hence, it can be concluded that the mean field theory of
Post and Zimm?' describes our computational experiments
very well as far as the global characteristics of polymer di-
mensions are concerned. This is somewhat surprising since

(f—Ts)e, /kpT. (15)
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TABLE VII. Comparison of the MC data with mean-field Post-Zimm
(Ref. 21) semiempirical predictions of the expansion factor, n = 200.

le /€. =4 leg/€,1 =1
ak ak ax ay
&/ksT (MC)*  (theory)® €,/kgT  (MC)* (theory)®
0.5 1.4687 1.4700 0.2 1.4470 1.4471
0.8 1.3348 1.3351 0.3 1.3314 1.3319
1.0 1.1711 1.1711 0.4 1.1075 1.1145
1.5 0.9342 0.9499 0.45 1.0016 1.382
1.6 1.0101 0.9977 0.5 0.9003 0.8458
1.8 0.9271 0.9227 0.525 0.8719 0.8391
2.0 0.8777 0.8745 0.55 0.7771 0.7501
2.2(TV) 0.8441 0.8415 0.6 0.6462 0.6232
22(Tt) 0.0909 0.0827 0.7 0.4102 0.3858
2.3 0.1415 0.1356 0.75 0.2872 0.2587
0.8 0.2159 0.1831
0.9 0.1165 0.0690
1.0 0.0830 0.0177

*ay defined in text below Eq. (13).
®See text Sec. III B.

the mean field theory treats the dense collapsed states as a
random coil while, as we shall show in the next section, stiff
polymers collapse to a well defined ordered structure rather
than to a high density, essentially Gaussian coil.

C. The effect of stiffness on the structure of the
collapsed state

Most of the theories of the polymer collapse from an
expanded coil to a globular state of higher density assume
that the character of the polymer segment distribution is
qualitatively the same in both phases. The density of the
polymer is the only parameter which distinguishes the two
states. This behavior was observed in the present studies for
polymer models which had substantial flexibility of the
chain backbone. However the character of the collapsed
state for less flexible polymers is qualitatively different. The
low temperature state is not a random coil of high density.
This is schematically shown in Fig. 5 where representative
snapshot projections of the polymer conformation before
and after the collapse transition are shown for the two sys-
tems of high (A) and low (B) flexibility of the chain. The
difference is evident. It should be noted that Fig. 5(A)

TABLE VHI. Values of the adjustable parameters f and s [Eq. (15)] and
estimated error of the fit.

Chain length A f seg/ky X 10°*

n =200 4 0.4138 0.1035 2.26
200 3 0.4397 0.0953 0.16

200 2 0.5305 0.1220 0.57

200 4/3 0.8033 0.1994 3.58

200 1 0.973 0.2269 1.80

n =400 4 0.4503 0.1082 2.43

3 0.5253 0.1238 0.86

* Mean square residual for the quantity aj,c —~ alic — (czaic + ).
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A
@
B8
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FIG. 5. (A). Collapse of a flexible polymer, |¢, /€, | = 1. (B). Collapse of a
stiff polymer, |€, /¢, | = 4.

shows the polymer conformation separated by a tempera-
ture increment (because the transition is a smooth one)
while both the conformations in Fig. 5(B) correspond to
exactly the same reduced temperature k5 T /€, .

As was mentioned above, the low temperature structure
of stiff model polymers is highly ordered with a relatively
well defined shape of a bundle of folded long trans stretches.
The ratio |, /€, | seems to determine the length of the rod-
like bundle. In several “cooling—heating” computational ex-
periments, we always observed that the structure was com-
posed of 4-6 stretches for the chain length #n = 200 and 9-12
stretches for n = 400 when |¢, /€, | = 4.0. The slightly more
flexible polymer with |€, /€, | = 3.0 also collapsed to a rela-
tively well defined structure characterized by a somewhat
larger average number of folds. In contrast, the low tempera-
ture conformation of more flexible chains resembles a ran-
dom coil with a high density of polymer segments. This ef-
fect is demonstrated in Table IX where the average length of
the trans sequences has been listed for a flexible chain of
length n = 200 and stiff chain of length » = 200 and n = 400
at the same set of temperatures. The first important conclu-
sion which can be drawn from inspection of the numerical
data of Table IX is that the abrupt collapse of semiflexible
polymers induces considerably more stiffness. However, as
shown below the collapse of flexible polymers leaves the ob-
served flexibility (fraction of gauche states and the distribu-
tion of such sequences) frozen at a level characteristic of a
higher temperature. These two qualitatively distinct beha-
viors have been compared with the average number of
gauche states for an ideal RIS model as a function of tem-
perature in Fig. 6 for chains with n = 200. Here we see that
for stiff chains (e.g., |, /€, | = 4) at high temperatures the
fraction of gauche states while starting out slightly below the
ideal RIS results behaves qualitatively like the RIS model
until the collapse temperature where it discontinuously
drops. On the other hand, for flexible chains (e.g.,
|€;/€,| = 1), as the temperature decreases f, does not be-
have qualitatively like the ideal RIS model but rather tends
to flatten out, becoming relatively temperature insensitive.

