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In order to examine the validity of the reptation model of motion in a dense collection of
polymers, dynamic Monte Carlo (MC) simulations of polymer chains composed of » beads
confined to a diamond lattice were undertaken as a function of polymer concentration ¢ and
degree of polymerization n. We demonstrate that over a wide density range these systems
exhibit the experimentally required molecular weight dependence of the center-of-mass self-

diffusion coefficient D~n ~2!

and the terminal relaxation time of the end-to-end vector

Tr ~n>*. Thus, these systems should represent a highly entangled collection of polymers
appropriate to look for the existence of reptation. The time dependence of the average single
bead mean-square displacement, as well as the dependence of the single bead displacement on
position in the chain were examined, along with the time dependence of the center-of-mass
displacement. Furthermore, to determine where in fact a well-defined tube exists, the mean-
square displacements of a polymer chain down and perpendicular to its primitive path defined
at zero time were calculated, and snapshots of the primitive path as a function of time are
presented. For an environment where all the chains move, no evidence of a tube, whose
existence is central to the validity of the reptation model, was found. However, if a single chain
is allowed to move in a partially frozen matrix of chains (where all chains but one are pinned
every n, beads, and where between pin points the other chains are free to move), reptation
with tube leakage is recovered for the single mobile chain. The dynamics of these chains
possesses aspects of Rouse-like motion; however, unlike a Rouse chain, these chains undergo
highly cooperative motion that appears to involve a backflow between chains to conserve
constant average density. While these simulations cannot preclude the onset of reptation at
higher molecular weight, they strongly argue at a minimum for the existence with increasing »
of a crossover regime from simple Rouse dynamics in which reptation plays a minor role at

best.

i. INTRODUCTION

Over the past ten years or so, it has become widely ac-
cepted that the reptation model successfully describes the
dynamics of polymer chains in the melt or in concentrated
solutions.” A description of which kinds of motion of the
chains in a dense medium lead to the macroscopically mea-
surable properties of diffusion and viscosity is complicated,
when compared to that in dilute solution, by the mutual
entanglements of the various chains.** The reptation model
attacks the role of interchain entanglements in a direct way
and postulates (in its simplest form—see below) that the
dynamics of each chain in the melt is equivalent to the situa-
tion where, as schematically depicted in Fig. 1, the entangle-
ments due to the neighboring chains act to effectively con-
fine the chain of interest to a tube of diameter d;. Thus, in
the context of this mean field treatment, an effective separa-
tion of time scales is assumed between the dynamics of the
test chain and the entanglements that define the location of
its tube. The constraints due to the tube insure that the domi-
nant motion of each chain is a “slithering” motion down the
chain, hence the name “reptation.” The reptation model has
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been quite successful in rationalizing the measured molecu-
lar weight dependence of the center-of-mass diffusion coeffi-
cient and the low frequency shear viscosity coefficient.>®

In this paper, we construct a simplified model of the
dynamics of densely packed and entangled polymer chains,
which we can follow for a long time by a dynamic Monte
Carlo (MC) simulation.” The major purpose of this simula-
tion, which should be thought of as a computational experi-
ment, is to investigate whether the basic assumption of repta-
tion holds—that the dominant motion of each chain is a
slithering motion in a tube arising from entanglements. This
paper continues our recently published work where we re-
ported the results of a Monte Carlo simulation of the dynam-
ics of a multichain system confined to a diamond lattice
which represents a model of a polymer melt or a very con-
centrated polymer solution.® We showed that over a wide
concentration range, up to volume fraction of polymer ¢
equal to 0.857, the correlated short time and distance motion
of the system can be satisfactorily described in terms of the
cooperative migration of conformational “defects” moving
mostly in a direction perpendicular to the local orientation
of the chain backbone. We observed that the mean-square
displacement of a single monomer g(¢) exhibited three well-
defined regimes for distances of displacement below the radi-
us of gyration of a chain. On a distance scale comparable to
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FIG. 1. Schematic representation of the pure reptation model in which the
entanglements due to the neighboring chains, whose cross section is de-
noted by the solid circles, act to confine the chain of interest to a tube of
diameter d .

the size of a single chain segment, g(¢) ~¢'/? [the initial
g(#) ~t, predicted for very short times within the framework
of the Rouse model,® could also be recovered in spite of the
discrete character of the lattice dynamics]. We then ob-
served a region where g(¢) ~#°, which is followed by a long-
er time “free draining” regime, where g(¢) is again propor-
tional to ¢ /2, The #* regime of g() seems to be independent
of chain length and reflects a local relaxation process, with b
varying smoothly with density from the free draining value
of one-half at low concentrations, i.e., below ¢ = 0.25, to
zero at a density ¢ = 0.92. Thus, at very high densities,
&> ¢, only local density fluctuations persist, thereby yield-
ing a self-diffusion coefficient of the center-of-mass D equal
to zero. Since this situation is very similar to that seen in real
glassy polymers,'®!! 4. has been identified as the glass tran-
sition density.*!2

In the present paper, we extend our MC simulation of
the dynamics of a diamond lattice, multichain system to
much longer times, corresponding to the center-of-mass dif-
fusion of the polymer coil. Hence, the dependence on chain
length and concentration of the self-diffusion coefficient and
the terminal relaxation time 7z of the end-to-end vector can
be investigated. The largest system under consideration con-
sists of chains of length n = 216 packed at a volume fraction
¢ = 0.5. The present simulations, described in further detail
below, extend the work of Kremer'? on diamond lattice mul-
tichain systems to cover a broader range of densities and
chain lengths, and where a greater number of chains are
contained per MCbox. For the long chain systems packed at
densities ¢ = 0.5 and ¢ = 0.75, we would expect, and by cer-
tain criteria, indeed do find, a substantial degree of chain
entanglements, estimated to be about an order of magnitude
larger than those examined previously.

The study of the dynamics of polymers in the melt has
long been an active area of experimental and theoretical in-
vestigation designed to elucidate the microscopic mecha-
nism(s) by which an entangled collection of polymers
moves.>'*15 As is well known, a successful theory of poly-
mer melt dynamics must be able to reproduce the following
experimental results for a monodisperse melt having a de-
gree of polymerization n:

(i) The center-of-mass
obeys!6-25

D~p—2%02 (1)
for n > n_, a critical value of the degree of polymerization.

self-diffusion coefficient
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(ii) The steady state, shear viscosity’*
(2a)
(2b)

It has been observed that molecular weights required for the
crossover to the large n limit are different for D and 7.'¢
Since our main objective is to investigate whether the
reptation model is a faithful representation of the dynamics
of a system of entangled polymer chains, we include in this
introductory section a brief subsection which gives an over-
view of the reptation model. However, before presenting an
overview of reptation, we first begin with a subsection which
describes the Rouse model®*>—a model which describes the
dynamics of polymer chains in the dilute (unentangled) lim-
it. These subsections are not intended to be substitutes for
the substantial literature on these subjects, but it proves con-
venient to refer to them at many places in the body of this

paper.

if n<n, n~n,

if n>n, m~n3*.

A. Dynamics of Rouse-like chains

The simplest description of the dynamics of a polymer
chain is given by the Rouse model® which is applicable to
describe the long time relaxation behavior of independent
polymer chains in the absence of hydrodynamic interactions
(a condition believed to hold in the melt>'?). The essential
features of this model are: (i) the motion of the polymer
chain is isotropic at all times, (ii) in the absence of excluded
volume, the mean-square displacement of a bead

n—1

g0 == % ([n (0 —£O]) (3a)
i=0

with r; (¢) the vector locating ith bead at time ¢ and the

bracket denotes the ensemble average, obeys for a chain

without excluded volume

n—1

g(t) =6Dt+3Dr; ¥ (1 —e=2/msin'kn/in)y
k=1

xXsin~2(kw/2n) . (3b)

Here 7, is the time required to diffuse a distance equal to the
effective bond length b, and D is the center-of-mass self-
diffusion coefficient. In the limit of large n,

g(t)~tY? for t<n’r, = Tpouee - (3¢)

TRrouse 18 the terminal relaxation time of the end-to-end vec-
tor, and

glt)~t for t>Trouse - (3d)

(iii) At all times, the mean-square displacement of the
center-of-mass,

Bem. (1) = <[Rc.m. - Rc.m. (0)]2) ’

with R_ . (¢) the vector locating the center-of-mass at time
t, is given by
8em. () = 6Dt (4b)

[note that Eq. (4b) must hold for any model of polymer
motion in the limit of long times], where in the Rouse mod-

(4a)

J. Chem. Phys., Vol. 86, No. 3, 1 February 1987

Downloaded 27 Apr 2005 to 128.205.53.57. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Kolinski, Skolnick, and Yaris: Entangled, finite length polymer systems

21526
D~n—t, (4¢c)
(iv) Finally,
n~n. (&)

Clearly then, while the Rouse model describes the scaling
behavior of D and % for low molecular weight melts [e.g., see
Eq. (2a)], it does not describe their behavior in the high
molecular weight limit.

