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The dynamics of a probe chain consisting of #, = 100 segments in a matrix of chains of length
of ny, = 50 up to n,, = 800 at a total volume fraction of polymer ¢ = 0.5 have been simulated
by means of cubic lattice Monte Carlo dynamics. The diffusion coefficient of the probe chain
over the range of n,, under consideration decreases by about 30%, a behavior rather similar to
that seen in real melts of very long chains. Furthermore, the analysis of the probe chain motion
shows that the mechanism of motion is not reptation-like and that the cage effect of the matrix
is negligible. That is, the local fluctuations of the topological constraints imposed by the long
matrix chains (even for n,, = 800) are sufficiently large to provide for essentially isotropic,
but somewhat slowed down, motion of the probe, #, = 100, chains relative to the
homopolymer melt. The results of these MC experiments are discussed in the context of
theoretical predictions and experimental findings for related systems.

I. INTRODUCTION

Since the ingenious ideas of de Gennes'~> combined
with the elegant formalism of Doi and Edwards* to change
the way of thinking about the dynamics of multichain sys-
tems, a large effort has been directed towards verifying the
reptation theory of the dynamic properties of polymeric
melts.>® In the context of reptation theory, a most interest-
ing case is the consideration of the dynamics of a “single”” (or
rather a small volume fraction or concentration) probe poly-
mer of degree of polymerization 7, immersed in a matrix of
chemically identical (or similar) monodisperse (or “nearly”
monodisperse) polymers of another degree of polymeriza-
tion n,,. Both situations, of fixed n, with varying »n,, and
fixed n,, with changing n, have been theoretically analyzed
in the context of self-consistent reptation theories'*>* and
experimentally examined in a series of studies on carefully
prepared, bidisperse polymer melts.'®!”

In the present work, we have attempted to simulate by
means of lattice Monte Carlo (MC) dynamics, the experi-
mental situation where a flexible probe polymer of given np
is placed in a matrix of exactly monodisperse chains of
length n,,. Only the variation of degree of polymerization of
the matrix chains is considered, with 7, equal to 100 in all
the model systems examined. The value of n, = 100 in the
cubic lattice representation of the configuration of the sys-
tem should correspond to a few times larger degree of poly-
merization in real polymers due to the fact that the equiva-
lent segment length (or the persistence length) of a cubic
lattice chain is small in comparison with the chain diameter.
Thus, these model chains are more flexible than typical real
synthetic polymers, and it is hoped that n, = 100 corre-
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sponds to the case of “long polymers,” near the critical en-
tanglement length at the relevant density. The details of the
model of the dynamics are exactly the same as described in
the preceding paper for monodisperse systems and hereafter
referred to as paper 1.2* Both the diffusion coefficient D as
well as the terminal relaxation of the end-to-end vector 74
are estimated for the probe polymer as a function of the
length of matrix chains 7,,. The results are discussed in the
context of the reptation model'*'*?? as well as the recent
experimental findings.'®'” We conclude by summarizing
the conclusions that have emerged from our studies of var-
ious long chain lattice systems by the method of MC dynam-
ics.

. MODEL

All the computational MC experiments were performed
at a single, total volume fraction of polymer ¢ = 0.5, where
¢ = dp + Py, is the sum of contributions from probe poly-
mers and matrix polymers, respectively. The value of ¢, was
always much lower (by a factor of 32 to 40) than ¢,,. The
summary of the properties of the model systems under consi-
deration are given in Table I. As one can see, the fraction of
probe polymers has been kept at a value even lower than that
in many real experiments on approximately bidisperse sys-
tems.'®'” Thus, the interactions between the probe polymers
(in the cases where there is more than one n, = 100 polymer
per MC box) are presumably negligible. Furthermore, the
size of the MC box is sufficiently large to prevent the unphy-
sical interaction of the polymers with their replicas resulting
from the imposed periodic boundary conditions. The ther-
mal equilibration of the system under consideration has been
achieved by the following procedure: Well equilibrated,
monodisperse systems from previous studies have been used
as the input state. Then, one of the long polymers was divid-
ed into pieces each of length n, = 100. For example, the
system of V = 40 chains of length n = 800 as changed into a
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TABLE I. Equilibrium dimensions of a polymer with n, = 100 in various
linear chain matrices of length n,,. The total volume fraction ¢ = 0.5.

