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Synopsis 

Dynamic Monte Carlo studies have been performed on various diamond lattice models of 
8-proteins. Unlike previous work, no bias toward the native state is introduced; instead, the 
protein is allowed to freely hunt through all of phase space to find the equilibrium conformation. 
Thus, these systems may aid in the elucidation of the rules governing protein folding from a given 
primary sequence; in particular, the interplay of short- vs long-range interaction can be explored. 
Three distinct models (A-C) were examined. In model A, in addition to the preference for trans 
(t)  over gauche states (g' and g - )  (thereby perhaps favoring 8-sheet formation), attractive 
interactions are allowed between all nonbonded, nearest neighbor pairs of segments. If the 
molecules posses a relatively large fraction of t states in the denatured form, on cooling 
spontaneous collapse to a well-defined 8-barrel is observed. Unfortunately, in model A the 
denatured state exhibits too much secondary structure to correctly model the globular protein 
collapse transition. Thus in models B and C, the local stiffness is reduced. In model B, in the 
absence of long-range interactions, t and g states are equally weighted, and cooperativity is 
introduced by favoring formation of adjacent pairs of nonbonded (but not necessarily parallel) t 
states. While the denatured state of these systems behaves like a random coil, their native 
globular structure is poorly defined. Model C retains the cooperativity of model B but allows for a 
slight preference of t over g states in the short-range interactions. Here, the denatured state is 
indistinguishable from a random coil, and the globular state is a well-defined /%barrel. Over a 
range of chain lengths, the collapse is well represented by an all-or-none model. Hence, model C 
possess the essential qualitative features observed in real globular proteins. These studies 
strongly suggest that the uniqueness of the globular conformation requires some residual sec- 
ondary structure to be present in the denatured state. 

INTRODUCTION 

The equilibrium transition from the denatured to the native state of a 
protein has sometimes been compared to the collapse transition of synthetic 
polymers.' In the latter case, when the temperature of an extremely dilute 
polymer solution is lowered, the polymer chains undergo a transition from a 
voluminous random coil to a dense globular state having a random distribu- 
tion of segments. For linear flexible macromolecules of finite degree of poly- 
merization, the transition is smooth and is poorly represented by an all-or-none 
mode1.2-6 However, there is theoretical'-'' and experimental12 evidence that 
increasing the stiffness of the chain backbone leads to a substantially steeper 
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transition. Compared to the case of synthetic polymers, the conformational 
transition in proteins is much more complicated. The low-temperature "na- 
tive" state has a unique structure comprised of stiff pieces of a-helices and/or 
P-sheets joined by more flexible bends whose tertiary structure is determined 
by the sequence of amino acids in the polypeptide chain; for the smaller 
proteins the transition has an all-or-none character.13-15 Various aspects of 
the equilibrium globular protein folding process, even in the framework of 
phenomenological theory, are still far  from understood, and the most challeng- 
ing problem in predicting the tertiary structure on the basis of the protein's 
primary structure remains ~ns01~ed. l~.  l6 

Computer simulations on model systems may be very helpful in elucidating 
the qualitative factorsthat specify the native structure. More exact methods, 
e.g., molecular dynamics applied to a realistic model of polypeptide chains, are 
feasible only in very limited cases (see, for example, Refs. 17-19). This is 
because of the large separation of the native and denatured states in phase 
space, the large number of intervening local minima on the free-energy 
surface, and the large number of degrees of freedom that must be treated. 
Thus, the simulation of the entire folding process by this method without 
a priori invoking some aspect of the native structure seems at  present f a r  
beyond existing capabilities. Therefore, during the last decade, Monte Car10 
(MC) methods have been applied to simplified models of real proteins in order 
to explore the equilibrium folding from the denatured to the native state and 
vice versa. The works of Go et a1.,20 Krigbaum and Lin,21 Miyazawa 
and J e n ~ i g a n , ~ ~  and Segawa and K a ~ a i ~ ~  are representative. However, even in 
these idealized models it is necessary to introduce a specific biasing toward the 
native state in order to make the problem computationally tractable. Never- 
theless, much useful information has been extracted from these simulations. 
For example, the relative role played by short- and long-range interactions in 
the dynamics of folding process, and the importance of some initial nucleation 
of secondary structure in the denatured state to the finding of the native 
Structure, have been discussed."-21 

In this context it seems important to investigate models without employing 
a global potential and/or an a priori defined target native state, but rather 
where the model system is allowed to freely hunt over the entire configura- 
tional space to ultimately find the native state. It is hoped that this approach 
will give us some insight into the role of long- and short-range interactions as 
well as the influence of topological constraints on the folding equilibrium. 
Among the questions we address in present work are the following: What is 
the role of conformational stiffness (i.e., marginal secondary structure in 
denatured state) on the folding equilibrium? What makes the folding process 
more cooperative and what determines the all-or-none character of the transi- 
tion? Since the direct approach to the problem is achieved at the expense of 
employing a simplified model, all the conclusions are qualitative. Nevertheless, 
we believe the model developed here possesses many features of the equi- 
librium folding process seen in real proteins and may be considered to be a 
useful zero-order approximation to it. 

