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In this paper we present results of Monte Carlo (MC) 
studies of long-chain polymers confined to a diamond 
lattice in which both repulsive and attractive interactions 
have been included. The hard-core repulsive part of the 
segment-segment interaction is modeled by the exclusion 
of multiple occupancy of lattice sites. Attractive inter- 
actions, t,, are associated with every pair of nonbonded 
nearest-neighbor segments. No preference for any of the 
three possible (one trans, t, and two gauche, g) rotational 
states of every internal bond is assumed. Thus the chain 
stiffness results only from lattice restrictions. The polymer 
occupies n lattice vertices, connected by n - 1 bonds; n - 
3 conformational states define the chain conformation. 

A dynamic sampling method has been used, incorpo- 
rating reptation type and 3-bond kink motions of the chain 
backbone, together with 2-bond random flips of the chain 
ends. The details of the sampling procedure are similar 
to those in ref 1. We performed simulations on chains of 
length n = 100,200,400, and 800. The reduced temper- 
ature T* = kBT/t, was varied from infinity [the case of 
an athermal self-avoiding walk (SAW)] to unity, which is 
well below both the @point and the collapse transition. 
At a given P, (2-6) X lo6 [(1.5-4.5) X lo'] iterations (one 
attempt a t  a reptation step plus several attempts a t  kink 
flips) have been performed for chains of n = 100 [800]. 
Depending on n, the conformation of the polymer has been 
analyzed every 100-1000 cycles of the MC algorithm. 
Hence from 2 X lo4 to 6 X lo4 relatively independent 
"measurements" contributed to the ensemble averages, 
which were calculated as the appropriately weighted 
arithmetic mean of the quantity of interest. For some sets 
of the model parameters (n, P), the standard deviations 
from the mean have been evaluated on the basis of runs 
obtained with different streams of pseudo random num- 
bers. 
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Figure 1. Plot of the expansion factor a: vs. reduced temperature 
T* for various chain lengths. The inset shows the extrapolation 
to infinite chain length of the temperature at which the second 
virial coefficient A2 = 0 and the temperature where a: = 1. 

The results are presented in Table I, where the mean- 
square end-to-end distance (radius of gyration) @), 
(( S2)), the average number of polymer nearest-neighbor 
pairs per bead (no contacts down the backbone are con- 
sidered) ( v ), and the average fraction of gauche states per 
degree of rotational freedom ( f g )  have been listed vs. P - l .  
The second column of Table I contains the number of 
iterations in the MC process. 

The dimensions of the athermal SAWS are fit very well 
by the relation ( R 2 )  - (S2) - (n  - 1)'~'86*0~004, in good 
agreement with previous As the temperature 
decreases, the chain dimensions decrease and the number 
of nearest neighbors increases. The fraction of gauche 
states also increases slightly, approaching in the high- 
density state values somewhat greater than the ideal chain 
( f g )  of 2/3. One should note that even the local properties, 
i.e., ( f g )  and ( Y), are chain-length dependent over the range 
of n under consideration. While ( f g )  is weakly n dependent 
over the entire range of temperature, ( v )  depends much 
more strongly on chain length especially in the low-tem- 
perature region (globular state), probably reflecting surface 
effects. 

The expansion factor aa2 = (S2 ) / (Sz0 )  vs. T* is pres- 
ented in Figure 1 for various chain lengths. ( Po) has been 
calculated for a finite length n by employing the RIS model 
with discrete independent rotational states4 (a nonre- 
versing random walk on a diamond latice). As seen in 
Figure 1, the @temperature eS, defined as that when a,2 
= 1, varies with chain length. Applying Sanchez's mean 
field theory (eq 52a of ref 5) to the MC data, we found that 
it fits our data very well in the vicinity of the @-point 
(fAt,/kBT N 0.1) when the chain length is rescaled by the 
persistence length (which is about 3.2 bond lengths). A 
slightly better fit in the vicinity of the @-point was found 
by using the renormalization group approach of Duplan- 
tier, Jannink, and des Cloizeaux (DJC)? giving some ev- 
idence for a tricritical state of polymers near the @-state. 
However the value of y (the three-body term) (see eq 3 of 
ref 6) is found to be 0.066, an order of magnitude larger 
than was reported in ref 6. Both approaches also enabled 
us to obtain e.,,, the temperature where the second virial 
coefficient vanishes. For finite chains, 8s and e A  are 
different, with @A far less dependent on molecular weight. 
The dimensions of the finite length coil a t  @A are notice- 
ably greater than those for an ideal chain, i.e., a: > 1. As 
shown in the inset of Figure 1, both estimates of the 8- 
temperature coincide in the limit that n = m ,  consistent 
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Table I 
Statistics of Flexible Chains" 
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0.0 
0.2 
0.3 
0.4 
0.45 
0.5 
0.55 
0.6 
0.7 
0.8 
1.0 