B. The dynamics of reptating chains

In the “pure” reptation model (assumed to be valid for
all chains in the limit of large n), lateral fluctuations of the
chain are taken to be small’-32"-?%; the chain can only move
long distances by slithering out the ends of the tube (see Fig.
1). The tube renewal time 7., is thus the time required for
the end of a chain to move down its entire contour length
defined at zero time and is given by

Teep = Ta1/1, . (6)
Since a chain moves a distance of the root-mean-square end-
to-end vector in space in a time 7, :

nbs

D=D,, = (7

2
T
In the above, n, is the average number of monomers between
entanglement points, and b, is the effective bond length. It
follows from reptation theory*= that

77~Trep . (8)

Furthermore, g(¢) is predicted to exhibit the following
behavior as a function of time. If g(¢) is less than the tube
diameter d, then the chain should behave like a free Rouse
chain:

g(ty~t? for t<7,. 9
In the intermediate regime, lateral fluctuations are unimpor-

tant and the chain behaves like a one-dimensional Rouse
chain confined to a Gaussian tube, which then gives

g(ty~tY4 for m\n,2<t<T n*. (10)
(7,n*is frequently called the defect diffusion time.) Further-

more, if 7,n> < t<T,n°/n,, the chain and the center-of-mass

diffuse freely in a Gaussian tube, until the tube renewal time

27,28,
Trep "t

gy ~t'? if Tin <t < Trep - (11)
Finally, for ¢ > 7,.,,, one finds that g(¢) exhibits free diffusion
behavior. Namely,

gt)y~t for t>rn/n, . (12)
In a similar fashion,
om (1) ~t if t<Tin?. (13)

Then, as indicated by simulations of chains moving in a fro-
zen environment'>?® and implicit in the analysis of de
Gennes>!! the anomalous diffusion behavior

Gom. () ~t V2 if 7in2<t<T 0% /n, (14)

is predicted, although the Doi-Edwards theory requires for
a finite tube that g, ,, (#) be proportional to # at all times.*
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FIG. 2. Schematic representation of reptation-plus-tube-leakage model
which allows for fluctuations in the primitive path length.

Finally,

8em (1) ~t for t>7in’/n, . (15)

1. Reptation-plus-tube leakage

As schematically depicted in Fig. 2, later refinements of
the reptation model allowed for the possibility of tube leak-
age® or equivalently fluctuations in the primitive path length
of the Doi-Edwards model.*° In this expanded model, repta-
tion out the tube ends remains the dominant mechanism for
long distance motion. Thus, lateral fiuctuations remain
small, and the tube remains very well defined. Doi has in-
voked a tube fluctuation mechanism to rationalize the ap-
parent 3.4 power molecular weight dependence of the viscos-
ity (7 calculated from pure reptation theory is greater than
the experimentally observed 7). Needs in a Monte Carlo
simulation indeed found a lowering of the viscosity; but for
the range of molecular weight he studied 5 ~n>°7 3! Per-
haps the range of primitive path lengths studied was too
small; however, the further examination of these questions is
beyond the scope of the present work.

FIG. 3. Schematic representation of the reptation-plus-constraint-release
model. (A) The constraint due to a neighboring chain is denoted by an
arrow in Fig. 3(A). (B) Itis removed in Fig. 3(B) when that chain reptates
along its entire length. (C) In Fig. 3(C), some time later the constraint is
replaced. This mechanism introduces new orientations in the primitive path
of the black chain without requiring it to slither out the ends of the original
tube.
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2. Reptation-plus-constraint release

One of the possible problems with the pure reptation
picture is that it is not self-consistent. To alleviate this prob-
lem, Klein,?*** Daoud and de Gennes,>* and Graessley® in-
troduced the constraint release or tube renewal mechanism
schematically depicted in Figs. 3(A)-3(C). The constraint
indicated by an arrow in Fig. 3(A) is removed when the
constraining chain reptates along its length as indicated in
Fig. 3(B). Then, as shown in Fig. 3(C), some time later the
constraint is replaced. This introduces a new orientation into
the primitive path of the chain of interest without requiring
it to slither out the tube ends. Because the mechanism of tube
renewal proceeds entirely by reptation of the chains forming
the confining tube, lateral fluctuations of the chain within
the tube remain small.

Assuming that reptation of the chain of interest and
constraint release are independent mechanisms, Daoud and
de Gennes* and Graessley® find for a monodisperse melt of
chains (and implicit in the work of Klein3?),

D= Drep(l + ., z%)
n

with D,.,,, given by Eq. (7), and where Graessley gives®

=2 z(ﬁ)‘ B
T 25\ A

with z the number of bars surrounding each cell whose linear
dimensions are a primitive path length (on the order of d;- ).
If we take z = 5 (at the high end of physically plausible val-
ues®), then it follows from Eq. 16(b) that when n> 4.6 n,
reptation should dominate.

Equation 16(b) was derived assuming that all con-
straints release independently. In the nonindependent, con-
straint release model of Klein,>?

D=D,.,(1+n2/n??). 17

Thus, pure reptation should dominate when 7 > (n, )*/3, i.e.,
when 7 is greater than a few entanglement lengths.

For additional details concerning reptation theory, we
refer the reader to the literature.™®

(16a)

(16b)

C. Objectives of the present work

The models of pure reptation, reptation-plus-tube-leak-
age, and reptation-plus-constraint-release present the fol-
lowing qualitative description of polymer melt dynamics.
First, the tube is a well defined quantity; when n > n,, lateral
fluctuations of the chain become negligible. Second, the
crossover regime from Rouse behavior where 7 is on the
order of n, to that where n> n, is dominated by the reptation
mechanism. That is, lateral fluctuations of the chain are pre-
dicted to very quickly become unimportant. These are the
qualitative features which form the essential basis of repta-
tion theory, and in the context of a diamond lattice simula-
tion, the main objective of this paper is to see if they hold. In
other words, if we can find a regime in the simulation that
exhibits the experimentally observed molecular weight de-
pendence of D and 7, on n (and we demonstrate below that
such a regime does exist) then for times such that reptation
theory predicts the tube is well defined, is the dominant mo-

Kolinski, Skolnick, and Yaris: Entangled, finite length polymer systems

tion of the model chains down the primitive path defined at
zero time? That is, are lateral fluctuations large or small? If
the lateral fluctuations are large (and we shall show this to
be the case) it would, at the very least, argue for the existence
of a crossover regime between pure Rouse behavior and rep-
tation behavior that is not “reptation-like.” Of course, we
recognize that any finite length simulation which fails to find
reptation as the dominant mechanism of long wavelength
motion cannot prove that reptation does not hold in the limit
of very long chain length. Nevertheless, real polymers are
finite. Thus, the elucidation of the dynamics of finite length
polymer chains in the diamond lattice model of a polymer
melt is the focus of this paper.

The advantage of employing a lattice model of a poly-
mer melt is that it allows us to simulate much longer poly-
mers, at higher densities and for longer times than in the
corresponding off-lattice systems.'> The disadvantage of
course is that we must demonstrate that the obtained results
are physically meaningful and not lattice artifacts. For the
long distance motions that form the focus of this paper, we
would expect lattice effects to be unimportant. Wherever
possible, we shall demonstrate the validity of the qualitative
results by showing that equivalent results are found in off-
lattice simulations.?®>® However, of most crucial impor-
tance in establishing that this model system has physically
realistic behavior is the demonstration that diamond lattice
multichain systems exhibit the experimentally required
D~n—2%%% and 75 ~n>* %2, (Unfortunately, we do not
know how to extract n from a MC simulation in a model
independent fashion.) Once having established that the long
time dynamics of the real and the model systems are compa-
tible, we shall then investigate the details of the dynamics of
the model system as described above.

D. Outline of the remainder of the paper

The choice of the parameters used in the dynamics of the
model system is discussed in Sec. II along with some details
of the sampling procedure. The method of generation of the
initial configuration of dense multichain systems and of the
equilibration of the system can be found elsewhere.® Then in
Sec. I11, the results of the simulation are presented. The ef-
fect of density on the chain length dependence of the self-
diffusion coefficient and the relaxation time of the end-to-
end vector is examined in the context of the theoretical
predictions of the Rouse and reptation models. Further-
more, the motion of an individual segment is analyzed as a
function of its position along the chain contour. We then
decompose the motion of the chain into components down
and transverse to the original primitive path. Snapshots of
the equivalent chain, where local fluctuations have been
averaged out (and which is presumably close to the Ed-
ward’s primitive path*®) as a function of time are also pre-
sented. To check the ability of the analysis to demonstrate
reptation, the dynamics of a single chain in a partially frozen
environment is examined. Then, the relevance of the model
to the real polymer systems and some limitations of the lat-
tice approximation are discussed in Sec. IV. Finally, we sum-
marize the major findings of the work in Sec. V.
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Il. MODEL AND SAMPLING PROCEDURE

The model system consists of a monodisperse collection
of polymer chains confined to a tetrahedral lattice. Every
chain occupies n lattice vertices, also referred to as a
“beads,” connected by n — 1 “bonds.” If there are N chains
per MC box, subject to periodic boundary conditions, the
volume fraction of the polymer is ¢ =N-n/V, where
V = L 3/8, the number of lattice sites per MC box of edge
length L. The factor of 8 results from an integer representa-
tion of the diamond lattice vertices. Thus, a single bond vec-
tor /is of length 32 where /isof theform [ + 1, + 1, £ 1],
subject to appropriate restrictions that preserve the tetrahe-
dral valence angles. The initial configuration of each system
(N,n,L) has been carefully equilibrated,® and static proper-
ties have been measured to insure proper relaxation to ther-
mal equilibrium.

