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barrier heights for radical cation interconversions and 
in the detailed characterization of the photochemical 
interconversions. 

I t  is a pleasure to acknowledge the invaluable contributions 
of Marcia L. Schilling and Christopher J .  Abelt to the major body 

Acc. Chem. Res. 1987,20, 350-356 

of this research and to express my appreciation to R. C. Haddon, 
P. G. Gassman, T. Miyashi, T. Mukai, K. Raghauachari, and  C. 
C. Wamser, who contributed to individual facets of this work. 
This article is dedicated t o  Professor William u. E. Doering, in 
whose laboratory I received much inspiration, on the occasion 
of his 70th birthday. 

Monte Carlo Studies of the Long-Time Dynamics of Dense 
Polymer Systems. The Failure of the Reptation Model 

JEFFREY SKOLNICK,* ANDRZEJ KOLINSKI,~ and ROBERT YARIS 
Institute of Macromolecular Chemistry, Department of Chemistry, Washington University, St.  Louis, Missouri 63130 

Received February 16, 1987 (Revised Manuscript Receiued June 5, 1987) 

Introduction 
Imagine a very large bowl of overcooked spaghetti 

that is subject to constant random jiggling. Suppose 
one picks a given spaghetti strand. How on average 
does this strand move across the bowl? The strand sees 
a matrix comprised of the other spaghetti strands which 
it cannot cross. Thus, one has in principle a very com- 
plicated many-body (many-strand) problem. This is a 
simple realization of the problem that has over the past 
15 years occupied a central position in the study of 
concentrated polymer solutions (analogous to a bowl of 
spaghetti with tomato sauce) and melts (analogous to 
a bow of spaghetti drained of all other liquids).'-4 
Namely, what is the microscopic mechanism by which 
a highly entangled collection of polymers moves? The 
answer to this question has practical applications to, 
among other areas, polymer rheology, polymer adhesion, 
and polymer failure. 

Any successful theory of polymer melt motion must 
be able to rationalize the following experimental re- 
sults.'+ For a linear polymer composed of n bonds, the 
center-of-mass self-diffusion coefficient of the polymer, 
D, behaves like 

D - n-I if n < n, (la) 

D - n-2 if n > n, (W 
with n, a critical degree of polymerization, although 
recently other exponents 01 in D - n-OL have also been 
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Table I. 
Compilation of Parameters 

parameter definition 
degree of polymerization, Le., the number of beads 

degree of polymerization above which D is 

degree of polymerization above which the shear 

number of polymers in the Monte Carlo box 
degree of polymerization of the larger volume 

fraction (matrix) component in a bidisperse melt 
degree of polymerization of the smaller volume 

fraction (probe) component in a bidisperse melt 
average number of monomers down a given chain in 

the melt where the excluded-volume effect is 
screened out 

(monomer units) per polymer chain 

proportional to n-z 

viscosity is proportional to n3,4 

the average distance between dynamic entanglements 
number of beads in the subchain or blob used in the 

averaging process to construct the equivalent path 
terminal or longest relaxation time of the end-to-end 

vector 

reported.' Furthermore, the zero-frequency shear 
viscosity q scales like 

q - n if n < n,' ( 2 4  
q - n3.4 if n > n,' (5%) 

with n, > n,'.5,6 The source of the difference between 
n, and n,' is not at all understood.8 (For the conven- 
ience of the reader a compilation of various parameters 
employed in this article may be found in Table I.) The 
above experimental behavior indicates that as the mo- 
lecular weights of the chains increase, entanglements 
between the chains become important. Thus, another 
important feature of a successful theory is to elucidate 
the nature of these intermolecular entanglements. 

One of the most striking consequences of the exper- 
imental observations embodied in eq 1 and 2 is that for 
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sufficiently low molecular weights a polymer in the melt 
behaves like a Rouse chain, the simplest model of the 
longtime dynamic properties of a polymer at  infinite 
dilution? In a Rouse chain (a bead-spring model of 
a polymer in a continuum solvent that exerts frictional 
forces on the polymer beads), the motion on average is 
locally as well as globally isotropic, and hydrodynamic 
interactions between beads (the perturbation of the 
solvent flow about one bead due to the other beads) are 
ignored.1° In a low molecular weight polymer melt, the 
surrounding matrix behaves identically to a small- 
molecule fluid with the important exception that hy- 
drodynamic interactions are screened out.2v6 Thus, 
whatever the nature of the entanglements between 
chains, they are unimportant in the low molecular 
weight limit. 