In the present work, we consider a very simple lattice model of a globular 
protein in which a hypothetical homoprotein chain is confined to the diamond 
lattice. Local conformational stiffness (which turns out to be responsible for 
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the formation of /&strands) is introduced by the slight a priori energetic 
preference for the trans ( t )  conformation over either of the two gauche 
conformations (g’ or g - ) .  Furthermore, a nearest neighbor square-well poten- 
tial is used in order to mimic the local nonspecific interactions within the 
model macromolecule. Additionally, we introduce a “long-range” coupling 
between the conformational states of nonbonded nearest neighbor chain 
segments separated by an appreciable distance down the chain contour; this 
latter effect is found to be required in order to reproduce some of the 
phenomena observed in the equilibrium folding process of globular proteins. 
In the present series of simulations, if the two nonbonded conformational 
states are t ,  these conformations are taken to be energetically stabilized. 
Physically, this represents the mutual stabilization of t conformational states 
by long-range interactions. The actual source of such long-range interactions 
may be due to hydrogen bonding, hydrophobic interactions between side 
chains, or salt-bridge formation. In the schematic model developed below, 
however, the long-range interactions are subsumed into a single energetic 
parameter E , ;  the purpose of the present series of simulations is to develop 
qualitative insight into the general nature of the folding process rather than 
to treat any specific protein. Finally, we might point out that, equivalently, 
one could bias the g +  or g -  states, respectively, to produce right- or 
left-handed a-helices. Such dynamic MC simulations on the folding of a-helices 
will be undertaken in the near future. Here, we limit ourselves to the 
somewhat simpler case of modelling /%barrel proteins. 

It should be pointed out that the present simulation model does not 
incorporate any specific biasing toward a particular “native” structure and 
therefore seems a well-defined equilibrium model in which the system itself 
choses the tertiary structure. The dynamics of the model system depends on 
the sampling method employed in MC process. As such it is rather artificial 
and thus not relevant to the dynamics of the folding process in real proteins. 

METHOD 

Description of the Model 

The model macromolecule consists of n beads confined to a consecutive 
sequence of diamond lattice vertices. The mutual orientation of the n - 1 
bonds requires specification of n - 3 conformational states. Three discrete 
conformations of every three-bond sequence are allowed, i.e., one t state and 
two gauche states. Thus, a single bond is represented as a vector of form 
= [ f 1 ,  f1, kl] where the bond length is Ill( = 3ll2. We take c g  as the 

energy difference between a t and either of the two g states. The hard-core 
part of local interactions between beads of the model chain is introduced by 
the a priori exclusion of multiple occupancy of lattice sites. The soft attrac- 
tive part of the short-range site-site interaction is taken to be of the form of a 
square-well potential of depth E , ,  whose width extends only to the nonbonded 
nearest neighbors on the lattice [see Fig. l(A and B)]. Additionally, the 
possibility of local coupling between the nearest neighbor nonbonded confor- 
mational states is described by the parameter z, and leads to the dependence 
of the attractive energy on the rotational degrees of freedom. The idea is 
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Fig. 1. Schematic representation of the conformation of a model macromolecule illustrating 
the coupling between the nearest neighbor interactions and the local chain conformation. 

schematically depicted in Fig. l(C) in which trivial permutations of gt P tg 
are omitted. Observe that the strength of the interaction is not a p i o n  
dependent on the mutual orientation of the two parts of the chain under 
consideration. Thus, the total configurational energy of a given conformation 
of the model chain is the following: 

where = 1 for the t state of the rotational degree of freedom associated 
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with the i th  bond ( f,,i = 0 for a g state or for end bonds, i.e., when i = 1 or 
i = n - l), S is the Dirac delta function, rij is the distance between the beads 
under consideration, I I is the lattice spacmg equal to the length of a bond, 
and $ is the symmetry factor. According to the above definition of the 
configurational energy, the reference state (with energy E ,  = 0) corresponds 
to an isolated chain in the fully extended all-trans conformation. Another 
possible choice of reference state is the self-avoiding random coil at  infinite 
temperature. In the last case Ed # 0, provided that at least one of the 
energetic parametem-c,, ca, or c,-is nonzero. 

While in principle c,, ca, and cc could be site dependent, in the simulations 
described below we assume that they are site independent for several reasons. 
First, in exploring the properties of this class of models we wish to keep the 
number of adjustable parametem to a minimum. Second, and of greater 
importance, is our wish to explore whether or not relatively unique tertiary 
structures can be formed in the absence of site-specific interactions, and if so, 
what are the requirements for the formation of such structures? Thus, we 
view these simulations as computer experiments designed to help elucidate the 
general rules of protein folding. 

Sampling Procedure 

In order to estimate the average properties of the model macromolecule at  a 
given temperature, a dynamic MC method was used to generate a long 
sequence of equilibrium states.25 The following set of elementary micromodifi- 
cations of the chain conformation have been employed: 

1. Reptationlike motion of the chain backbone involving the clipping-off of 
one segment at one of the chain ends, which is then added to the opposite end 
in a randomly selected direction [see Fig. 2(A)]. 

2. Random reorientation of the two bonds at the chain ends [see Fig. 2(B)]. 
3. Three-bond kink motion [see Fig. 2(C)]. 
4. Four-bond kink motions that create new conformations in the inner part 

of the chain [Fig. 2(D)]. 
The sequence of attempts to make a particular kind of motion was selected by 
a random method. For some computations, the entire set of elementary moves 
listed above have been employed. However, because reptationlike motions are 
the most efficient at  sampling phase s p a ~ e , ~ ~ , ~ ~  the majority of the results 
discussed below have been obtained by simplified algorithms involving only 
reptation moves and chain end reorientation. The direction of the slithering of 
the chain down its contour was kept unchanged until the first unsuccessful 
move, after which the slithering was switched to the opposite direction. The 
motion of chain ends was randomly mixed with reptation. 