A. Model of dynamics and the single chain test

A stochastic MC lattice model for polymer dynamics
was introduced 25 years ago by Verdier and Stockmayer.*’
In the original version of the model; the Brownian motion of
a simple cubic lattice chain was simulated by means of a
random sequence of single bead jumps resulting from the
permutation of two adjacent bond vectors. It has been shown
that this model is equivalent to the Rouse model with
D~n~'and 7z ~n>.3** However, the introduction of ex-
cluded volume (i.e., the prohibition of the multiple occupan-
cy of lattice sites) led to an unexpectedly strong increase of
the relaxation time of the end-to-end vector, 75, and other
relevant properties.*® For example, 7z ~#> was found in-
stead of the theoretically expected 7 ~n*?. Modifications
of the model, by allowing the permutation of three successive
bonds (two-bead jumps) does not change the n* dependence
of 75 .*! The underlying explanation has been provided by
Hilhorst and Deutch*? and Boots and Deutch** who showed
that the n*® dependence is built into the model; the only way
to create a new orientation of the middle bonds is diffusion
starting from the free chain ends down the chain backbone.
Introduction of two-bead, 90° crankshaft motions which cre-
ate a new orientation of the interior chain bonds without
diffusion from the ends, leads to relaxation behavior more
consistent with the expected 75 ~n*? for a single “real”
chain with excluded volume.***> A similar, but not identi-
cal, situation exists for the case of diamond lattice poly-
mers.**” Thus, an appropriate choice of the set of elemen-
tary motions is essential to give the dynamics of real lattice
chains.

The following set of elementary motions are employed
in the present simulations (see also Refs. 8 and 47):

(i) three-bond jumps with an a priori probability p(35)
resulting from the exchange of bonds /; and /; _,; the two
beads are moved provided that /; #/, , ,;

(ii) random reorientation of chain ends involving one
(l,orl,_,)ortwobonds (/;and,,orl, _, and/,_,).The
sum of the a priori probabilities of the one and two bond
motions, p(1b) and p(2b), respectively, has been taken
equal to p(3b), with the relative frequency of one-bond to
two-t ond flips equal to 1:2;

(i) four-bond (three-bead) motions, with a priori

D,and Zg+107"
2
I

probability p(4b), which create new orientations of bond
vectors /; and /;, ; within the chain; the necessay condition
for this motion is that/, = — [ ;.

It has been shown that every conformational transition
of a tetrahedral chain involving two or more beads can be
decomposed into a succession of the above elementary mo-
tions.*® Therefore, the only constraints on the dynamics
come from the lattice and the excluded volume restrictions.
The choice of the relative a priori frequency of attempts at
three bond (and end flips) relative to four-bond moves has
been shown to be irrelevant to the dynamics of long poly-
mers (with appropriate time scaling) as long as both jump
frequencies are of the same magnitude.*'* However, the val-
ues of the a priori probability of a particular elementary mo-
tion could affect the dependence of D and 75 on n for short
chain lengths. Therefore, appropriate choices are important
to insure that we obtain the correct values of the scaling
exponents for small n. We chose the a priori probability of a
three-bond (four-bond) motion p(3b) equal to 0.25
[p(4b) = 0.75]. This choice gives a good linear behavior of
log D and log 75 vs log(n — 1) for a phantom chain (non-
reversing random walk) and a single real chain over the en-
tire range of n, from n = 12 ton = 216. This is demonstrated
in Fig. 4.

It should be noted that the present choice p(3b) = 0.25
is exactly equivalent to p(3b) = 0.1 of Ref. 8. This is because
of the random searching for four-bond reorientations of the
chain backbone employed in Ref. 8, which eliminates two
thirds of the four-bond motions. The present definition is
more straightforward, and four-bond reorientations are gen-
erated by a deterministic procedure, provided that the local
conformation is appropriate. The assumption p(3b) = 0.3
in Ref. 8 [equivalent to p(3b) = 0.5625 using the present
definition] gives the same exponent in D~n* for n>30.
However, for shorter chains, slightly higher values of D are
observed in the previously employed algorithm. Hence, the
choice of the value of the ratio p(3b)/p(4b) is important

107 ¢ ——

IDD - -

16 ¢ ) -

(n_l)—l.1520401

10-3 RPN |
o 100
{(n-1)
FIG. 4. Log-log plot of D and 7 vs n for an isolated single chain in the solid

(open) circles and diamonds, respectively, for a chain with- (without) ex-
cluded volume.

1000
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from the point of view of computational economy (in that
shorter chains could be used to study melt dynamics) and
physically reflects the dynamic flexibility of the model poly-
mers.

The algorithm works as follows:
(1) a random index is generated for the selection of a
chain;
(2) a random index is generated for selection of one of
the chain bonds 1,2,...(n — 1);
(3) the kind of elementary motion is randomly selected;
(4) if the choice is a three-bond motion, it is attempted
provided that the bond index is an inner one. For an end
bond, an additional random decision is required to se-
lect either a two-bond or one-bond end flip—the prob-
ability of a two-bond flip has been set to 2/3 p(3b); the
probability of a one-bond flip is 1/3 p(3b);

(5) if the choice is a four-bond motion, the attempt is

made provided the bond is an inner one.

The unit of time is the time required for N(n — 1) cy-
cles, as described above, to be performed. Thus we have on
average 3p(3b) + 4[1 — p(3b)] attempts to move every in-
ner bond per time unit. For p(3b) = 0.25 this gives 3.75
attempts per bond.

B. Sampling procedure

The algorithm described in the previous subsection has
been used for the simulation of the time evolution of a variety
of systems defined by the number of chains per MC box, the
chain length and the box size (N,n,L). The configuration of
the system under consideration has been recorded at time
intervals which depended on n and ¢. In most cases, the
sampling time was sufficient to obtain good statistics in the
diffusion limit of the polymer chain. This means that the
final mean-square-displacement of the center-of-mass of a
chain was several times larger than mean-square radius-of-
gyration, (S 2). The MC box size used was always consider-
ably larger than the mean-square end-to-end vector of the
polymer coil. The effect of box size (or equivalently & at
fixed ¢) on the computed properties was checked for shorter
chains (upton = 49). We found that if the number of chains
per MC box is greater than about 20 the computed properties
are insensitive to the choice of box size. We have assumed
that this conclusion remains valid in systems of longer
chains containing 20 or more chains per MC box. The pa-
rameters of the sampling procedure for the most extensively
studied systems are summarized in Table I. The values of the
mean-square radius of gyration, and the final displacement
of the center-of-mass of the polymer coil during the sam-
pling period are also given for comparison. Some of the val-
ues of this last quantity have a lower statistical accuracy,
since they were estimated from a “‘single” run (average over
N chains). Being time averages over many pieces of the tra-
Jjectory, the data used for the calculation of the autocorrela-
tion functions are much more accurate.

C. Static properties

In Fig. 5, the expansion factor, a% = (S?)/(S3) is giv-
en as a function of chain length (» — 1) at several densities.
Here, (S2) is the value of the radius of gyration for the
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TABLE I. Summary of the dense systems studied.

n N L (S2> 8em. (tm-x ).
$=05
12 108 24 10.23
18 48 24 17.11
24 36 24 23.78
36 24 24 36.56 e
49 28 28 52.67 4372
100 40 40 111.5 1556
216 32 48 244.2 1496
$=0.75
12 32 16 10.02
24 54 24 23.60 e
49 42 28 51.33 982.9
96 32 32 109.2 320.3

*#max 1S the maximum time of sampling.

lattice representation of an ideal, rotational isomeric states
(RIS) chain.* For ¢ = 0.5 and 0.75, a crossover is observed
from self-avoiding random walk (SAW) chain behavior in
very short chains where a% ~n®'® (as in the ¢ = O case, for
all 7 shown) to quasiideal behavior for long chains,” a2 ~n°.
In the latter case, the excluded volume effect is screened out
by interchain interactions. The limiting value of a2 is close
to 1.10, which has been observed in previous MC simula-
tions.'**5! The screening length ny defined as the lowest
value of n where a% lies below the ¢ = O result, decreases
with increasing concentration, and based on the data given
in Fig. 5, can be roughly estimated as nz <18 when ¢ = 0.5
and ng <12 when ¢ = 0.75.

In Figs. 6 and 7, the density distribution of beads, p(7; ),

2 T —T T T T
<Sl>~n|.|l
15}
Cal
No
3
v
/ o
’ P
i e ° ]
£
gL L
10 100 1000
n-1

FIG. 5. Plot of the expansion factor of the radius-of-gyration a2
= (S2)/(S3) vslogn, at ¢ = 0 (solid circles), ¢ = 0.5 (open squares),
and ¢ = 0.75 (open circles), respectively. (S7 ) is the value appropriate for
an ideal, rotational isomeric state chain confined to a tetrahedral lattice
(Ref. 49). Based on scaling theory we would except (S2) ~¢~ /2 and thus
the data at ¢ = 0.5 should be above the data at ¢ = 0.75. However, within
the error of the simulation the two cases appear to be indistinguishable.
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FIG. 6. Density distribution of beads, p(;) vs the distance of separation of
bead j from bead i centered at the origin, and belonging to the same chain
(other chains) in the solid (open) diamonds for chains with » =216
packed at ¢ = 0.50.

belonging to the same chain (solid symbols) and to the sur-
rounding chains (open symbols) are plotted for the case
n=216 at ¢ =0.5 and n =96 at ¢ = 0.75, respectively.
Note that for the system at ¢ = 0.5, the density of surround-
ing chains dominates p(r;) for distances greater than two
bond lengths; while for the ¢ = 0.75 system even in spite of
chain connectivity, the second coordination sphere is mostly
occupied by the segments of other chains.