System np = 100

ny =50 Ny =np =100 n,, =216 n, =800

L=20 L=20" L=24 L=40
28 0.0125 0.0145° 0.0125
[ 0.4874 0.4844 0.4875
N, 1 2 8
(|R})® 124 12.7 12.7 12.7
(R?* 178 187 188 185
(S| 5.29 542 - 5.34 5.42
(s%)4 29.5 30.8 30.0 30.7
* L is the MC box length.

®$ = ¢» + B, in this particular case equals ~0.499; and the system con-
sists of 31 chains of length n,, = 216 plus 2 chains of length n, = 100.

°Ris the end-to-end vector.
48 is the radius-of-gyration vector.

system of N,, = 39 matrix chains with n, =800 plus
N, = 8 probe chains of n, = 100. In the next step, the repta-
tion algorithm was applied to the entire collection of chains
in order to obtain an equilibrium distribution of shorter
chains in the MC box. Eventually, the MC dynamic simula-
tion algorithm (the same as used for the further investiga-
tion of the dynamics; see Sec. II of paper I) was applied to
ensure final equilibration of the system of interest. The above
procedure is presumably much more efficient in the cases
when np > n,,, than growing the new system from scratch
(see Ref. 24) due to the fact that the relaxation of the matrix
polymers controls the relaxation of the entire system. Since
the presence of some shorter polymers (at constant density)
only marginally disturbs the distribution of the longer poly-
mers; the entire equilibration process is relatively fast. On
the other hand, when n, > n,, the above is, of course, not
true, but then the entire system becomes small and equilibra-
tion is rapid. In the case np > n,, the matrix polymers are
obtained by the decomposition of a system of monodisperse
longer chains, and only the final step of the equilibration
procedure was performed since the equilibration of the
centers-of-mass distribution over the MC box of the small
chains is extremely fast (here N, =1). ‘
Table I also displays some equilibrium data for the
probe chain. Note that there is no systematic dependence of
the coil dimensions of the n, = 100 chain on the degree of
polymerization of the matrix. This shows that both the probe
chain as well as the matrix chains are always significantly
longer than the critical length required for the screening of
the excluded volume effect. The data of Table I come from
an ensemble average collected only during the MC-dynam-
ics run. Of course there exist more efficient methods (for
instance, the reptation algorithm) for sampling the equilib-
rium properties, but this is not the main purpose of the pres-
ent work. The somewhat lower values of the coil dimensions
observed in the case of n,, = 50 lie within the range of the
statistical error. In the last case only one polymer contrib-
utes to the average (however, these averages were collected
over a relatively long MC run). The differences in the equi-
librium dimensions of the probe chain in the various matri-

ces are rather small; compare, for example, the results given
in Table I with the dimensions of a self-avoiding (SAW),
five choice, single chain of n = 100 (the model of a single
chain in an athermal solvent). For this case, (R %)g w is
about 261 and (S ?)g,w =41.%°

Finally, it should be noted that the model of lattice dy-
namics and the chain time scale are exactly the same as used
previously.?® The fundamental time unit is the time interval
required to attempt one normal two-bond cycle (including a
modification of the chain end orientations) plus two at-
tempts at a three-bond permutation, plus two attempts at 90°
three-bond kink motions for every single polymer bead, on
average, in the system. (See Fig. 1 of paper I for a schematic
representation of the allowed moves.) The observed accep-
tance ratios are very close to those reported for the cubic
lattice representation of a monodisperse model melt.?

Ill. RESULTS

Various autocorrelation functions for the probe chain of
length n, = 100 were computed from trajectories obtained
in a long series of MC runs. The mean square displacement
of the center of mass, gy (2), has been used to estimate the
diffusion coefficient D by fitting the simulation results when
8em (1) >2(S%) to

gcm (2) =6Dt + ¢ (1
with ¢ a constant. This corresponds to the pure diffusive
regime reached after complete relaxation of the internal
chain configuration. Values of D so obtained are shown in
Table 11, row one. Below 2{S?2), there is a regime of faster
diffusion reflected in the presence of the constant ¢ in the
above asymptotic form. The faster diffusion regime is fit very
well by the form gcy (2) ~2°; the exponent a is less than
unity and depends on the matrix chain length n,,. However,
as shown in row two of Table II, the variation in a, which
presumably reflects the coupling of the center-of-mass mo-
tion of the chain to the internal modes of the probe chain and
perhaps to the matrix chains, is surprisingly small over the
relatively broad range of n,, studied. This suggests a small
coupling of the probe dynamics to the matrix, since no quali-
tative difference between the extreme cases is evident. Sam-
ple plots of gy (2) vs # on a log-log scale together with plots
for g(t), the single bead autocorrelation function for np