Every micromodification was accepted according to the standard Metropo- 
lis criterion. If Eold is the configurational energy of the system in a given state 
and En, is the energy of the new trial one, then the probability of acceptance 
of an attempted move is given by 

Thus, the distribution of energies of the generated states tends to a Boltz- 
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Fig. 2. The elementary modifications of the chain conformation on the diamond lattice 
employed in the MC algorithm. 

mann distribution, and therefore the ensemble average of a quantity could be 
estimated from the simple arithmetic mean. For example, the mean energy of 
the system (E) is computed as 

M 
( E )  = M-' c Ei 

i=l  
(3) 

where M is the number of cycles of MC algorithm. Similarly, the average 
fraction of t states, ( f,), follows from 

M n - 2  n -2  

f t = M - ' ( .  - 3 r 1  c c f t , j =  (. - 3 F 1  c ( f t , j )  (4) 
i=l  j = 2  j = 2  

and the average number of nearest neighbor nonbonded pairs (which is 
equivalent to the frequency of occupation of the sites in the first coordination 
sphere by other nonbonded beads for the lattice under consideration), (Y), is 

M n  
(Y) = 2 M - ' [ ( q  - 2 ) .  + 21-' C c ym,i (5) 

m=l i=l 

where vm,i is the number of bead-bead interactions at site i in the mth 
chain. ( q  - 2)n + 2 is the coordination number of the macromolecule, with 
q = 4 the coordination number of the diamond lattice. Very long sequences of 
states have been generated (i.e., M is large) for the purpose of estimating the 
various average properties. For the smallest systems, the number of MC 
iterations was in the range of lo6 and for the largest systems M ranged from 
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107-108, with the particular value of M depending on the algorithm and 
temperature. 

The question arises as to whether the above procedure, employing only 
reptationlike steps, is ergodic, and whether the algorithm really samples the 
entire confi.gurational space. The following facts suggest that the method 
employed here leads to a “correct” estimation of the equilibrium properties. 
First, there seems to be no difference between the results (based upon tests on 
smaller systems) obtained with various sets of elementary motions. Second, 
the cooling-heating sequences of computational experiments give statisti- 
cally the same results, independent of the initial state and the seed used in the 
rar Jom number generator. Furthermore, the flow charts for very long runs do 
nc+ exhibit any systematic trends, except for the oscillations (discussed later), 
which are typical of two-state models in the vicinity of the transition temper- 
ature. However, one must exercise some caution concerning the results of the 
sampling efficacy at  temperatures well below the observed transition to the 
globular state. Subsequent to the formation of the native structure, the entire 
set of elementary motions listed above becomes less a& less effective in 
sampling phase space. Hence, at low temperatures we cannot exclude the 
possibility of more substantial changes occurring in the configuration of the 
system than those observed in the present computer experiments. In other 
words, the algorithm may exhibit some deviation from ergodicity well below 
the transition temperature due to the slowing down of the evolution of the 
system, which is presumably related to the increasing local free-energy barrier 
in configurational space. It also should be noted that a reptationlike procedure 
can be safely used only in the absence of differentiation of the particular 
segments of the chain molecule-i.e., every bead must be identical. This 
condition holds in the present model of a homopolymeric molecule. The study 
of the folding process of nonhomopolymeric protein models with a specific 
primary structure requires an algorithm that allows for an efficient change of 
register of interactions between the various kinds of protein segments. The 
details of this calculation will be reported in the near future. 

RESULTS 

The Collapse of Semiflexible Polymers with c, = 0 

The results of a study of the collapse transition of semiflexible polymers 
(cg # 0 and E ,  # 0) without cooperative interactions (model A) have been 
recently r e p ~ r t e d . ~ ~ . ~ ~  Although the observed collapse to a well-defined ordered 
structure resembling a P-barrellG has many features in common with the 
equilibrium folding process of globular proteins, there are also some major 
differences. First of all, the denatured state of the model system exhibits too 
much ordering on the local scale just prior to the transition to the native 
structure in comparison with that seen in real protein sy~ tems . ’~ .~  Moreover, 
only in the case of significant stiffness prior to the transition does the 
low-temperature state exhibit specific global ordering in the form of a p-bar- 
rel. These polymers exhibit an increase of the random-coil dimensions with 
decreasing temperature, and in this case the sharp collapse transition seems 
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consistent with the two-state mode1.2-6 However, if the flexibility of the 
model chain exceeds a critical value, the c o l l a p  is smooth and second order, 
with a crossover regime whose width depends on the degree of polymerization 
and is poorly represented by a two-state model. 

From these previous studies, it  appears evident that an important aspect of 
protein folding, presumably related to the cooperative character of intramo- 
lecular interactions, must be added to the model. Therefore, the present 
simulation focuses on the effect of coupling between conformational stiffness 
(or secondary structure) and the strength of the long-range interactions 
between the chain units. In this way, it is hoped that the more cooperative 
character of the folding process can be taken into account. 