An approximate estimate of the excluded volume
screening length & can be obtained by assuming
P*=8N /(R 2w )>"? ({R Low ) is the mean-square value of
the end-to-end vector of a self-avoiding walk polymer?; the
factor of 8 is related to the diamond lattice). Then

‘ 7 $=0.75

\ gy AV 3 A
! yegﬁg‘“‘”""ﬂ"g" Rl
[} oSO

-
! L

FIG. 7. Density distribution of beads, p(r,;) vs the distance of separation of
bead j from bead i centered at the origin, and belonging to the same chain
(other chains) in the solid (open) diamonds for chains with n = 96 packed
at ¢ =0.75.

E=(RLw)'2(d*/8)%* This gives £ =4 for ¢ = 0.5 and
n =216, and £~2.5 for ¢ =0.75 and n = 96, consistent
with the analysis of the bead distribution profiles given in
Figs. 6 and 7, respectively. The above results for & are
smaller by a factor of about 2-3 than those estimated from
the dependence of (S *)on n (see Fig. 5) when one applies the
nonreversing, random walk formula? for the blob size, i.e.,
&2 =6ny — 4.5. However, even using the latter values of &
for the screening length strongly suggests that systems hav-
ing ¢ = 0.5 and greater are suitable models of highly entan-
gled, long chain polymer systems, e.g., polymer melts or very
concentrated polymer solutions.

. RESULTS

A. Diffusion coefficients and terminal relaxation times

In order to obtain the diffusion constant we measured
the center-of-mass autocorrelation function, g_,, (¢), de-
fined in Eq. (4a) which is then related to the self-diffusion
coefficient by Eq. (4b). Both “phantom” and real single
chain systems were found to exhibit behavior consistent with
&om. (2) ~1 ' for times greater than that required for the aver-
age displacement of the center of gravity to be only slightly
larger than a single bond length. Thus the model system in
the # = Olimit behaves like a Rouse chain®?% [see Eq. (4b)].
In dense systems, however, there is a well defined deviation
from Rouse-like results over distances such that /2 < g, ... (£)
<2(S?) where

Bom. (1) ~1° (18)

with a only very weakly dependent on chain length and poly-
mer concentration [actually, there is a crossover from the ¢ *
infinite dilution behavior of g_,, (#) in the range of very
short chains, n = 12-24; the particular (small) value of n at
the crossover is concentration dependent]. This behavior is
illustrated in Figs. 8 and 9, where log-log plots of g, ., (¢) vs¢
are shown for ¢ = 0.5 and 0.75, respectively. The arrow cor-

104 R R -

el

108 ¢ -

- 102 FE -
x 3
[ 57 3
4 ]
4
10! 4
L < 1
100 T RNTTTYY R BRI B

1000 10800 100000 1000800

t

FIG. 8. Log-log plot of g_,, (¢#) vs ¢ for chains having n = 49, 100, and 216
packed at ¢ = 0.50 in the open circles, open diamonds, and solid diamonds,
respectively. g, (¢) is defined in Eq. 4(a). The solid arrow denotes the
time at which g, (#) = 2(S?).

J. Chem. Phys., Vol. 86, No. 3, 1 February 1987

Downloaded 27 Apr 2005 to 128.205.53.57. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



1674 Kolinski, Skolnick, and Yaris: Entangled, finite length polymer systems

10% e
. 1
1 1
! ]
102 b 4
- i
- ' ]
% A 1
& b
10? -
3 ?
[ R
. ]
L o |
a
100 L0 e

10000 100000
t

1000000

FIG. 9. Log-log plot of g_ ., (¢} vst for chains having n = 49 and 96 packed
at ¢ = 0.75 in the open circles and open diamonds, respectively. g, (#) is
defined in Eq. (4a). The solid arrow denotes the time at which g, ()
=2(5%.

responds to g, ., () = 2(S?). From these plots the estimat-
edslopeisa = 0.89 when ¢ = 0.5and n = 216 and a = 0.90
when ¢ = 0.75 and n = 96. Hence, there is a small, but ap-
parently real, deviation from the simple Rouse chain ¢ ! be-
havior. Moreover, the dependence of g, (¢) on time is also
inconsistent with that predicted from the reptation model
[see Eqgs. (13)-(15)]. Interestingly, 2(S?) is precisely the
distance over which, g,., (2), defined as

fea ) == 3 {0, ~ R (0]

i==1

—[r(®) ~R,, (0]} (19)
reaches its plateau value for a Rouse-like chain; i.e., it is the
displacement distance corresponding to the time beyond
which the internal modes of a Rouse chain have relaxed to
their equilibrium values. The deviation in g_,, (#) from lin-
ear behavior appears to reflect a coupling of the center-of-
mass motion of a given chain to the internal modes of the test
chain and the other chains. This provides the first indication
that there is a cooperative aspect to the motion in this model
of a polymer melt that is neither accounted for by a Rouse
nor a reptation description of the dynamics. [We point out
that a similar ¢ “ behavior has been observed by Bishop et al.
in an off-lattice simulation®?; i.e., the behavior of g, (¢) vs¢
embodied in Eq. (18), is not an artifact of the Iattice. ] Fur-
thermore, a similar behavior in g.,, () vs ¢ is evident in
Kremer’s simulation (see Fig. 7 of Ref. 13) for a chain of
n =200 at ¢ = 0.344.

The deviation in g, (¢) from a linear dependence on
time at distances below 2(S ?) requires us to employ the fol-
lowing procedure to obtain a correct estimate of the diffu-
sion coefficient. First, we have found for all the systems
(N,n, ¢) studied here that the crossover from the f*to the ¢ !
regime is indeed located at g, . (¢) =~2(S?). Then, we fit the
data for g_ .. (#)>2(S?) to the linear function

8em. (1) =6Dt+c. (20)

The constant ¢ usually has a small positive value related to
the initial ¢  regime and is related to the more rapid apparent
diffusion at distances less than y2(S2)!/2. A similar analysis
has been employed by Evans and Edwards?’ to extract D for
the reptation dynamics of a primitive path. The values of the
self-diffusion coefficient for the various systems studied are
compiled in column three of Table II.

The second property extracted from the MC data is the
longest relaxation time 75 calculated from the decay of the
end-to-end vector (R) correlation function,

gr (1) = (R(1)R(0))/(R?) . (21)

In spite of some deviations in our system from pure
Rouse dynamics, we will show below that the set of Rouse
normal coordinates is applicable for the description of the
polymer relaxation in our model system. Therefore we
would expect that

gr(t)~exp( —t/1r) . (22)

In Fig. 10, we present a semilog plot of g () vs ¢ for the
n=216,¢ =0.5and n = 96, ¢ = 0.75 systems in the curves
denoted by filled in and open diamonds, respectively. As
clearly shown in Fig. 10, after a short initial period of very
fast relaxation the correlation function indeed decays expon-
entially. The rapid initial decay seems mostly to be related to
the higher mobility of chain ends in dense systems at short
times (which will be discussed later in more detail), and
reflects the contribution of shorter relaxation times. Since

TABLE II. Diffusion coefficient D and 75 .2

n $ D TR

12 0 5.46-10~2 0.48-10?
18 0 3.10-10-2 1.45-10?
24 0 2.22:10™2 2.85-107
30 0 1.74-10~2 5.22-10%
36 0 1.33-1072 7.80-10?
49 0 0.95-10"2 1.68-10°
100 0 4.15-1073 9.3 -10°
216 0 1.73-10-3 52 -10°
24 0.125 1.45-102 3.76-10%
49 0.125 0.63-102 2.52-10°
12 0.25 2.56-102 0.69-10?
18 0.25 1.38-10°2 2.36-10?
24 0.25 0.90-10~2 4.44-107
36 0.25 5.03-103 1.46-10°
49 0.25 3.43-1072 3.02-10°
24 0.375 5.24:1073 8.35-107
12 0.5 9.74-10~? 1.85-10%
18 0.5 4.56-10"3 6.20-10?
24 0.5 2.76-10~2 1.30-10°
36 0.5 1.49-10—3 4.75-1¢°
49 0.5 0.94-10—3 1.14-10*
100 0.5 3.09-10~* 6.9 -10*
216 0.5 0.86-10—* 52 -10°
24 0.625 1.05:10~2 3.80-10°
12 0.75 1.09-1072 1.17-10°
24 0.75 2.36-10* 1.15-10¢
49 0.75 5.08-10~° 1.75-10°
96 0.75 1.13-10—% 1.52-10°

®The numerical values of D and 7, are expressed in time units defined at the
end of Sec. Il A. Dis also related to the model units of length, where /2 = 3.
However, the scaling of 7, and D with chain length and concentration is
independent of our arbitrary choice of units.
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FIG. 10. Semilog plot of gg (£) vs 107 ¢ for chains having n = 216 and
¢ =0.5 (n =96 and ¢ = 0.75) in the solid (open) diamonds. g, (¢) is de-
fined in Eq. (21).

the MC data for the very small values of g (¢#) exhibit large
relative scatter, for obvious reasons, we have chosen a well
defined window 0.75 > g5 (¢) > 0.25 for the estimation of 7.
The values of the longest relaxation time are listed in column
four of Table II.