= Ny = 100 (np = 100, n,, = 800) are given in Fig. 1 in
the curves depicted by the solid (open) diamonds and cir-
cles, respectively. Again, the average mean-square, single
bead displacement g(¢) obtained from the average over all
the beads of probe chain, does not exhibit any qualitative
change on changing the matrix chain length."*'? Thereis no
indication of a ¢ /% regime predicted for the monomer g(#) of
areptating chain (£, = 4-5 is the static estimate for the blob
dimensions).? Rather, for £;%/3 <g(t) <{S?), g(t)~2*,
with values of b (displayed in row 3 of Table II) quite close
to 1/2. Hence, these systems do not behave like that of a
probe chain moving in a fixed cage (for example, a chainina
crosslinked gel, or the MC experiments when all the chains,
but one, are partially frozen).?**”?*-*2 On the contrary, the
time course of g(z) follows the predictions of the Rouse
model very closely. Therefore, one may speculate that the
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TABLE II. Dynamic properties of a probe polymer with n, = 100 in various linear chain matrices of length

n,,. Total volume fraction ¢ = 0.5.

ny =350 ny = np =100 n, =216 n,, = 800
Ds10* 9.44 + 0.69 9.03 +0.21 8.57 £ 0.27 7.04 4 0.38
a 0.958 0.890 0.883 0.825
b* 0.551 0.522 0.518 0.504
7107 0.567 1 0.042 0.605 4 0.029 0.669 + 0.029 0.797 + 0.021

*Exponent in the £ regime of gep ().
bExponent in the f* regime of g(#) (see the text).

dramatic change in the time scale of the global motion of the
matrix polymers as one goes from n,, = 50 to n,, = 800 has
little influence on the motion of the probe polymer. Conse-
quently, the local fluctuations of topological constraints in
the high molecular matrix case must be sufficiently large to
allow relatively fast disentanglement of the probe polymer,
and the cage effect (if indeed it is present) is not felt by the
probe chain. Only the effect of changes in the effective local
friction constant appear to be present.

In addition to the diffusion coefficient D, we estimated
the longest relaxation time for the end-to-end vector of the
probe polymer. The autocorrelation function

gr (1) = (R()°R(0))/(R ) (2)

has been used for this purpose. After a short period of fast
relaxation, g (z) ~e ™~ '’"% Therefore, 75, has been estimat-
ed from a semilog plot of g (¢) vs ¢ over a window of good
linear behavior. Again the g (¢) vs ¢ behavior is similar to
that in the monodisperse system. Numerical values of 75 are
given in Table II, row four.

The matrix chain length dependence of the diffusion co-
efficient D and the terminal relaxation time 7 of the probe
chain are shown in Fig. 2. The change of D in the range of n,,
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FIG. 1. Comparison on a log-log plot of the single bead autocorrelation
function g(¢) (diamonds) and the center-of-mass autocorrelation function
8cm (1) (circles) vs time for the case of n, = n,, = 100 (solid symbols) and
np = 100, n,, = 800 (open symbols), respectively.

=50 to n, = 800 is rather moderate. Presumably the
n = 800 case is close (as far as the probe chain dynamics is
concerned) to the n,, — oo limit. This conjecture is based on
the comparison of the self-diffusion coefficients of n = 100
and n = 800 polymers at ¢ = 0.5 which differ by about two
orders of magnitude. (D for n = 800 is about 2.0 1075.2%)
Comparison of the present computer studies with the
real experiments of Antonietti ez al. on photolabeled polysty-
rene in matrices of various degrees of polymerization'® and
the related experiments of Green et al.'* suggest that our
choice of n, = 100 corresponds to a relatively high degree of
polymerization, 7, (PS), of real polymers. This very qualita-
tive statement results from mapping the MC results onto the
experimental curves obtained for various fixed values of
np (PS) as a function of changing the degree of polymeriza-
tion of the matrix. Namely, using the n, = n,, case from the
MC dynamics as a reference state, we compared the relative
change of the diffusion coefficient D in the range ny, = np/2
ton,, = 8 np. The best agreement is obtained with the high-
est degree of polymerization studied in Ref. 16 where
np(PS) =960. A similar value for np emerges from com-
parison with the data of Green et al."* From the plateau
modulus for the polystyrene melt, the critical entanglement
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FIG. 2. Matrix chain length dependence of the diffusion coefficient D (solid
diamonds) and the longest relaxation time 7 (open diamonds) of a probe
chain of np, = 100. The lines are an arbitrary interpolation of the MC data.
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length may be estimated as n, (PS) = 174. Therefore, the
number of entanglements in the real experiment equals
960/174 = 5.5. This value nicely coincides with that esti-
mated for our model system (100/17) = 5.9, at the density
¢ =0.5.