The System with Only Cooperative Interactions: cg = ca = 0, c, # 0 

Model B has no intrinsic local conformational stiffness; i.e., in the absence 
of long-range interactions, all the rotational isomers (g', g-, and t) are 
a priori equally weighted; however, the excluded-volume effect (hard core 
site-site repulsions), with the resultant expansion of the chain in the athermal 
system, produces a slight biasing towards the trans conformation. The only 
"soft" attractive interactions result from the coupling between isomeric states 
of adjacent nonbonded pieces of the chain [see Fig. l(C)]. Hence, on setting 
E ,  = 0, cg = 0, and c, # 0, the possibility of long-range intrachain interactions 
arises only from cooperative interactions in the Hamiltonian [see Eq. (l)] of 
the system. In this sense the present case is opposed to that for semiflexible 
polymers (model A) with both c g  and c a  nonzero, but with E ,  = 0. Therefore, 
one might expect to see qualitatively different features in the collapse transi- 
tion. 

Figure 3 shows the behavior of various properties of the model as a function 
of the reduced temperature kBT/c,. In Fig. 3(A), the expansion factor at of 
the mean-square radius of gyration (S2) with 

for chains of length n = 200 (400) in the open (solid) diamonds is presented. 
( S 2 )  is defined by 

i n  

and ( S t )  is the ideal rotational isomeric state value. Using the Flory method,31 
(S,") = 197.8 for the n = 200 case and (S,") = 397.8 for the n = 400 case, 
respectively. One can observe a sharp transition from a voluminous random 
coil to a dense globular state. 
As shown in Fig. 3(B), the average fraction of trans states in the chain is 

almost temperature independent over a wide range of kBT/E, and then 
increases sharply when the collapse occurs. Observe, however, that there is 
still a substantial fraction of g bonds in the dense globular state. Further- 
more, as shown in Fig. 3(C), the average number of nearest neighbor pairs, 
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Fig. 3. Temperature (kB!/'/cC) dependence of the average chain properties for model B, 
n = 200 (open symbols) and n = 400 (closed symbols). (A) Expansion factor a: = (S2)/(Sb2); the 
arrows indicate the results for a self-avoiding random walks (SAWS; see ref. 37). (B) Mean 
fraction of trans states ( f,). (C) Mean number of nearest neighbor pairs per bead, (P). 

(Y), (contacts of nonbonded beads) also increases rapidly in the vicinity of the 
transition. The transition, although very sharp, seems continuous for any 
reasonable number of polymer segments n; the transition temperature in- 
creases with increasing n in the range of chain length under consideration. We 
have not analyzed the asymptotic n + 00 character of the transition. 

The first conclusion that can be drawn from the comparison of the two 
models (model B with c, = cg = 0, and c, # 0 vs model A with cc = 0, c, + 0, 
and cg # 0) is that the inclusion of cooperative interactions alone does not 



946 KOLINSKI, SKOLNICK, AND YARIS 

(C) 

0 . 8  

0 .6  
A 
> 
V 

0 . 4  

0 . 2  

0 n- 200 

+ n = 4 0 0  

0 . 0  L- 
1 2 3 I-1 5 

kBT/c,  
Fig. 3. (Continued from the previous page.) 

lead to any secondary structure (e.g., an appreciable fraction of isolated 
stretches) in the high-temperature, random-coil state. In the denatured state 
in model B, unlike in model A, there is no increase of ( f , )  during the 
“cooling” of the system over a wide temperature range. Furthermore, in model 
B the coil dimensions (S2)  decrease rather than initially increase with 
decreasing temperature as in model A. The transition is considerably steeper 
than that for the flexible polymers (cg = 0, ca = O)32-34; however, it  is not so 
sharp as that for stiff polymers (cs  # 0, c g  # 0) with lcJcal  > 2 and a 
moderate number of segments. Since there is no significant reduction of the 
available conformational space in the random-coil state of model B, the degree 
of the order induced by the collapse is not sufficient to produce a unique 
tertiary structure in the globular state. Finally, as seen in the snapshot 
projections of representative configurations of chains with n = 100, n = 200, 
and n = 400, respectively, in Fig. 4(A-C), the extent of ordering in the 
collapsed state is local and rather moderate. That is, there is no well-defined 
unique native state. In Table I, we compare some properties of the folding 
equilibrium observed in model A and model B, respectively. 
The above results show that cooperative long-range interactions in the 

absence of intrinsic local chain stiffness can produce a sharp transition from 
an essentially random-coil state to a dense globular state having marginal 
local order, whereas globular proteins have an essentially unique tertiary 
structure. Therefore, it appears that a model incorporating both local con- 
figurational stiffness as well as cooperative interactions might exhibit more 
featma of the conformational transition of globular fl-proteins. Based On 
models A and B, the first property, local stiffness, operating in conjunction 
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A n=100 

Fig. 4. Snapshot configurations of the collapsed structure for Model B (c, = 0, cg  = 0, c, # 0) 
for various chain lengths. (A) n = 100, (B) n = 200, (C) n = 400. 
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TABLE I 
Comparison of Properties of the Folding Process in Models A and B 

Model A Model B 
I I = 1/4, cC = 0 E, - Eg = 0, C‘ # 0 Properties at 

transition n=200 n=400 n=200 n=400 

Ea/kBTor ec/kBT 0.55 0.50 0.5 0.45 
(fJ 0.818 0.786 0.409 0.401 
( fdb 0.911 0.900 0.568 0.594 
(v>” 0.0373 0.0395 0.1372 0.1485 

(nJ4‘ 10.4 8.5 2.41 2.34 
(n t >bp 35.1 34.6 4.90 5.52 

( v > b  0.4643 0.4991 0.4676 0.5285 

“Random-coil state, just prior to the transition (or at the transition). 
bCollapsed state, just after (or at the) transition. 
‘Weighted average length of t stretches. 

with intrachain cooperativity, seems responsible for the substantial ordering 
of the globular state. This kind of model (model C) Is analyzed in the next 
section. 