1. Chain length and concentration scaling of D and r,

As shown in Fig. 11, the self-diffusion coefficient D
scales for all densities studied as

D~(n—1)"°. (23)

Equation (23) was found to hold over the entire range of n
studied. The exponent a is concentration dependent and
changes from a = 1.15 at zero concentration (the case of a
single chain with excluded volume) to @ = 2.06 at a density
¢ =0.75. As shown in Fig. 12, similar scaling behavior is

10~ -

102} E
) SINGLE CHAIN (¢=0)
$=0.25 1
10-3
$=0.5 ]

1074k

10-5 A
s 100 1000
(1)

FIG. 11. Log-log plot at various densities of D vs (n — 1), with D the cen-
ter-of-mass self-diffusion coefficient.
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FIG. 12. Log-log plot of 7 vs (n — 1) at various densities, with 7 the
terminal relaxation time of the end-to-end vector.

observed for the longest relaxation time 74, as a function of
chain length where

Tr~(n—1)5. (24)

At the highest concentration examined, ¢ = 0.75, the value
of the exponent approaches S = 3.36. Thus, the ¢ =0.75
system exhibits the experimentally observed molecular
weight dependence of both D and 7.>%!® We expect even
higher values of £ at higher volume fractions of polymer,
which are below the glass transition density, ¢,. However,
we have not undertaken simulations of the long time dynam-
ics of systems whose densities exceed ¢ = 0.75, which, due to
the very rapid increase in computational time required, are
beyond our capabilities. The values of @ and § obtained from
numerical fit of the scaling relations of Eqgs. (23) and (24) at
various densities to the data shown in Figs. 11 and 12 are
listed in Table III.

Note that £ at zero concentration is somewhat larger
than the value of 2.2 predicted from some theoretical consid-
erations.> A similar effect has been observed in other MC
lattice dynamic studies such as those of Kovac et al.>*>* Fur-
thermore, the diffusion coefficient D at zero density exhibits
a stronger dependence on chain length than the theoretically

TABLE IIL Chain length dependence of the self-diffusion coefficient,
D~ (n - 1) —%, and relaxation time, 7 ~ (2 — 1)?, at various concentra-
tions.

¢ a B
Single chain 1.154 ( 4 0.010)* 2.349 ( 4+ 0.018)"
0.25 1.372 ( £ 0.021)* 2.563 ( + 0.061)*
0.50 1.567 ( + 0.017)* 2.677 ( % 0.035)
0.75 2.055 ( + 0.016)* 3.364 ( + 0.082)"
0.92 2.4, 3.6,°

2§tandard deviation of the slope obtained from a linear least square fit of the

log-log plot in Figs. 11 and 12, respectively. o
bExtrapolated to the glass transition density according to the factorization

approach [Egs. (25)-(29)].
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expected D ~n~'.52¢ However, the product, D7z, at ¢ =0
scales with an exponent which is in reasonable agreement
with the expected n'2 Moreover, this scaling relation
between D and 75 also holds at all higher densities. We can-
not be sure that this is not an artifact related to a coincidence
of statistical uncertainties in the estimation of ¢ and 8
(which is about 0.05 for each exponent at high densities).
Another reason for the above caution is the slight decline in
T for the longest chain under consideration (n =216 at
¢ = 0.5) from the common scaling curve shown in Fig. 12.
Hence, we cannot exclude the possibility that D7, ~n could
be recovered for much longer chains than those studied here.
We point out that in a cubic lattice simulation, Crabb and
Kovac’s data on relatively short chains indicate that Drg
~n 1.1 .55

As has been shown in previous work on similar model
systems, the self-diffusion coefficient should approach zero
at some critical density ¢.*'> Therefore, we attempted to
subtract out the effect of local friction on chain dynamics.
Using a similar approach to that used by Kranbuehl and
Verdier®® and independently by Yu and co-workers,'~” who
followed a suggestion of Schaefer,’® we can formally write

D=K, ¢ () fo( o) (25)

and

o =K, {(d) f.(dn). (26)

We shall assume a standard free volume dependence of the
monomeric friction coefficient, £ 5%

S~exp[ —yd/($—ds)] - (27)
y is a factor ( < 1) that allows for possible overlap of free
volume between segments. ¢, = 0.92 was found in previous
work. %2 :

We also assumed the following forms for f;, and £, :

fo=(n—1) %4, (28)
fi=(n—1)f+, (29)

where a, and B, are the exponents from the single chain
dynamics simulation at ¢ = 0 (1.15 and 2.35, respectively).
Hence, the adjustable parameters are K, K, 7, 4, and d.
Limiting ourselves to the data for ¢>0.25 and n>49, we are
able to simultaneously fit the diffusion coefficient and relax-
ation time dependence on both the chain length and concen-
tration yielding K, =0.479, K, =0.200, y = + 0.217,
A = 1.716, and d = 2.125. The fit to the diffusion data alone
gives K; =0.603, ¥y =0.349, 1 = 1.425, and d = 1.754.
Hence, we can extract the limiting values of the chain length
dependence of D and 7, at a density just below the glass
transition density by setting ¢ = @ in Egs. (28) and (29)
giving in the limit that 4 — ¢,

— 2.39(2.59
D~(n—1) 259
1 )3.59(3.78)

(30)
(31

Tr~(n —

(the values in parentheses come from using the set of param-
eters obtained from fitting the diffusion data only). Thus,
the model exhibits a chain length dependence of the dynamic
properties (D,7 ) in reasonable agreement with experiment
over a wide range of concentration. We also note that the

data of Crabb and Kovac®® are fit equally well by the above
functional form. Finally, the concentration dependence of D
and 7, diverges exponentially in the vicinity of the glass
density due to a local frictional effect which seems to be in
agreement with recent experimental results.>":’

The ability of Egs. (25)—-(29) to fit the simulation data
suggests (at least for the model system examined here) that
the glass transition is due to the freezing out of elemental
local motions which leads to the freezing out of global mo-
tions since both a and B remain finite at the glass transition
density. The concentration dependence of D and 7, further
suggests that one might identify ¢ with the glass transition
temperature T,,. If so, since the molecular weight depen-
dence of D and 7, increases with increasing density, which is
perphaps analogous to decreasing temperature, there may
perhaps be a temperature dependence of @ and S as one
approaches the glass transition temperature of a melt.
Therefore, the possibility of anomalous molecular weight
dependencies of D and 7, should be explored.”’ However,
we hasten to point out that the mapping of ¢ to the density of
real systems is unknown and that the assumption of a corre-
spondence of § — @ to T'— T, may not hold. Moreover, the
numerical values we obtain for @ and S at the glass transition
density may be model dependent. Thus, we view this predic-
tion as being very qualitative at best.

B. Average motion of monomers

The average motion of the n monomers is described by
the autocorrelation function g(¢) defined in Eq. (3a) or the
similar function with the center-of-mass motion subtracted
outg,.q (¢) defined in Eq. (19). In our simulations, contrary
to the reptation predictions [see Egs. (9)-(12)], we have
never found a middle time regime where g (¢) ~¢ 1/4 which is
associated with the reptation of the chain down the tube. The
initial plateau regime reported in Ref. 8 is not relevant to the
reptation model and reflects the constrained motion at very

loll - T - A | T EAL EmaUSE MEaLLY | T
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FIG. 13. Log-log plot of g(¢) and g4 (¢) Vs ¢, in the solid and open dia-
monds, respectively, calculated for the 74 middle beads of the » = 216 and
@ = 0.5 system. g(#) and g, (¢) are defined in Eqgs. (3a) and (19), respec-
tively.
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FIG. 14. Log-log plot of g(#) and g4 (#) vs ¢ in the upper and lower curves,
respectively, for a Rouse chain at n = 216 and calculated employing Eq.
(3b) for g(r) and using g(t) — 6Dt =g, ().

short distances of conformational defects (or free volume
clusters) in a direction on the average perpendicular to the
chain axis. Figure 13 presents representative log—log plots of
g(¢) and g, (¢) averaged over the 74 middle beads vs ¢in the
curves marked by the solid and open diamonds, respectively,
for the system with n =216, ¢ = 0.5 (chains at ¢ = 0.75
display identical behavior). The behavior of these quantities
is qualitatively consistent with the prediction from the
Rouse model. The small deviation from the ¢ /2 dependence
of g(t) predicted by Rouse dynamics is just slightly beyond
the statistical uncertainty of the simulation. However, it
should be noted that an isolated chain with n = 216 obeying
Rouse dynamics both with and without excluded volume
exhibits a far broader crossover regime from the £ /% to ¢
behavior than seen here for the chain in a melt with ¢ = 0.5.
This is graphically illustrated in Fig. 14 where we present
log-log plots of the Rouse predictions for g(¢) and g, (?) vs
t obtained employing Eq. (3b) in the upper and lower
curves, respectively.