These analogies to the real physical system are not, how-
ever, as faithful as might appear at first glance. The cubic
lattice model melt of monodisperse polymers at ¢ = 0.5 does
not yet exhibit the D ~n~2 behavior when n, = n,, = 100,
but rather is in the crossover regime (D ~n~'%). The onset
of “melt dynamics” (D ~n~?) has been seen for the higher
degrees of polymerization, namely n>216. However, real
polystyrene melts in range of n(PS) = 960 seem to be well
into the D~n~? regime.'>'® The question of how serious is
this discrepancy can perhaps be clarified in a series of com-
putational experiments that vary n, over a wide range of
values with fixed n,,. Unfortunately, this kind of simulation
appears to be much more expensive due to the necessity of
keeping the volume fraction of probe polymers low. Thus,
one must run a very long trajectory on a large system to
obtain satisfactory statistics.

The aforementioned observations may, in fact, result
from some ambiguity in matching the volume fraction of the
model chains in a lattice system with the density (and/or
temperature) in a real polymer melt. It is well known that
the critical chain length of the crossover to D ~»n~2 dynam-
ics is temperature dependent, and there is even some evi-
dence that the exponent itself seems to vary with tempera-
ture prior to the crossover to long chain dynamics.'® If one
considers the fact that every critical dynamic crossover
(with increasing chain length, and/or with increasing tem-
perature) in model lattice systems appears to be somewhat
smoother than that obtained from experimental studies,®"®
there may be some differences in the scaling behavior of D in
the vicinity of the cross-over transition. Therefore only
qualitative agreement with experiment should be concluded.

The character of motion of the probe chain can be ana-
lyzed in more detail by decomposing the chain contour mi-
gration into the reptation component (down the chain) and
the remaining, locally, tranverse displacement. This is done
by the method previously described in paper I. First, the
chain is transformed into the equivalent smooth path, where
every original bead is replaced by the center-of-mass of the
blob of ny = 17 beads (the bead under consideration is the
middle one for such a blob when one counts down the
chain). The value of ny; = 17 is a conservative estimate of
the static screening length of the excluded volume at ¢ = 0.5
(see Ref. 23). Second, the middle quarter of the equivalent
chains are used to compute the distance of longitudal dis-
placement represented by the shift factor (i —j) for a given
probe molecule as a function of time. Therefore, the repta-
tion component

g () =13((7=)?), 3)
with the bar denoting the average of i — j over a single chain,
the brackets denoting the ensemble average over all the
chains. /3 is the mean-square persistence length of the
equivalent chain; it is a function of the chain bond length,
geometry of the chain, density, and n; (/2 = 0.103). The
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remaining component of the motion of the equivalent chain
g, (2) is not reptation-like and is computed for the middle
half of every probe chain.

As shown in Fig. 3(A), similar to a monodisperse melt,
the dependence of g, (¢) /g (¢) on time first exhibits a fast
decrease on the distance scale in the range of a blob diameter
or less, then monotonically increases, thereby demonstrat-
ing the nonexistence of a fixed tube surrounding the chain.
Probably some additional information may be extracted
from the comparison of log-log plots of g, (¢) and g (2) vst
with theoretical predictions. As can be seen in Fig. 3(B),
where we plot g, (¢) and g, (¢) for a chain of n, = 100 with
n,, = 800 there is a significant preference for tranverse, non-
reptation-like motion that increases with increasing time.
Actually, the g, (#) component accounts for most of the
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FIG. 3. (A) The course of g, (¢)/g; (¢) vs time of the computer experiment
for the case np = 100, n,, = 800. (B) Log-log plot of the mean-square-
displacement of the longitudinal component of the beads of the equivalent
chain g, (#) (lower curve) and the tranverse component g, () (upper
curve) vstime ¢ for the chain of n, = 100in a matrix of n,, = 800 chains at
a total ¢ = 0.5. See the text for more details.
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chain motion. The course of g, (¢) is consistent with Rouse-
chain, /2, motion? of a single bead over the range g, (¢)
< {S?) and then smoothly crosses over into the free diffusion
t regime (the center-of-gravity motion asymptote is marked
in upper part of the plot).