Semiflexible Chain Model with Cooperative Interactions 

The Character of the Transition 

In the following we focus on the properties of our candidate model of a 
globular protein-model C-which should possess all the qualitative features 
of protein folding; namely, the case where both cc and cg are nonzero. Before 
discussing the effect of varying the relevant parameters (chain length, stiff- 
ness, cooperative interactions, and noncooperative attractive interactions) on 
the properties of the random-coil denatured state, and the globular native 
structure, we begin by analyzing, in detail, the character of the transition (or 
folding equilibrium) itself. This is done for the case of a chain having n = 200 
with a degree of intrinsic stiffness cc = ~ $ 4  and without any attractive 
interactions between nonbonded nearest neighbors (6, = 0). In Fig. 5(A-E) 
the values of (S2) , ( f t ) , (v ) ,  the heat capacity C,, and the energy E are 
plotted against the reduced temperature of the system defined as kgT/cg.  
The solid diamonds correspond to the average results obtained from a series of 
computer experiments involving cooling-heating-cooling sequences, and the 
solid lines are drawn by an arbitrary interpolation through the solid di- 
amonds. For the case of (S2)  in Fig. 5(A), we also plot the “experimental” 
results obtained from a single cooling (or/and heating) sequence in the open 
diamonds. For every property under consideration, a narrow transition region 
is observed. In the vicinity of the apparent transition temperature T,, the data 
exhibit large scattering, with the characteristic features of a two-state model. 
Namely, we find for rather short runs (e.g., the data shown in the open 
diamonds for (S’)) that the observed measurements exhibit a bimodal distri- 
bution. Most of the observed properties are typical of that seen in the 
low-temperature globular state or in the high-temperature random state. Of 
course, in the limit of a very long MC run, one should observe a smooth 
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- (E)2) / (nk&T2) .  The solid triangles correspond to a single run in a sequence of decreasing 
temperature, and the open triangles are obtained from a heating sequence. The low-temperature 
peak is at kBT/c,  = 0.83 and the high-temperature peak is at kBT/cg = 1.04. Both should 
coincide in the limit of an infinitely long MC run. The estimated reduced transition temperature 
is k&/c, = 0.94. (E) Plot of reduced energy per bead E/c,n vs reduced temperature KBT/c,, 
for n = 200, c, = 0, and c, = c,/4. The solid diamonds correspond to ensemble averages, and the 
open diamonds are the results from shorter subruns where no transitions from the native to the 
denatured state or vice versa are otxserved. The estimated calorimetric energy change of transition 
is AE/c,n = 0.64. 
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crossover with the change of temperature; however, essentially two states 
contribute to the observed averages (whose relative weights are temperature 
and model dependent). 

The plot of energy of the system E m reduced temperature given in Fig. 
5(E) can be used to estimate the energy difference between the native and 
denatured states, AE,  which is equivalent to the “calorimetric” energy of 
denaturation. Assuming that the values of E obtained from shorter runs 
(when no transition from a low-temperature state to the high-temperature 
state or vice versa takes place) may be considered as a reliable extrapolation of 
the energy of both states, one obtains in the vicinity of the transition that 
AE/c,n = AE,.Jc,n P 0.64. 

Let us consider the equilibrium between hypothetical native and denatured 
States 

native (N) * denatured (0) 
(8) 

K = f D A 1  - fD) 

where fD is the fraction of molecules in the denatured state at equilibrium. 
From the Van’t Hoff equation, one obtains 

dfD AEW 

f D ( l  - fD) dT kBT2 
-- d(ln K )/dT = -- 

where AE, is the standard en- change (per molecule) going from the 
native (N) to the denatured state (D). In dimensionless units, the following 
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relationship is easily derived: 

If the transition has an all-or-none character, then the calorimetric energy 
should be exactly the same as measured from temperature dependence of 
equilibrium constant, i.e., AE,, = AEw,35*36 and essentially any property of 
the system could be used to estimate the equilibrium constant. Let us consider 
the temperature dependence of radius of gyration ( S 2 )  [Fig. 5(A)] as an 
example. At kBT/Cg = 0.909, which is in the transition crossover regime, 
( S 2 )  = 183.6. Assuming that two states contribute to the measured average, 
one obtains f D  1/3. Thus the slope dfD/d(KBT/~,) should be approxi- 

150 I I I I I I I I I I 

100 - ksTlCg= I 

0 4 8 I7 16 20  311 2 8  3 2  3 6  U O  

150 

I no 

.- 
d 

5 0  

0 

Time 

1 )  4 8 12 16  20  24 2 8  3 2  3 6  40 
Time 

Fig. 6. Single-run flow charts for the number of nearest neighbor pairs of segments in the 
chain, v ~ , ~ ,  in the vicinity of the transition temperature. (A) An example of a run above the 
transition temperature, kBT/r ,  = 1.0; (B) at the transition temperature, kBT/<,  = 0.909, and 
(C) below the transition temperature, kBT/c,  = 0.833. The numbers on the abscissa correspond 
to  successive “photographs” of the molecule, taken every 2.5 . lo5 iterations. 
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Fig. 6. (Continued from theprevwuspage.) 

mately equal to 34.4. Since d ( S 2 )  = ((S2),,,,,, - (SP)native) df, = 263 . 
df,, the slope of (S2) vs K B T / E ,  should be 9.05 - lo3; this is the value of the 
slope of the line drawn in Fig. 5(A) in the range of (S') between 100 and 300. 
Within the error of the sampling, the transition is consistent with the 
two-state model of protein This behavior is also exhibited by the 
other properties studied in the transition region. 