0.0 
0.2 
0.3 
0.4 
0.45 
0.5 
0.55 
0.6 
0.7 
0.8 
0.9 
1.0 

0.0 
0.2 
0.3 
0.4 
0.45 
0.5 
0.55 
.0.6 
0.7 
0.8 
1.0 

0.0 
0.2 
0.3 
0.4 
0.45 
0.5 
0.55 
0.6 
0.7 
0.8 
1.0 

6 
2 
2 
2 
4 
6 
4 
2 
2 
2 
2 

10 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

30 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 

30 
15 
30 
30 
45 
30 
15 
30 
15 
30 
15 

941.8 
831.0 
777.8 
697.1 
646.5 (0.6) 
602.0 (2.6) 
559.3 (6.1) 
499.8 
388.2 
289.9 
157.0 

2148.0 (11.0) 
1903.5 
1693.3 
1497.7 
1361.9 
1215.0 
1053.2 
882.6 
558.5 
313.9 
210.4 
167.1 

4882.1 (31.2) 
4205.4 
3765.1 
3133.5 
2754.2 
2403.0 
1867.9 
1370.2 
546.1 
326.3 
208.4 

11223.0 (52.0) 
9481.0 
8418.0 (2.0) 
6686.0 (55.0) 
5789.0 (56.0) 
4517.0 (118.0) 
2990.0 
1731.0 (95.0) 
570.7 
379.5 (9.0) 
284.2 

n = 100 
148.5 3 

133.1 
125.4 
113.9 
107.5 (0.1) 
101.3 (0.1) 
95.0 (0.8) 
86.8 
71.4 
56.6 
37.7 

n = 200 
344.1 (3.9) 
304.2 
274.4 
246.1 
224.8 
203.9 
180.8 
155.6 
108.2 
71.8 
55.5 
48.7 

n = 400 
777.8 (2.4) 
673.3 
607.4 
516.3 
458.4 
401.5 
328.5 
250.6 
121.5 
90.2 
66.9 

n = 800 
1757.0 (7.0) 
1484.0 
1322.0 (2.0) 
1086.0 (6.0) 
941.0 (15.0) 
745.0 (19.0) 
524.0 
327.6 (17.1) 
150.8 
118.8 (3.1) 
99.8 

0.0576 
0.0788 
0.0922 
0.1104 
0.1218 (1) 
0.1346 (2) 
0.1484 (11) 
0.1659 
0.2066 
0.2549 
0.3503 

0.0595 (7) 
0.0818 
0.0994 
0.1201 
0.1336 
0.1520 
0.1724 
0.1988 
0.2663 
0.3436 
0.4091 
0.4544 

0.0609 (2) 
0.0848 
0.1020 
0.1273 
0.1438 
0.1660 
0.1935 
0.2340 
0.3456 
0.4241 
0.5422 

0.0675 (23) 
0.0911 
0.1083 (20) 
0.1331 (13) 
0.1490 (17) 
0.1783 (16) 
0.2183 
0.2773 (79) 
0.4121 
0.5025 (42) 
0.6126 

0.6297 
0.6417 
0.6468 
0.6540 
0.6570 (5) 
0.6602 (3) 
0.6641 (3) 
0.6678 
0.6750 
0.6842 
0.6943 

0.6290 (8) 
0.6410 
0.6460 
0.6523 
0.6564 
0.6600 
0.6633 
0.6679 
0.6744 
0.6798 
0.6843 
0.6895 

0.6285 (3) 
0.6387 
0.6448 
0.6520 
0.6562 
0.6596 
0.6625 
0.6661 
0.6731 
0.6753 
0.6838 

0.6279 (4) 
0.6391 
0.6450 (1) 
0.6516 (2) 
0.6554 (2) 
0.6590 (6) 
0.6628 
0.6673 (14) 
0.6704 
0.6745 (1) 
0.6857 

a The numbers in parentheses indicate the standard deviation of the mean. 

with the existence of a 8-point.b8 The width of the 8- 
region diminishes as (n - 1)-lI2, in agreement with theory!$ 
Sanchez and DJC theory give k B 8 / f e  = 2.12 f 0.02 and 
2.14, respectively, in the limit that n - m, slightly lower 
than the value 2.25 f 0.05 given by Kremer et al.l0 on the 
basis of careful extrapolation of the MC data for shorter 
chains (n I 120). (Analysis of ( I t 2 )  gives a similar result.) 
We tend to ascribe the difference in 8 to a finite chain 
length effect. To check our estimation of the &point an 
additional series of simulations has been performed at  