The motion down the chain is more complicated. At
very short distances [note that g (#) is considerably less
than g, (¢) even here] there seems to be free motion of the
blob. Since the relevant distance scale is below the blob di-
ameter, the connectivity effect is not yet felt. Hence, due to
the averaging procedure we performed over the ngy = 17
units of the original chain, the blob moves as a free “chain.”
At longer times, instead of the ¢ /2 behavior expected for a
one-dimensional (in the local curvilinear coordinates)
Rouse chain, we observe a much slower motion behaving
like 7 with the approximate exponent ¥ = 0.25. The small
value of y reflects the very strong damping of motion of the
“defects” down the chain contour, in strong contradiction to
the reptation picture.! A possible explanation is the fact
that due to fluctuations of polymer density (on the blob size
scale), the hypothetical tube is also partially filled with the
segments of other chains. If this is true, then there is no
reason to assume that entanglements more effectively slow
down the transverse motion in comparison with the longitu-
dinal motion of the entire chain. The substantially slower, in
comparison with reptation theory, longitudinal motion,
when compensated by the significant lateral fluctuations of
the chain contour, may lead to a similar phenomenology for
the transport coefficients as provided by reptation theory in
spite of a completely different microscopic physical picture
of the motion.

To further buttress the above characterization of the
probe dynamics, in Figs. 4(A) and 4(B) we present a com-
parison of the motions of equivalent chains in the monodis-
perse melt with n = 100, and a probe chain of 7, = 100in a
n,, = 800 melt. The thin curve depicts the equivalent path at
zero time and the bold curve depicts the equivalent chain
configuration at times close to the terminal relaxation time.
Qualitatively, the motion in both cases is very similar. Large
scale transverse fluctuations are evident and little memory of
the original primitive path is seen. Clearly, in both cases the
probe chain is not reptating.

We hasten to add that we cannot exclude the possibility
of the onset of reptation for very long chains (large n, and
n,. ). However, if this is true then the magnitudes of the
various correlation lengths currently predicted from repta-
tion theory must be reconsidered. Certainly, if there is some
dynamic (topological ?) limit to the relative extent of the
lateral fluctuation of the polymer contour, it must be at least
an order of magnitude larger than the static screening
length.?"2®

V. DISCUSSION

The present MC study of the behavior of a cubic lattice
chain composed of np = 100 lattice “monomers” in various
monodisperse matrices, where n,, varied from 50 to 800 and
at fixed total volume fraction of polymer ¢ = 0.5, does not
provide any evidence for a transition from Rouse-type chain
dynamics to reptation dynamics of the probe chain over a
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FIG. 4. The comparison of the motion of equivalent chains in the monodis-
perse melt n = 100 (A) and in the case of n, = 100, n,, = 800 (B). Inboth
cases, the thinner line corresponds to the initial time, the bold curve
(formed from filled circles) to the time close to the relaxation time (when
gx (2) decays to 1/e of its initial value); # = 6 X 10° time steps in (A), and
8% 10° steps in (B). (A) shows the full size of the MC box, while (B) dis-
plays only 1/8 of the MC-box volume in order to maintain the similarity of
scales with respect to the n = 100 chains.

broad range of n,,. The time course of the single bead auto-
correlation function and the center-of-mass autocorrelation
function exhibit only a small quantitative variation with the
change of chain environment. Since the probe polymer, with
np = 100, is itself sufficiently long to be close to the cross-
over regime where the dynamics are characterized by
D~n~2, and on other hand, the self-diffusion coefficient of
the longest matrix chains n,, = 8001is, at ¢ = 0.5, about two
orders of magnitude smaller than that for n,, = 100, one
might expect quite a strong cage effect. However, this is not
observed in the simulations. Moreover, the large ratio of the
diffusion coefficients of probe chain to that of matrix for the
most extreme case studied here (n,, = 800) strongly sug-
gests that it is very unlikely that any further increase of n,,
will change the physical picture of the motion of the probe
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chain in the melt. Of course, what may happen when one
significantly increases both n, and n,, is an open question.
Why chains of length n, = 100 do not reptate is easy to
explain if one considers the character of motion of the long
chains. As was shown in our studies of the monodisperse