Additional and perhaps more compelling evidence for the two-state equi- 
librium character of the observed folding process comes from the trajectory 
analysis of the system's properties; flow charts of various properties of the 
model can be used for this purpose. In Fig. qA-C), the flow charts of the 
number of nearest nonbonded neighbors (per chain) are compared for three 
temperatures that are close to each other. A t  the highest temperature, 
KBT/cg = 1.0 [Fig. 6(A)], one can observe a small fluctuation of vn, I around a 
low average value, which is the proper one for a quasirandom-coil state. A t  the 
lowest temperature, K,T/E, = 0.83 [Fig. 6(C)], there are again relatively small 
fluctuations around the value typical of a high-density globular state. At  the 
intermediate temperature, KBT/cg = 0.91 [Fig. 6(B)], which is very close to 
the transition temperature, one can observe a period of low values or high 
values, within which are small oscillations about the mean that are then 
punctuated by sudden jumps between the two mean values; this corresponds 
to the dynamic equilibrium about the mean between the two states-dena- 
turd and native. For sufficiently long molecules (in the range of n = 100 and 
larger, depending on the degree of cooperativity assumed) the transition has 
an essentially all-or-none character. For shorter chains, the two-state behavior 
gradually washes out since the degree of uniqueness of the collapsed state 
becomes less. Interestingly, there is also a decreasing uniqueness of the 
high-density structure in the opposite limit of very long polymers; however, in 
that case the transition remains very sharp in spite of the possibility of 
formation of multiple domains in the low-temperature state. 

Taking the above observations into account, the transition temperature can 
be estimated as that point where the slope of the mean values of the various 
properties vs reduced temperature assumes its largest value, and this should 
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Fig. 7. 
c, = €,/2 

N 
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The temperature dependence of the expansion factor a:, for model 
at various chain lengths n. 

C, with c, = 0 and 

be very close to the temperature where the contributions to the average of the 
native and denatured states are equal. Direct application of the last criterion, 
however appealing, was not used due to the very large computational cost, 
when n is large, of preparing an equilibrium ensemble of mutually indepen- 
dent states close to the transition. Another complication could emerge from 
the art%cial dynamics of the model system. For the latter reason, we always 
performed several cooling-heating-cooling experiments in the vicinity of the 
collapse. 

Effect of Chain Length and Degree of Cooperativity on the 
Folding Equilibrium 

A measure of the degree of cooperativity introduced into the model is the 
value of the ratio cJcg,  where cg/kBT is taken to be the independent 
variable. At a fixed cJcg, we examined the effect of the chain length on the 
folding equilibrium. Representative behavior is displayed in Fig. 7, where the 
expansion factor a: is plotted vs reduced temperature, kBT/cg, for various 
values of n at fixed E J C ,  = 1/2. The reference state of a," is an ideal chain at 
infinite temperature (or cg = 0), i.e., a tetrahedral lattice RIS model.31 We 
found that the transition becomes steeper with increasing n. However, the 
uniqueness of the folded state is greatest in a loosely defined range of 
moderate values of n. The transition temperature migrates slowly towards 
higher values with increasing chain length; presumably there is a limiting 
value as n + 60. 

Similar behavior was observed when the cooperativity is lowered (i.e., for 
the chain of higher intrinsic stiffness). This is shown in Fig. 8, which differs 
from the previous figure in that the value of ratio c,/cg = 1/4 rather than 
1/2. Further increase of the chain stiffness leads to behavior very similar to 
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that exhibited by semiflexible polymers (model A, see section on the collapse 
of semiflexible polymers). As mentioned above, that model, with cc = 0, 
c a  # 0, and eg  # 0, possesses too much secondary structure (/%strands) in the 
high-temperature phase, just prior to the transition. As demonstrated in Fig. 
9, where the fraction of t states in various models is plotted against reduced 

1 . 0  

0 ,s  

A 

V 

c 
.+ 

0.6 

0.4 

Fig. 9. Comparison of the degree of stiffness reached prior to the transition in model A 
(ca = cg/4), open diamonds, and in model C ( fa = 0, cc = c8/4), solid diamonds, respectively. ( f,) 
is plotted for the case of n = 200. The arrows identified by A and C denote the reduced transition 
temperature in models A and C, respectively. The dotted line represents the ideal RIS model 
results. 
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Fig. 10. Effect of an attractive interaction on the collapse in model C with z, = 0 and c, = c,, 
respectively, in the solid diamonds and open circles. In both cases, c, = c,/4 and n = 200. 