The sharpness of the transition from the £ **¢ to ¢ ! power
law behavior in the melt is clearly the result of the presence
of the other chains and is due to the slowing down of the
internal relaxation processes that effectively results in an
n = 216 chain being closer to the asymptotic large n limit of
g(1), if the dynamics can be described by a modified Rouse
model. However, we point out that the presence of a one or
one-half power in the exponent of g(¢) does not necessarily
imply that Rouse dynamics holds. For example, a reptating
chain when ¢ > 7,n* undergoes free diffusion within a tube
and yet exhibits a ¢ /2 power law dependence in g(#).>*’

C. Profiles of single bead autocorrelation functions

We next turn to an examination of the finer details of the
motion and analyze the single bead autocorrelation function
g;(t) defined as

&) ={([r,(t) =1, (0)]* (32)

3000 T i T T T
a) i= 310" |
b) t= g9*10Y
™ c) t=135%10%
2000 X _ d) t=210%10"

g; (1)

1000

5000 T T 7 T T T
a) t= 3+«i0%
b) t= 63+10% W
s, c) t=135*10"
2000 3%,

t=210»10%

g; (1)

1000

186 217

FIG. 15. Plot of g;(z) vs i, at times indicated in the figure. (A) (upper
figure) For n = 216 chains in a melt packed at ¢ = 0.5 in the open circles,
and calculated via Egs. (33a) and (33b) assuming that the Rouse eigenvec-
tors form a good basis set in the solid lines. See the text for additional details.
(B) (lower figure) Plot of g,(#) vs i, at times indicated in the figure, for
n = 216 chains in a melt packed at ¢ = 0.5 [a chain with n = 176 assuming
Eqgs. (33a) and (33b) are valid] in the open circles (solid lines). See the text
for further details.

as a function of position i along the chain. In the curves
formed from the open circles in Fig. 15(A), we present a
representative plot, at various times indicated in the figure,
of g, (¢) vs i obtained from the simulation for the system
containing n = 216 chains packed at ¢ = 0.5.

Using a Rouse-like formulation where we assume the
Rouse eigenfunctions are a good basis set, but do not neces-
sarily employ the Rouse eigenvalues, we can write
g () = ([ri(t) - ri(o)]z)
< R 2y n—1

= 3 cos’[ (2 + Dkw/2n]
n k=1

. kn'){
2

RAL T B
X sin (Zn

— 6Dt +
expl— 12n%Dt sin? k_ﬂ]}
T wmll’
(33a)
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where (R 2) is the mean-square value of the end-to-end vec-
tor in the melt [which is approximately equal to 6.6 (n — 1)
in the case of diamond lattice polymers'>°%']. The only
adjustable parameter in Eq. (33a) is D(¢), the apparent self-
diffusion coefficient of the center-of-mass, which is extract-
ed from

D(1) =g.m (1)/61, (33b)

D(t) obtained from Eq. (33b) differs at most by about 50%
from its value at infinite time and monotonically decreases
with increasing time. The resulting g, (#) vs i profiles ob-
tained from Egs. (33a) and (33b) are shown as the solid
curves of Fig. 15(A) and are found to fit the profiles fairly
well. However, at all times there seems to be a noticeable
deviation for the end segments in that Eq. (33a) underesti-
mates the mobility of the chain ends in comparison with the
middle part of the chain. For longer times the deviation of
g;(¢) from the theoretical Rouse curves increases, with the
chain ends exhibiting more and more excess mobility. This is
the same trend observed in the analysis of the motion of the
center-of-mass up to the time when g_ ., (#) =2(S?), where
Zom. (8) ~t°witha < 1 crossesoverintoag, ,, (¢) ~¢regime.
We should further point out that if D(¢) is extracted from
the profiles of g, (¢), the value of D(z) is essentially the same
as that obtained from Eq. (33b). The higher mobility of the
chain ends is probably partially due to the extra free volume
at the chain ends®”! and also to the smaller degree of co-
operativity of the motion at the chain ends due to a smaller
effect of entanglements.

As shown in Fig. 15(B), at longer times the simulated
g: (#) vsi (open circles) can be reproduced rather well by the
theoretical expression, Eqgs. (33a) and (33b) (solid lines) if
only the middle of the chain composed of 176 beads (20
beads on each end of the » = 216 chain are omitted) is con-
sidered, using a value of (R 2) which is correct for the chain
of n =176 beads and D(r¢) extracted from Eq. (33b). In
some sense, the motion of the chain behaves similarly to that
of a modified Rouse chain having a larger D(z), with addi-
tional corrections resulting from the significantly lower ef-
fective friction constant for the end segments.

D. Mechanism of long distance motion

Even though the single bead autocorrelation function is
consistent with a modified Rouse model, the deviation of the
center-of-mass motion from the ¢! power law at distances
less than 2(S?)'/2, still remains unexplained. The en-
hanced apparent D(¢) in the ¢ ° regime suggests that there is
some cooperativity involving the coupling of the center-of-
mass motion with that of the individual beads. Moreover, at
n = 216 the narrow crossover from ¢ °*¢ power law depen-
denceing(#) tot ! behavior is not accounted for in the Rouse
model even with the eigenvalues modified as in Eqgs. (33a)
and (33b). Thus, up to now, while we have to some extent
demonstrated that the dynamics of our model melt appears
to be closer to a Rouse model with its assumption of isotropic
motion than to a reptation model with its assumption of an-
isotropic motion, we have not in fact answered the crucial
question that is the crux of this paper and is the essence of the
current debate about the validity of the reptation model.

Kolinski, Skolnick, and Yaris: Entangled, finite length polymer systems

That is, what is the character of the motion of the polymer on
a distance scale large in comparison with the length of a
single bond, but smaller than the coil size? Is the direction of
the motion longitudinal, consistent with the reptation pic-
ture? Is there no directional preference? Or is the dominant
motion transverse to the local chain axis?

1. Construction of the equivalent path

In order to directly examine the character of the long
distance motion, the motion of the blobs (or segments of the
primitive path**%) is analyzed. First, the original model
chains are replaced by equivalent paths composed of # over-
lapping blobs, the ith one of which such that nz/2 <i<n

—np/2is

. 1 i+ ng/2

rf(t) = ——4m——

r(®) (ng + 1)j=i2n3/2
andfori<ng/2 (i>n — ng/2), theaverageisovertheny/2
+ i(ng/2 + n — i) beads centered at bead i. Averaging the
chainover ny + 1beads gives a smooth random curve which
eliminates the small scale, local fluctuations that are irrele-
vant to the long distance motions and which should be very
close to the primitive path of the reptation model if ny is
close to the entanglement length. If the polymer moves down
the tube formed by the topological constraints imposed by
the other chains, there should be substantial memory of the
primitive path ‘“‘conformation,” at least for the middle part
of the chain. Thus, the following procedure has been applied
in order to extract the longitudinal and transverse compo-
nents of the chain motion. As schematically depicted Fig. 16,
we first computed the longitudinal displacement down the
original primitive path defined by {r*} at the time ¢, by pro-
jecting r*(z, + At) onto the original path. If the projection
of r¥(z, + Ar) is onto blob j in the original path, then the
displacement of blob i/ down the original primitive path is

As=1,li—jl|, (35)
where /, is the average distance between the centers of two

neighboring blobs.
Thus, the mean-square longitudinal displacement down

r;(2) (34)

FIG. 16. Schematic representation of the primitive path at ¢ = 7, in the solid
line and at ¢ = 1, + At in the dashed line used to compute the mean-square
displacement of the chain down, g (#), and transverse to, g, (¢), the original
primitive path defined at t = ¢,
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the original primitive path, which represents the reptation
component of the motion, is

The remaining, transverse component of the motion is
computed from

g (A0 = ([r¥ (1) —r¥ (1, + AN ]?) . (37)
In Egs. (36) and (37), the average is over all beads in the
middle third of the chain.

Observe that for a reptating chain, g, (¢) has a maxi-
mum value 2/3d - for times less than the tube renewal time.
Thus, for that range of , g, (¢)/g; (¢) should be very close to
zero for those segments near the middle of a reptating chain.

In the context of reptation theory, the number of en-
tanglements per chain is of crucial importance in determin-
ing whether or not pure reptation should dominate the be-
havior of g, (¢) and g, ()."%3?*%> We present in Table IV a
summary of the number of entanglements per chain estimat-
ed by various criteria for the # = 216 chains at ¢ = 0.5 and
the n = 96 chains at ¢ = 0.75. If any of the measurements of
the number of entanglements presented in Table IV are ap-
propriate to describe the number of entanglements, then
both by the criterion of Graessley,® n/ng > 5, and by the
criterion of Klein,*® n > (n,)*® (which equals 47 if n, ~n,
where we take n, = 18 for the ¢ = 0.5 case and equals 27 for
the ¢ = 0.75 case with nn, = 12). Therefore, we would clear-
ly expect to see reptation as the dominant motion.>*

InFig. 17, weplotg, (¢)/g; (¢) vst for the case of a melt
of chains at n = 216, ¢ = 0.5 (with a corresponding 10™* ¢
time scale) and n =96, ¢ =0.75 (with a corresponding
10~ ¢ time scale) in the open diamonds and circles, respec-
tively. We set np = 18, a physically reasonable value (see
Table IV). (The results in fact are insensitive to the choice of
ny provided that n, exceeds some very small value.) The
value of / 7 obtained from the simulation is 0.28, and is essen-
tially density independent. The terminal relaxation time of
the end-to-end vector for the n =216, ¢ =0.5 case is

TABLE 1V. Summary of various estimates of the number of entanglements
per chain.

$=05n=216 $=0.75,n=96

Method n, n/n, ng n/ng

Screening length of excluded volume® 18 12 12 8
Segment-segment density

distribution function® 3 72 2 48
Pulling all the chain ends to count the

number of knots® 10-15
Dynamics of a single chain in

partially frozen environment? 5-11 2043

® Obtained from Fig. 5 where we plot (S2)/(S?), vs n. See Sec. II C.

bQObtained from Figs. 6 and 7 for ¢ = 0.5 and 0.75, respectively, corre-
sponding to the n,th nearest neighbor on the lattice where p(r;;) of beads
on other chains first exceeds p(r;) due to beads in the same chain as the
bead at the origin.

°See Appendix A.