J. Chem. Phys., Vol. 85, No. 6, 15 September 1986

Downloaded 27 Apr 2005 to 128.205.53.57. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



3594

TABLE IX. Mean length of trans sequences.
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n =200, e, /€| =1 n=200, |¢,/¢,| =4

n=400, e, /e, | =4

eg/kBT nt. ("1)" n, <Il,) n, <n|)
0 1.528 2.069 1.528 2.069 1.529 2.073
0.5 1.815 2.633 1.852 2.723 1.853 2.725
0.8 1.985 2.867 2.117 3.243 2.131 3.284
1 2.445 3.751 2.360 3.746 2.376 3.767
1.5 2.705 3.856 3.200 5.4078 .. e
2 2.681 3.920 4.661 8.297 4.716 8.520
2)° (14.16) (34.63)
22 cen s 5.593 10.39 v e
(2.2)¢ .. (22.48) (35.09) (15.80) (35.19)

* Arithmetic average of the number of bonds in a trans sequence.

®Weighted average (n,) = (1/f,)-272}if ., where f,; is the average fraction of rransstatesin a sequence of

length J.
“The numbers in parentheses are for the ordered, collapsed phase.

In Fig. 7 an example of the change of distribution of the
sequence of conformational states at the collapse transition
has been shown for a stiff chain with n = 200, |¢, /€, | = 4.0,
by plotting f,;, the average fraction of trans states in a se-
quence of length i vs /. The trans sequence distribution for
the expanded coil state is close to that predicted by the RIS
model. The spectrum for the collapsed structure (at the
same temperature) exhibits a discrete distribution of lengths
of trans stretches with the larger peak corresponding to the
long stretches down the bundle and the smaller peak due to
the contribution of the folds.

In Fig. 8, we show another comparison of an ‘“order

parameter” of the chain conformation of polymers with
n =200 of varying degrees of flexibility. Here, we plot the
average number of nonbonded nearest neighbor pairs per
polymer segment (v) as a function of temperature. For the
stiffer polymer chains, (v) jumps discontinuously from a
value close to zero above the transition to a large value at the
collapse transition. On the other hand for the more flexible
chains the number of nonbonded pairs gradually rises mono-
tonically as the chain dimensions decrease.

Our general picture quite readily explains this behavior.
For the stiffer chains, as discussed in Sec. III A, the rota-
tional degrees of freedom freeeze out as the temperature de-

0 . 6 T T T
0.4
FIG. 6. The temperature dependence of the
A fraction of gauche states in chains of n = 200 for
_’_° - 4 IDEAL CHAIN various ratios of the stiffness parameter ¢, to
v the attractive interaction €,. The dotted line
L4 ]e g/ €,]=1 corresponds to the theoretical results for the
K RIS model.
0.2 | g S INE- .
i )
/ | o |e°/e°| =y
- .:,- % B
i o
/
o.o L. . .0 Ly
0.0 0.5 1.0 1.5 2.0 2.5
kgT/€q
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0.3 r T T T T T
[ % i
0.2 - ordered structure - é .
[ 7 ]
e i : s ] FIG. 7. The comparison of the trans sequence
- [ f ] distribution at the collapse transition for a stiff
[ Z - chain (|¢,/€,| =4), n =200. Both superim-
0.1 [ 7\ h posed diagrams correspond to exactly the same
S % i temperature k, T'/€, = 0.455.
:J_J’J‘ _random coil ]
0.0 Lj%i—f I ]
0 10 20 30 uo 50 60

LENGTH OF SEQUENCE (i)

creases, thus leading to a series of all trans stretches. For  is preformed for readily finding the ordered collapsed struc-
example, a chain of n =200 with a stiffness parameter ture. It should be noted that the length of trans stretches is a
|€, /€, | = 4 has approximately 15-20 trans stretches just  function of the stiffness parameter |€, /€, |, not of the chain
above the collapse transition. Hence, the chain just abovethe  length. Thus, as the chain length increases, the polymer
transition behaves as if it were a “small molecule” composed  chain above the collapse transition has an increasing number
of (about) 15 stiff sections connected by “flexible” linkages. of trans stretches and behaves less and less like a small mole-
It is therefore a simple matter for this small molecule to  cule. This is why the chain with the stiffness parameter
sample configuration space to find a free energy minimum |€; /€, | = 3.0behaves as a stiff chain at chain length n = 200
by increasing the contacts and decreasing the size of the  but is closer to a borderline case where n = 400. A conse-
bends in the ordered structure. In a sense the polymer chain ~ quence of this is that in the n— oo limit, for any finite value of

0 - 8 T T T | A T T T 1T LA T T T T T T T T
0.4 |-
FIG. 8. The temperature dependence of the
A average number of nearest neighbor pairs per
5 i polymer segment [ Eq. (7) ] for polymers of var-
ious flexibility, n = 200.
0.2
0.0 L. .
0.0 0.5 1.0 1.5 2.0 2.5

kgT/egq
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|€; /€, |, the chain will collapse into a globally disordered
state. Thus, the apparent first order transition seen for stiff
systems at fixed finite |, /€, | is most likely a finite length
effect, and not a true thermodynamic first order phase tran-
sition. If the chain is stiff there will be locally parallel trans
stretches as in Fig. 5(B), but globally it will look like Fig.
5(A) with a change of distance scale.