temperature, this disadvantage has been eliminated in model C ( c c  # 0). The 
dotted curve represents the prediction for a RIS model without excluded 
volume, the open diamonds show f, from model A with c J c g  = 1/4 and 
c, = 0, and the solid diamonds depict f, from model C with c, = 0, cJcg = 1/4. 
One can note that the chain stiffiess reached just prior to the transition in 
the case of c, # 0 ( f, = 0.628) is substantially smaller than that of previous 
model with c, = 0 ( f, = 0.818). Thus model C possesses features similar to real 
8-proteins, where the degree of secondary structure of the denatured state is 
usually rather small. Therefore, we conclude that cooperative interactions are 
essential to reproduce the globular protein chain folding phenomena and can 
be qualitatively modeled in a very simple way. Some initial ordering, however, 
seems required to produce a well-defined tertiary structure. This can be 
achieved by introducing a small degree of intrinsic stiffness into the model. 
These locally ordered stretches appear to form the nuclei around which the 
well-defined globular structure forms, i.e., the system must have a predilection 
to form a /3-sheet in order to form the unique globular structure. The presence 
of a net noncooperative attractive interaction (E,) plays a rather marginal role 
in model C. However, a relatively strong attractive interaction can change 
some aspects of the details of the folding equilibrium quite a bit. An example 
is shown in Fig. 10, where (S2)  is plotted against reduced temperature 
kBT/cg, for the case of c, = 0 (solid diamonds) and c, = c, = cJ4 (open 
circles), respectively, with the same n = 200. Not surprisingly, the inclusion of 
an attractive interaction shifts the folding equilibrium toward higher temper- 
atures. As a result, the fraction of t states, and the coil dimensions, in the 
high-temperature state are somewhat smaller just prior the transition. How- 
ever the properties of the low-temperature, native state remain almost com- 
pletely unaffected. 
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TABLE I1 
Transition Temperatures kBT/cg for Model C for Various Chain Lengths and Conditions 

Model Parameters n = 5 0  n = 1 0 0  n = 2 0 0  n - 4 0 0  

c, = 0, c, = rg/2 1.11 1.33 1.53 1.60 

c, 0, cc = cg/8 - - 0.67 - 
E, - E, = €,/4 - - 1.18 - 

c, = 0, f, = Eg/4 0.65 0.87 0.94 1.05 

The transition temperatures for various systems under consideration (model 
C) are summarized in Table 11. 

The Structure of the Low Temperature State 

When the cooperative conformational intrachain interactions are included 
with some intrinsic stiffness (which models the “secondary” structure) we 
obtain a well-defined native structure after the collapse transition. There are, 
however, two caveats. First, semiflexible polymem (with cooperative interac- 
tions) without any site-specific flexibility (specific secondary structure) down 
the chain tend to give a constant length of 8-strands (which depends on the 
ratio cJcc). Therefore, very short polymers with a very low (2 or 3) number of 
8-strands in the ordered structure have too small an interaction energy to 
stabilize this structure. This is one of the reasons why, in the short polymer 

A nr50 

Fig. 11. &presentative configuration of the low-temperature states of model C (c, = 0, 
c, = cg/2). (A) n = 50, (B) n = 100, (C) n = 200, (D) n = 400. 
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Fig. 11. (Continuedfrom thepreoiouspage.) 

limit, the two-state picture of equilibrium folding washes out. The second 
caveat is relevant to the case of long polymers (say n 2 400) where a large 
number of 8-strands leads to the possibility of the arrangement of the 
low-temperature state in two (or perhaps more) domains, the mutual orien- 
tation of which pcmeses a certain degree of freedom. In spite of the above 
limitations, we find there is a broad range of chain lengths for every set of 
energetic parameters where the low-temperature state is very specific and 
resembles the 8-barrel structure seen in real proteins. In Figs. 11(A-D) and 
12(A-D), the projections of some representative examples of the native 
structure obtained from computer experiments with c, = ~ $ 2  and E, = ~ $ 4 ,  
respectively (model C), are shown for various numbers of structural units (n) 
in the model molecule. 

Some properties that specify the degree of uniqueness of the low-tempera- 
ture state are compiled in Table 111. The collapsed low-temperature structures 
depicted in Figs. 11 and 12, for n I 200 are unique in the s e w  that they 
satisfy a two-state folding model. That is, fluctuations in the structure that do 
OCCUT are transparent with respect to the thermodynamic properties. The 
n = 50 chains fold to a structure composed of 4 strands, each of essentially 
constant length, with very small fluctuations in loop size. Increasing the 
degree of polymerization tends to decrease the structural uniqueness and the 
two-state folding picture starts to wash out. However, even up to n = 200, 
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A no100 r / /  

Fig. 12. Representative configuration of the low-temperature states of model C (fa = 0, 
c, = c,/4). (A) n = 100, (B) n = 200, (C-D) n = 400 with an illustration of the possibility of the 
formation of multiple domains in case D. 

the bends remain tight and the mean length of a 8-strand is almost constant. 
Thus, the n = 50 chains indicate that very highly ordered structures can be 
formed in the absence of any site-specific interactions. To preserve the degree 
of structural uniqueness in the sense of the crystallographic location of each of 
the atoms with increasing n requires additional interactions to be incor- 
porated into the physical model. For example, one way of enhancing the 
degree of uniqueness might be to specify the location of the bends. 