¢ Estimated from Fig. 21, the log-log plot of g(¢) vs ¢ and obtained via the
nonreversing random walk formula for #n5 (Ref. 52).

7.5 e ——

up

tx107™" (107%)

FIG. 17. Plot of g, (£)/g, (¢) vs 107* (107°)¢ for a melt of chains with
n=216and ¢ = 0.5 (n = 96 and ¢ = 0.75) in the open diamonds (circle).
The solid diamonds represent g, (¢)/g, (£) vs 10~*t for a single chain of
n = 216 in a partially frozen matrix of other chains pinned every 18 beads
and packed at an overall density ¢ = 0.5.

5.2X 10, and for the n = 96, ¢ = 0.75 case, is 1.52X 10°
The deviationing, ()/g, (¢) from the isotropic value of 2 at
shorter times (¢ < 5 in the scaled units of the graph) is due to
the transverse character of the very local motions previously
discussed in detail.® At times appreciably less than free diffu-
sion or even the terminal relaxation time of the end-to-end
vector, g, (£)/g; (¢) is seen to grow monotonically with in-
creasing time. (Similar behavior would be evidenced by a
Rouse chain.) This indicates that reptation can only com-
prise a small component of the motion in these model systems.
In fact, for the system at ¢ =0.75 which displays the
D~n~%"and 75 ~n** behavior of the physical system, the
memory of the original path is less (of course we must cor-
rect for the differences in molecular weight) than the system
at the lower density, ¢ =0.5 having weaker molecular
weight dependencies of D and 7. Nevertheless, the qualita-
tive behavior seen in these systems as a function of ¢ indi-
cates a smooth crossover in the D and 7 dependence on
molecular weight, with no abrupt change in behavior evi-
dent,

For convenience of the reader in Figs. 18(A) and
19(A), we present a log-log plot of g(¢) vs ¢ where the ar-
rows with corresponding letters (B)-(D) denote the time
difference At between snapshots showing typical superim-
posed projections of the primitive path of a given chain with
Ar = 10% 3% 10% and 5% 10* in Figs. 18(B)-18(D) and
Ar=1.2%10° 3.6X10% and 7.2X10° in Figs. 19(B)-
19(D), respectively. For all cases in Fig. 18 (19) n =216
(96) and ¢ = 0.5 (0.75). To differentiate between the two
ends, one of the ends is labeled by a triangle. The transverse
fluctuations as well as the fluctuations in the length of the
primitive path are so large that the polymer moves essential-
ly like a single chain in a dilute system; however, the time
scale, and the character of the local motion, are quite differ-
ent. It should be emphasized that the longest time snapshot
depicted in Figs. 18 and 19 is about 1/5 to 1/10 of the time
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FIG. 18. Log—log plot of g(1) vs t. (A) The arrows denote the time intervals, Az, between snapshots of the original primitive path at ¢, = 0 (solid line) and the
primitive path at a time At later (solid circles) shown in Figs. 18(B)-18(D). (B) Az = 10% (C) At = 3X10% (D) At = 5x 10* In all cases n = 216 and

¢ =0.5. In (B)-(D), the triangle locates the position of one of the chain ends.

required to obtain free diffusive motion [i.e., where g ., (2)
~2(S?)]. Hence, since the times are short compared to the
tube renewal time in the reptation model, reptation, if it were
occurring in our model system, should be observed. %3234

Thus, in the melt where all chains are moving, we see no
evidence of a tube or reptation. The possibility of course
exists that these chains are too short to see reptation; it has
been conjectured that static and dynamic entanglement
lengths are not the same'"'* (however the notion of a dy-
namic entanglement remains ill defined, and as yet has not
been put on a quantitative basis). Even conceding this possi-
bility, we must still contend with the fact that the ¢ = 0.75
system exhibits the behavior D~n~2 and 7 ~n** required
by experiment. Therefore, the molecular weight dependence
of D and/or 7 alone cannot be used as the basis for the proof
of reptation. Rather, these simulations suggest that at a min-
imum there should be a broad crossover regime from ideal
Rouse behavior (with D ~n—1, r~n?) in which lateral fluc-
tuations of the chain are very important and in which repta-
tion is at best a minor component of the motion.

E. Motion of a chain in a partially frozen environment

In order to check the observation that the large fluctu-
ations of topological constraints in the model polymer melt
are responsible for the lack of reptation, following previous
workers?’-23% we performed a relatively short-time simula-
tion of the motion of a single mobile polymer chain in a
partially frozen matrix. (It should be mentioned that using a
completely frozen matrix leads to a grid-locked system with
no globally mobile chains at the density ¢ = 0.5 considered.
Whether the completely frozen matrix would allow for sin-
gle mobile chain motion at times substantially longer than
those run we cannot say. Nor can we exclude the possibility
that if a large ensemble were examined, a certain fraction of
chains would undergo global motion. ) The model is schema-
tically depicted in Fig. 20. All the chains, but one, have been
partially frozen. Namely, we pinned the matrix chains every
n, = 18 beads for the two sets of chain lengths n = 100, and
n =216at¢ = 0.5. Thus, there are 6 pinned beads for chains
of n = 100, and 12 pinned beads for chains of n = 216. Oth-
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FIG. 19. Log-log plot of g(¢) vs ¢. (A) The arrows denote the values of the time invervals Az between snapshots of the original primitive path at #, = 0 (solid
line) and the primitive path at a time A¢ later (solid circles) shownin Figs. 19(B)-19(D). (B) At = 1.2X 10°% (C) At = 3.6 X 10% (D) At = 7.2 X 10°. Inall
cases, n = 96 and ¢ = 0.75. In (B)-(D), the triangle locates the position of one of the chain ends.

FIG. 20. Schematic representation of a single mobile chain represented by
the open lines in a partially frozen environment of chains (solid lines). The
solid circles denote locations at which the matrix chains are fixed. The
dashed line shows some allowed fluctuations of a matrix chain consistent
with the constraint that the pinned points cannot move. For ease of visual-
ization, only one matrix chain is drawn as moving between pinned beads;
however, in the MC simulation, all the matrix chains are allowed to move
between pinned beads.

erwise the dynamics of all of the chains is modeled in exactly
the same way as in the melt simulation algorithm. The ma-
trix chains between the pinned beads are free to move as far
as chain connectivity allows. This series of simulations al-
lows us to demonstrate that (1) reptation is not artificially
suppressed by confining the single test polymer to a lattice.
(2) The equivalent path analysis gives g, (£)/g (¢) and
primitive path trajectories in agreement with the expected
behavior for reptating chains. Namely, g, (¢)/g, (¢) mono-
tonically decreases with time and tube memory effects are
evident.

For the case of a single chain in the partially frozen
environment described above we obtain results consistent
with the reptation picture. In Fig. 21, a log-log plot of the
single bead autocorrelation function vs time is presented for
the cases of a single mobile chain with » = 100 and 216, both
at ¢ = 0.5, in the curves represented by open triangles and
solid diamonds, respectively. There is clearly a crossover
from the initial g(¢) ~¢ !/? regime to a regime of slower mo-
tion, consistent with g(¢) ~¢ /4 reflecting the motion of the
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FIG. 21. Log-log plot of g(¢) vs ¢ for the single mobile chain in a partially
frozen matrix of chains, all packed at an overall density ¢ = 0.5. n = 100
and 216 in the open and solid triangles, respectively. The arrows denote the
time intervals between snapshots of the original primitive path defined at
t, = 0, and a snapshot at time At later for the » = 216 chain shown in Figs.
22(A)-22(C).

chain along the tube."? The crossover at 30 < g(#) < 80 gives
the tube diameter d, =6 which is consistent with the super-
imposed restrictions on the mobility of the matrix chains.
Furthermore, the ratio of g, (#)/g; (¢) for the n = 216 chain
at ¢ = 0.5 in a partially frozen environment, as shown in the
curve drawn through the solid diamonds in Fig. 17, de-
creases with increasing time. If pure reptation were occur-
ring, it would decay essentially to zero. However, as evi-
denced by the snapshots shown in Figs. 22(A)-22(C) at
various time intervals between the equivalent paths, there is
quite a lot of tube leakage® (there cannot be constraint re-
lease since the environment is permanently pinned) which
slows down the dynamics relative to the pure reptation case.
That is, the mobile chain spends a lot of time running up and
down cul-de-sacs. This points out that tube leakage may be
an important mechanism in those systems such as polymer
chains in a gel that have been shown to reptate.®

IV. DISCUSSION

The behavior of the diamond lattice multichain systems
we studied is qualitatively consistent with the experimental
results for polymer melts.'*'* Namely, at a density of
¢ =0.75,D~n—*! and 75 ~n>*. As the density is lowered,
there is a smooth crossover to D~n"'* and 7, ~n*** for an
isolated single chain with excluded volume interactions. At
first glance the results at high density for D and 7, are appar-
ently consistent with the reptation model.!* However, an
analysis of the single bead motion as well as an analysis of the
“primitive path” migration shows that the dynamics is really
closer to that of a Rouse chain® in that lateral fluctuations
are important, and there is apparently no tube for the range
of n studied. These simulations indicate that the notion of
static constraints seems to be irrelevant to the motion of a
given chain, if all of the chains are mobile. However, the
motion of the system significantly slows down as the concen-
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(A

FIG. 22. For a single mobile chain in a partially frozen environment, snap-
shots of primitive paths separated by (A) At = 10%, (B) Az = 10°, and (C)
At = 4X 10°, respectively. In all cases n = 216, and ¢ = 0.5. In (A)~(C),
the triangle locates the position of one of the chain ends.

tration increases and cooperativity of motion between chains
becomes evident. Eventually at some critical density, ¢,
D =0, and only local fluctuations persist. The vanishing of
D is caused by the increase of the local friction constant,
which seems to be well described by a simple free volume
treatment.