- 1)'."2, in good agreement with the expected dependence 
of ( I t 2 )  - (P) - (n - 1). Finally, we note that collapse 
to the dense globular state of flexible polymers is contin- 
uous. The width of the crossover region decreases with 
increasing chain length, as predided by recent theories."J' 
However, even the relatively long polymers studied here 
are too short to display the theoretically predicted de- 

k B 8 / € ,  = 2.12. We find (s2) - (n - 1)o.995 and ( R 2 )  N (n 

pendence ( E 2 )  - (n - 1)2/3 in the globular state.'J' 
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Phase separation in a blend of long polymers is properly 
described by mean field the0ry.l The phase diagram may 
be obtained from a lattice model free energy of mixing 
(Flory-Huggins free energy) 

4(r) 
f[4(r)l = - 1n 4(r) + 

N A  

where 4 is the concentration of component A, NA and N B  
are the number of monomers in the A and B chains, re- 
spectively, and x is the usual interaction parameter. 

The mixture is homogeneous at high temperatures where 
the entropic term dominates the free energy. The blend 
phase separates into two system, one richer in component 
A and the other richer in component B when the tem- 
perature is lowered below xt(#). For a blend with N A  = 
NB the critical value at  which immiscibility first occurs is 
X, = 2 / N  and 4, = The system with original con- 
centration 4o is metastable for x > xt(+o). The limit of 
metastability for a given do is a t  the spinodal point ~ ~ ( 4 ~ ) ;  
below x , ( # ~ )  the system is unstable. The spinodal point 
is an inflexion point in the free energy 

S(q) is the Fourier transform of the density-density cor- 
relation function and can be obtained directly from scat- 
tering experiments 

S(r - r’) = (Ar$(r)A$(r’)) 

S(q) = l e x p ( i q r ) S ( r )  dr 

with A$(r) = @.J~ - 4(r). 
The scattering function for this blend is2 

1 l +  - 2% (3) 
= ~ J V X J N A  (1 - 4 0 ) ~ ( X g ) ~ g  

where xi = q2R: with R: = (Z2/6)Ni (i = A, B) the radius 
of gyration, and D(p)  is the Debye function defined as 

(4) 

In the limit xi = qzR: << 1 (i = A, B) the scattering function 
takes on the Ornstein-Zernike form 

(5) 
where the correlation length 5 measures the intensity of 

D(r) = (2/p2)b + e-’ - 11 

S-l(q) a K2 + (I2) 
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the light scattered at  q = 0. The correlation length di- 
verges a t  the spinodal point x , ( # ~ )  as 

where 

(7) 

In the case where the A and B chains are chemically 
linked at  the end points, the phase separation occurs on 
length scales of the order of the radius of gyration of the 
block copolymer, R2 = 12N/6 with N = NA + N B .  Let f 
be the fraction of A monomers along the block copolymer. 
If the melt is quenched below xt(f), the block copolymer 
microphase separates into an ordered s t r~c tu re .~  Leibler 
found that for f # 0.5 a body-centered cubic microphase 
structure is formed at  x = xt(f), for deeper quenches a 
hexagonal cylinder, and for quenches x 2 x,(f) the mi- 
crophase separation proceeds by spinodal decomposition 
and forms a one-dimensional lamellar structure. He found 
that the critical point is at xc = 10.5/N and f, = 0.5; at this 
point the phase separation proceeds by spinodal decom- 
position to a lamellar structure. The spinodal point for 
microphase separation x,(f) is determined by the condition 

s-l(q)lq=q* = 0 (8) 

where q* determines the wave vector a t  which the con- 
centration fluctuations are maximum. The scattering 
function for a block copolymer is3 

where 

D, = a2D(ax) (9b) 

a = f, (1 - f ) ,  or 1 x = q2R2 

with D(p)  given by eq 4 and 

AD = AD(& f )  = f/z[D1 - (Df + Dl41 (10) 

When homopolymer is added to a block copolymer, the 
phase diagram is very rich and complicated. For example, 
when the concentration of homopolymer is low, there can 
be transitions to different ordered morphologies, and as 
the homopolymer concentration increases, transitions to 
micellar structures are possible. Let 4 be the concentration 
of homopolymer made of Nc monomers of type C and (1 
- 9) the concentration of block copolymer with degree of 
polymerization N and with the fraction of A monomers 
along the chain given by f. An inspection of the lattice 
model free energy for such systems4 

f[4(r)l = - In 4(r) + In (1 - + 
dr)  (1 - 4(r)) 
NC 

[ X A C ~  + X B C ~  - f )  - xABf(1 - f)l4(r)(l-  dr ) )  (11) 
where xu is the usual net interaction between ij monomers, 
reveals an immiscibility curve or liquid-liquid phase 
transition. 

From eq 11 the spinodal temperature of a system with 
mean concentration 4o = 4 can be calculated by using eq 
2. The spinodal temperature is given by the familiar ex- 
pression 
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