DISCUSSION 

Since the simple tetrahedral lattice models of a globular protein described 
in present work lack site-specific interactions and yet yield well-defined 
tertiary structures, these MC simulations of equilibrium folding indicate that, 
contrary to popular wisdom,36 site-specific interactions are not a necessary 
condition for the formation of a well-defined, although for larger n not 
crystallographically unique, tertiary structure. On comparison of models A-C, 
the existence of some preordering in the denatured state prior to the transi- 
tion plays an important role in producing well-defined globular structures. In 
the case of model A, this preordering has to be relatively large when simple, 
nonbonded nearest neighbor attractions are the only long-range (down the 
chain) interactions considered, and the presence of substantial secondary 
structure prior to the transition is necessary to achieve an abrupt collapse to a 
8-barrellike state. When the chain stiffness is reduced (as required by real 
8-proteins in the denatured ~ t a t e ) , ~ ~ . ~  then the transition is smooth, and the 
collapsed state resembles a high-density random coil lacking global orienta- 
tional order of the chain segments. Therefore, there must be another factor@) 
that produces the cooperative folding to a well-defined globular structure and 
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D 0 n=400 

Fig. 12. (Continued from thepreviouspage.) 

yet preserves the random-coil character of the denatured state. It was demon- 
strated in model B that a simple model that couples the local nonbonded 
adjacent conformations leads to a very cooperative, sharp transition to a 
globular state. However, in the absence of intrinsic local chain stiffness, the 
global ordering of the low-temperature state is rather marginal. Thus in model 
C, a small degree of preordering in the denatured state was introduced. The 
presence of marginal conformational stiffness plus intrachain cooperativity is 
sufficient to yield a model that reproduces reasonably well the important 
characteristics of both the high-temperature and low-temperature s t a b  of 
globular proteins. The globular state is well defined, and yet the denatured 
state is essentially a random coil. These findings are indicative that some 
small but very important secondary structure in the denatured state may be a 
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TABLE I11 
Properties of the Low-Temperature State of Model C 

961 

n = 5 0  n =  100 n = 2 0 0  n = 400’ 

c, = 0, tc = Eg/2 
(Pz(Wb 
( f t )  

(n t )  

(PdQ) 
( f t )  

(nt)  

Number of /?-strands 
t, = 0, zc = t,/4 

Number of /?-strands 

0.37-0.65 
0.77( f 0.07) 
8.9( f 2.0) 

4 

0.73( f 0.02) 
0.82(0.01) 

4 
10.q f 0.9) 

0.42-0.60 
0.76( f 0.08) 

10.1( f0.07) 
4-8 

0.72( f 0.03) 
0.83( f 0.05) 

17.q f 5.4) 
4-6 

0.44( f 0.03) 
0.74( f 0.04) 

9-14 
11.4( 2.1) 

0.53( f 0.06) 
0 . q  f 0.02) 

12.3( f 1.3) 
8-12 

0.32( f 0.07) 
0.71( f 0.09) 
8.1( f 1.4) 

19-28 

0.44( f 0.09) 
0.78( f 0.01) 

11.9( f 2.3) 
18-24 

~~ 

“Two possible orientations of bundles. 
b(Pz(0)) = 1/2[3 < cw2(p,, p j )  - 13, where pt = I ,  + I , , , .  

necessary condition for the uniqueness of the tertiary structure. Finally, 
provided that the chain length is moderate, the folding transition is consistent 
with a two-state model and a ,&barrellike native structure emerges. On 
increasing the chain length, just as in the case of real ~roteins,~‘ the formation 
of multiple domains is observed. 

At this point it is instructive to compare the results obtained here with 
experiments on homopolymeric polyamino (acids).% First, these systems are 
all at infinite dilution; thus we need not worry about structures formed on 
aggregation. In contrast, homopolyamino acids such as poly(1ysine) almost 
always aggregate on 8-sheet formation; the structure at infinite dilution may 
or may not resemble those studied here, but in any case the aggregated state 
tells us nothing about what happens when quaternary interactions are turned 
off. Moreover, a problem with real homopolyamino acids is that highly 
8-forming residues tend to be rather hydrophobic.16 Thus, in homopolymeric 
form they would either precipitate from solution or aggregate. What must be 
recognized is that the interaction we employed represents an average over 
both hydrophobic and hydrophilic residues that produces an equivalent 
potential of mean force between groups, much as average interhelical interac- 
tions parameters have been employed to mimic both salt-bridge and hydro- 
phobic interactions in coiled coils.38 The potential of mean force employed 
here as a function of temperature ensures that the random-coil state is the 
equilibrium high-temperature state and the collapsed state favors 8-sheet 
formation. Hence, rather than viewing the model proteins as  being literally 
homopolymeric, they are in reality the equivalent homopolymeric analog of a 
real globular protein where the site-specific interactions between residues are 
replaced by the mean interaction between them. Whether or not a real 
homopolymeric model system can be found that possesses this kind of interac- 
tion remains to be established, but the replacement of the site-specific long- 
range interactions by an average interaction parameter has ample precedent, 
and in the case of two-chain coiled coils, works rather well.% 

How the folding equilibrium can be moderated by the specific distribution 
of flexibility down the chain backbone and eventually by a site-specific 
interactions will be discussed in future work. It is hoped these “directed 
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folding” computational experiments will give us a qualitative understanding 
of the relative importance of various features in the equilibrium globular 
protein folding process. 
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