The flexible chains continuously decrease their sizes as
the temperature decreases and thus continuously increase
the average number of nonbonded neighbor contacts. This
increase of the number of contacts tends to freeze the gauche
to trans ratio at a value that is characteristic of an ideal RIS
chain at a higher temperature.

A self-consistent treatment of the collapse transition for
stiff chains can be obtained by utilizing the fact that just
above the transition the number of nearest neighbor contacts
is small (see Fig. 8) and the chain is well described by the
RIS model. Hence above the transition the free energy 4, is
dominated by the entropic contribution which can approxi-
mately be evaluated using the RIS model. Below the phase
transition, there are only a small number of loops [see Fig.
5(B)] and the free energy for the ordered collapsed struc-
ture 4, can be well approximated by the internal energy us-
ing the observed number of contacts and by neglecting the
entropic contribution. Using these approximations
Ay= —kyT(n—3)In[1+2exp( —¢,|kpT)] + nv,€,

(16)
for the expanded state and

Ay = nvge, (17
for the collapsed state. In Eq. (16) [17] v, [v,] refers to the
disordered [ordered] state and is obtained from the simula-
tion. Equating Eqgs. (16) and (17) allows us to calculate the
transition temperature 7. In Table X we present results for
n = 200 and n = 400. This simple approach works very well
for the |€, /€, | = 4.0 case where the intrinsic stiffness of the
chains is particularly dominant, and not so well for the
|€, /€, | = 3.0 case, where the local chain stiffness is not pro-
nounced prior to the collapse.

These calculations thus lend further support to the con-
tention that the collapse transition at finite » is apparently
discontinuous for chains of sufficient conformational stiff-
ness. Other measured quantities such as higher moments of
the end-to-end distance distribution, higher moments of the
radius of gyration distribution, the heat capacity obtained

TABLE X. Comparison of calculated and observed collapse transition tem-
perature.

kyT, /€, kpT./€,
n= l€g /€41 from theory  from simulation
200 4 0.482 0.455
400 4 0.494 0.500
200 3 0.383 0.529
400 3 0.523 0.575

2 Calculated by equating Egs. (16) and (17).

Kolinski, Skolnick, and Yaris: Collapse transition of semiflexible polymers

from the fluctuations in the configurational energy of the
system, and the segment-segment order parameter (as mea-
sured by the second Legendre polynomial) also exhibit the
same qualitative differences for the collapse transition as a
function of the stiffness parameter. In the interest of econ-
omy of presentation we have refrained from including a de-
tailed presentation of these results since they are less impor-
tant both for comparison with other theories and with
experiment.

V. SUMMARY

Using Monte Carlo methods we have numerically stud-
ied the conformation of a single polymer chain with ex-
cluded volume on a diamond lattice for finite chains with
lengths ranging from 50 to 800 monomer units over a wide
range of local conformational stiffness. This was done in or-
der to find out the effects of varying the stiffness on finite
length polymers with both repulsive (excluded volume) and
attractive interactions. The major new result of this work is
that broadly speaking polymers separate into two classes
loosely referred to here as flexible and stiff, each of which
exhibits quite different qualitative behavior.

The more flexible polymer chains undergo a transition
from a high temperature, extended random coil phase to a
low temperature, high density, collapsed random coil phase.
This is caused by the attractive interactions between non-
bonded units. As the temperature decreases, the average
number of nonbonded contacts between monomer units
gradually increases resulting in a denser and less extended
coil. At the same time, this increased density inhibits the
formation of trans states and results in a gauche to trans ratio
appreciably greater than ideal chain statistics would predict,
(i.e., one which is frozen at a value characteristic of an ideal
chain at a higher temperature).

The dimensions of the stiffer chains increase as the tem-
perature decreases. This occurs because the freezing out of
the rotational degrees of freedom dominates over the attrac-
tive interactions. Thus, the chain develops a sequence of stiff,
all trans, stretches while it is still in its expanded random coil
state. As the temperature is further decreased, the chain sud-
denly undergoes a pseudo-first-order phase transition and
collapses to an ordered dense phase composed of a series of
close packed, trans stretches with a minimum number of
small bends. This tendency of stiff chains to collapse into an
ordered dense state containing a high fraction of trans
stretches is perhaps not dissimilar to certain aspects of the
conformational transition in globular proteins and is further
pursued elsewhere.??
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