Finally, the question arises if our result that 7, ~n>* is
caused by the suppression of conformation-changing ele-
mentary four-bond jumps. This is not the case for the follow-
ing two reasons. First, we have shown in previous work® that
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four-bond jumps are shutdown at ¢, but not below this
density, and the dynamical properties of the system are not
sensitive to the particular a priori choice of the ratio of three-
bond to four-bond motions.®'*> Hence, there are still sub-
stantial possibilities to create new orientations in the middle
part of the chain and therefore the n® scale is not built into
the model. On the contrary, considerable internal reorienta-
tion is seen for times much shorter than 7,. Second, as was
also shown previously,® the a priori exclusion of four-bond
motions at densities much lower than ¢, leads to. D = 0. The
relatively long polymers studied here exhibit unconstrained
dynamics and only very short polymers (7<36) are sensitive
to the details of the elemental dynamics (i.e., the a priori
ratio of three-bond motions to four-bond motions). For
these shorter chains, the scaling exponents in the chain
length dependence of 7, and D are slightly dependent on the
local dynamic parameters of the model. For longer chains,
changing the value of the a priori probabilities of three- and
four-bond jumps simply leads to rescaling the time unit by a
constant factor.

Having only a discrete set of elementary motions, a dis-
crete representation of the polymer conformations, and a
discrete distribution of free volume are intrinsic disadvan-
tages of lattice models. But again, these efffects should be
screened out after a short distance and therefore only pro-
duce a linear change of the time scale, if the polymer is long
enough. Indeed, we find agreement in the qualitative behav-
ior seen here with that of off-lattice simulations.>’

The above limitations of the lattice representation,
which primarily affect short polymers, may be the reason
why we have not observed the crossover region discussed
above from the D~n~"to D~n"2, and the 7, ~n** to 7
~n**behavior with increasing chain length. On other hand,
a polymer having n = 12 in our model system is comparable
to a real polymer with degree of polymerization that is sever-
al times larger and may be quite close to the critical chain
length seen in viscosity measurements. Since lattice dynam-
ics becomes less and less physical as the chain length de-
creases, we have not attempted to check for a crossover re-
gime and have not simulated chains with n < 12.

V. CONCLUSIONS

Using a dynamic MC simulation of a dense diamond
lattice system of entangled chains, we have shown that repta-
tion within a tube is not a necessary condition to observe
D~n*'and 7y ~n**. Rather, this simulation argues for the
existence of a regime where there is considerable lateral mo-
tion of a chain to achieve long distance displacements and
where there is no evidence whatsoever for the existence of a
tube. Indeed, reptation-like behavior is observed only when
we partially freeze the environment surrounding the chain of
interest by pinning the other chains. Thus we are led to the
conclusion that reptation is the dominant mode of diffusive
behavior for these finite length chains only when the poly-
mer is in an environment with a markedly slower time scale
of motion—such as a polymer in a crosslinked gel. In a melt
or concentrated solution where there is no separation of time
scales between the chain of interest and the other surround-
ing chains, the polymer behaves much more like the classical
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Rouse chain with the caveats noted below. Thus, while we
cannot rule out the possibility that reptation becomes the
dominant mode of relaxation in the limit of very high molec-
ular weight, at the very least, these simulations strongly ar-
gue for the existence of a crossover regime between simple
Rouse behavior and reptation, where reptation is an unim-
portant component of the mechanism of the long distance
displacement of a chain in the melt. This crossover regime
exhibits D~n—2 and 75 ~n>* but has dynamic properties
quite different from those described by reptation theory. An
analytic theory capable of describing the dynamics of chains
in this regime does not, at present exist.

Qualitatively, the behavior of the chains is closest to the
Rouse model in that the large distance motion is essentially
isotropic with no evidence of tube memory effects.’ The sin-
gle bead autocorrelation function g(¢) also possesses a ¢ /2
(actually ¢ >*®) regime as does the Rouse model in the large n
limit; however, the sharpness of the crossover from the £ /2 to
the ¢ ! regime at the finite » studied in the simulation are not
reproduced by the Rouse model. Moreover, g, (¢) ~2°°
for mean-square displacements<2(S ?), after which free dif-
fusive behavior takes over. A pure Rouse model requires
8w (1) ~1t at all times. Furthermore, the chain ends are
more mobile than is predicted from a Rouse model with a
uniform bead friction constant. Thus, while the behavior of
the entangled melt of chains is much closer to a Rouse chain

(») 2 3
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FIG. 23. Schematic representation of a possible mechanism of motion of
polymer chains in the melt in which there is a cooperative flow between
neighbors that allows the chains shown in Fig. 23(A) to interchange rela-
tive positions as shown in Fig. 23(C). (A) Representation of possible
mechanism of motion of polymer chains. (B) An intermediate state is

shown in Fig. 23(B). (C) Chains from Fig. 23(A) interchange relative po-
sitions.
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than to a reptating chain, the Rouse characterization is only
approximate and fails to capture some essential features of
the melt dynamics.

The physical picture of the diffusive motion of the poly-
mer chains in a melt that emerges from this study is that the
chains move in a random fashion in some sense similar to the
motions responsible for polymer diffusion in dilute solution.
‘However, the motions of the various chains are highly coop-
erative. As one polymer diffuses, we conjecture that thereisa
backflow of the surrounding polymer chains. This backflow
is necessary in order to conserve local density. It is this con-
certed backflow motion which leads to the much larger
chain length dependence of diffusion and viscosity for con-
centrated polymer systems than is observed in dilute solu-
tion. A schematic zero order picture of one such cooperative
mutual flow process is given in Figs. 23(A)-23(D) where
the chain of interest, chain three, flows past chains one and
two, in a “push-me/pull-you” fashion.

In future work, we shall extend our study to longer
chains, examine the dynamics of a smaller chain in a larger
molecular weight matrix, and explore the dynamics of a
chain in a microgel. All these studies are designed to qualita-
tively elucidate the behavior of multichain systems and to
form the basis of new analytic theories of melt dynamics that
these simulations strongly suggest are required.

Note Added in Proof: We recently completed a MC sim-
ulation of cubic lattice chains packed at ¢ = 0.5 over a range
of n = 64,100,216, and 800. For the entire range of n studied,
including the » = 800 chains, identical qualitative results as
those described here were seen. Moreover, simulations of
smaller chains in a matrix of larger chains are in qualitative
agreement with experiment,”** and yet no evidence for rep-
tation as the dominant mode of melt motion was found.
Manuscripts describing the more recent work are now in
preparation.
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APPENDIX: ESTIMATION OF THE NUMBER OF KNOTS

One way to estimate the number of knots is to fix the
ends of all the chains, and in the off-lattice case, reel in the
slack and then count the resulting number of kinks.®? Chains
having conformations such as shown in Figs. 24(A) and
24(B) are reduced to straight lines by this procedure and
thus lack knots. On the other hand, chains 1, 3, and 4 of F ig.
24(C) possess one kink each, and chain 2 possesses three
kinks; these are counted as intermolecular entanglements.
The single chain shown in Fig. 24(D) possesses one “true”
knot, but since self-entanglements are in some sense irrele-
vant to the problem of mutual diffusion of the chains, these

% %

FIG. 24. Schematic illustration of the kinds of conformations considered in
the knot counting algorithm. (A ) Two conformations of chains that do not
give rise to knots when subjected to the chain end pulling algorithm de-
scribed in the Appendix. (B) Sameas (A). (C) Schematic conformation of
chains that gives rise to knots when subjected to the chain end pulling algo-
rithm described in the Appendix. (D) An example of a self-entanglement
which does not contribute to the number of interchain knots when subjected
to the pulling algorithm described in the Appendix.

knots have to be subtracted out.

Unfortunately, when chains are confined to a lattice the
pulling process becomes more complicated since these
chains also possess a number of kinks due entirely to lattice
constraints. Thus, the knot counting process is realized as
follows: First, the chain is reduced to an fcc lattice by neg-
lecting every second bead, a process which never violates the
requirement that two bonds cannot cross. Then, to obtain
the average number of kinks equivalent to a straight line
segment, the prohibition against multiple occupancy of sites
belonging to beads on different chains is removed, thus pro-
ducing a collection of N noninteracting chains. An iterative
pseudorandom process is used to search for the shortest pos-
sible fcc-lattice path between the two chain ends, taking into
consideration the intrachain topological constraints. The
above procedure leads to a reduction in chain contour length
and allows as to estimate the average number of kinks, n%
equivalent to a straight segment. We then repeat the proce-
dure for the N chains in which the multiple occupancy exclu-
sion of lattice sites applicable to all beads is restored. The
iterative pseudorandom process described above is then ap-
plied to the collection of chains in the melt, giving the aver-
age number of kinks in the melt »,,,. If the true entangle-
ment points are sufficiently far apart, we can assume that
each equivalent line segment contains n% kinks; that is, e-
quivalent straight line segments in the two cases (with and
without intermolecular excluded volume) are self-similar.
Therefore a lower bound for the number of entanglements or
knots is the ratio n,, /n2. This number is reported in row
four of Table IV.
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