melt,”® while the self-diffusion coefficient in the range

n=216-800 at ¢ =0.5 is qualitatively consistent with
D~n—?, there is no apparent evidence of a well-defined
memory of the chain configuration (a tube) that is required
for reptation-like motion to dominate. On the contrary,
large lateral fluctuations of the primitive path as a function
of time are observed. The amplitude of these fluctuations,
and what may be more important, their frequency, are suffi-
cient to create changes in the topology of the chain entangle-
ments which allow the shorter chains to diffuse without fol-
lowing the motion of the matrix chain. The above
description is further supported by the observed damping of
the down chain motion of the defects characteristic of the
reptation mode. As a result, the motion of the probe chain is
basically Rouse-like, albeit slowed down. On the other hand,
the observed dependence of the probe diffusion coefficient
on matrix chain length seems to be in reasonable agreement
with experimental data. To some extent, the behavior of the
present lattice model may be similar to that deduced from
real experiments in the “tube formation”!®'® regime, with,
however, here the complete absence of any evidence for a
tube. A more precise idea of the range of n required to go
beyond this regime (to see if a longer chain, “‘reptating re-
gime” in fact exists) would require simulations on a longer
(a series of 7, ) probe chains. This is unfortunately beyond
our present computational resources. However, present ex-
periments with n, = 100 when combined with the observed
lack of tube memory in a melt of n = 800 matrix chains
strongly suggest the possibility that nonreptating motion of
the shorter probe chain in a matrix of longer chains would be
expected to persist for significantly larger values of 7, and
that perhaps there is no physically realizable regime where
reptation is the dominant motion.

The results of the present MC experiments taken togeth-
er with our previous studies of lattice systems®**?® of long
polymers packed at high density may be summarized as fol-
lows.

(1) The experimentally measured features of polymer
melt dynamics, namely D ~n ~2%%2 (7, ~n>*£%2) may be
qualitatively reproduced in these computer experiments on
well defined lattice models. There is no evidence for the exis-
tence of a time scale separation of the longitudinal and trans-
verse motion of the chain contour. Thus, we do not see the
onset of reptation as the dominant mode of long wavelength
motion.

(2) The computer simulations confirm the microscopic
picture provided by reptation theory when the separation of
time scales of the test chain and the surrounding matrix is
enforced by a fixed, nonrelaxing cage®®?”**3? (that is, mo-
tion in a frozen or partially frozen environment or a gel).

(3) There is no evidence for reptation of a short chain
(whose length is close to the regime of entangled melt dy-
namics characterized by D ~n~2) in a matrix of long chains.
Presumably the MC results are consistent with the existence
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of what has previously been denoted by the “tube formation”
regime.'S However, unlike the picture provided by reptation
theory, neither the probe chain nor the matrix chains rep-
tate. Increasing 7, to values where D~ n 2 will further clar-
ify the character of the dynamics beyond the crossover re-
gime. However, further, even qualitative, MC studies of sig-
nificantly longer polymers would be extremely difficult. Due
to the relaxation time scale already reached (75 ~n**) in
the “crossover” regime, the cost of computation increases at
least as n* when one takes into consideration the necessary
increase in the number of chains. Finally, further real experi-
ments in the crossover regime when D changes from n~! to
n~? scaling are called for, and the width and smoothness of
the crossover needs to be better established. Based on the
MC simulations reported here a smooth rather than abrupt
change in the scaling exponent is expected.

(4) This series of computer experiments on lattice sys-
tems indicates that the situation in a polymer meit (mono-
disperse, or bidisperse) where the transverse motion of the
cage (the surrounding media) is small in comparison to the
longitudinal motions of the entire polymer (a fundamental
requirement for reptation) is very unlikely.

(5) Regardless of whether reptation subsequently
emerges as the dominant motion in the limit of “very long
chains,” these computer simulations strongly suggest that
the various dynamic correlation length scales need to be re-
considered. Over a wide range of chain lengths and densities
(in various lattice models studied) estimates of the number
of entanglements per chain lead to results which contradict
reptation theory''°2?; namely, every theoretically calcu-
lated critical number of entanglements predicted to be suffi-
cient to observe the onset of reptation appear to be signifi-
cantly too low, i.e., the MC chains should have long since
passed into the pure reptation regime and yet in reality they
have not.

Finally, let us exercise the following words of caution. A
broad class of simplified mathematical models of polymer
solutions and melts comprising lattice and off-lattice ap-
proaches seem to be consistent with physical models consid-
ered by various theories of polymer dynamics. However,
there is always a chance that some important features are
missed. For example, one may ask if a preference for local
parallelism of semiflexible chains or even the fuzzy domain
structure® in the polymer melt could result in a kind of local
cooperativity of motion which exerts an important influence
on longer distance dynamic correlations. Due to the extreme
complexity of the polymer many body problem, many of
these questions remain to be addressed.
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