The Rouse model exhibits the following features 
which we will require in subsequent discussi~n.~J~ The 
mean-square displacement of the center of mass 

gcm(t) = 6Dt (3) 
for all times t with D - n-l. In the long-chain limit, 
the mean-square displacement of a single bead299 

g(t> - t t > 7~~~~ (4b) 
with 7Rouse the terminal or longest relaxation time for 
the decay of the end-to-end vector which is proportional 
to n2 and is the time constant for the decay of the 
longest wavelength internal relaxation mode of the 
system. 

As n is further increased, as implied by eq 1 and 2, 
a polymer melt changes from a viscous to a viscoelastic 
liquid.6 Consider the response of a polymer melt to a 
sudden deformation. At  very short times, before the 
entanglements have had a chance to disengage, the 
behavior of the melt is similar to a cross-linked collec- 
tion of chains,ll i.e., a rubber, which behaves as one 
huge macromolecule.12 What differentiates the two is 
the behavior of the network at longer times. In a rub- 
ber, the network linked by chemical bonds is infinitely 
long lived. In a melt, the chains eventually slide past 
each other, and the system then behaves like a normal 
viscous liquid. The essential question, then, is, what 
is the time scale for the matrix relaxation relative to the 
motion of a given individual chain? 

In the highly ingenious reptation model of de Gen- 
nes,lJ which was later refined by Doi and Edwards,ll 
it is assumed that the surrounding matrix of linear 
chains that produces the entanglements remains static 
on the order of the relaxation time of the end-to-end 
vector. Thus, the many-body problem has been reduced 
to a single-chain problem. A schematic picture of the 
motion is depicted in Figure 1. The chain of interest 
finds itself confined to a tube composed of the entan- 
glements, and the only way it can move long distances 
is by slithering out the ends of its tube, hence the name 
reptation. Thus, the dominant long-distance motion 
is longitudinal and down the chain contour defined at  
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Figure 1. (A) In reptation theory, the matrix of chains (dashed 
curves) surrounding the test chain (solid curve) is replaced by 
rigid posts as in (B) which act to confiie the chain of interest into 
a tube of diameter dT. The chain moves by slithering out the tube 
as in (C). 

zero time. Lateral fluctuations are unimportant. Be- 
cause of the tortuous path a given chain must take to 
move with respect to the laboratory-fixed frame, the 
terminal relaxation time (longest) of the end-to-end 
vector, T,,~, is proportional to n3.ll2 rreP is frequently 
called the tube renewal time. When coupled with the 
assumption of rubberlike behavior at short times,ll one 
obtains rl - T , , ~  - n3. Similarly, the self-diffusion 
coefficient Drep - n-2. Thus, this simple model almost 
reproduces the experimental behavior of D and 7. 

In the reptation model,14J3 g(t) is predicted to behave 
differently than a free Rouse chain. For distances less 
than dT, the chain of interest does not experience the 
confining effects of the tube, so it still behaves like a 
free Rouse chain (see eq 4a). Then, there is relaxation 
of the chain within the tube giving 

Once the internal degress of freedom have relaxed to 
their equilibrium values, one is left with center-of-mass 
motion down the tube 

g( t )  - t112 t < TreP (5b) 
Finally, the free chain diffusion limit is reached where 

g( t )  = (5c) 

gcm(t) - tl” t < Trep ( 6 4  
gcm(t) - 6Drept t ’ Trep (6b) 

Observe that “pure” reptation theory treats the ma- 
trix as fixed while the test chain moves. To remove this 
nonequivalent treatment, reptation theory has been 
made self-consistent.16J6 Thus, the posts depicted as 
solid circles in Figure 1B also reptate. In addition, tube 
leakage, which is the formation of relatively small loops 
between the posts, has also been in~luded.~J’ Thus, 

g(t) - t’14 t < TRouse ( 5 4  

Similarly14 
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in all its variants, the crucial assumptions of reptation 
theory are that the tube is very well defined and that 
the dominant long-distance motion is the slithering out 
the ends of the tube defined by the chain contour at 
zero time. Hence, lateral motions of the chains are 
negligible. The question is, are these assumptions really 
valid for a melt? 

While reptation theory has been able to rationalize 
a wide variety ~ f , ~ - ~  although by no means all,7 exper- 
imental data, measurement of quantities such as the 
diffusion coefficient does not directly probe the mech- 
anism of polymer melt motion.18 The existence of a 
spatially fixed tube has been questioned for melts19 as 
well as for concentrated solutions of rodlike polymers.u) 
Computer simulations are ideally suited for this pur- 
pose.20*21 and thus, to establish the mechanism of 
polymer melt motion and the nature of dynamic en- 
tanglements, we have embarked on a series of dynamic 
Monte Carlo (MC)  simulation^.^^-^^ We view these as 
computer experiments designed to test the validity of 
reptation theory and, if the central assumptions of 
reptation are found not to hold (as turns out to be the 
case), to guide the development of alternative theories. 
Description of the Model 

In the context of diamond and cubic lattice models 
of a polymer melt, we have examined the nature of 
polymer motion. The lattice is enclosed in a periodic 
MC box of volume L3 subject to periodic boundary 
conditions. We always choose L > (R2)lI2,  with ( R 2 )  
the equilibrium mean-square end-to-end distance, to 
ensure that the interactions of a chain with its image 
are unimportant. Each polymer chain occupies n lattice 
sites and there are N polymers per MC box, with 4 the 
volume fraction of occupied sites. In all cases, to model 
excluded-volume effects, multiple occupancy of lattice 
sites is prohibited. The dynamic properties of homo- 
polymeric diamond lattice polymers were studied over 
a range of 4 from 0 to 0.75 for chain lengths up to n = 
216; cubic lattice polymers were studied at fixed 4 = 
0.5, but for n ranging from 64 to 800 for the homo- 
polymeric melt and for a probe chain of length np = 100 
in a matrices of chains ranging from n, = 50 to 800. 

One begins by constructing an equilibrated dense 
melt that has a specific molecular weight distribution 
(either mono- or bidisperse for the systems described 
below).22 Next, one chooses a set of lattice moves that 
locally introduce new random conformations into the 
middle of the chain.2GB Otherwise, if new orientations 
can only arise in the chain interior by diffusion from 
the chain ends, an artificial n3 time scale having nothing 
to do with realistic polymer motion can be built into 
the For diamond and cubic lattices, the set 
of elementary jumpsz2,23,29,3@-32 we employed satisfies the 
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above requirements and is reasonable in that a large 
fraction of the jumps are successful.2z For each attempt 
at a particular move, the chain and bead are randomly 
selected. The fundamental unit of time is taken to be 
that required for each of the allowed lattice moves on 
average to be attempted per bead. In actual imple- 
mentation, the choice of elementary moves are ran- 
domly mixed, and any given move is rejected if the local 
conformation is such that the move is not allowed or 
if excluded-volume restrictions prohibit it. In fact, while 
one specifies the a priori ratio of moves, at high density, 
the system itself, due to excluded-volume restrictions, 
chooses the fraction of successful moves. 

The use of a lattice confers both advantages and 
disadvantages. The advantages are that one can sim- 
ulate much longer polymers, a t  much higher densities, 
for much longer times than the corresponding off-lattice 
systems. The disadvantage is that we must demon- 
strate that the results are physically meaningful and not 
a lattice artifact; the hope is that the character of the 
long-distance motion is insensitive to local details. 
While we have not been able to prove this, whenever 
possible we have compared our results to the corre- 
sponding off-lattice simulations and have found qual- 
itative agreement.33i34 Moreover, both the diamondz3 
and cubic latticex models under similar conditions yield 
identical results when corrected for differences in local 
persistence length (a chain of length n on a diamond 
lattice has dynamic behavior like a chain of length n / 2  
on a cubic lattice), even though the local elementary 
moves are very different. 

Equilibrium Properties 
While the detailed study of the equilibrium properties 

is beyond the scope of this article, nevertheless one 
must be sure that they are correct before proceeding 
to an analysis of the dynamics. In the 4 = 0 limit in 
agreement with 0thers,3~,~~ both the diamond and cubic 
lattices give ( R 2 )  - n1.18 , consistent with the self- 
avoiding, random walk model appropriate to the de- 
scription of polymer dimensions in a good solvent. As 
the density increases, these chains obey ideal statistics,2 
viz. ( R 2 )  - (s2) - n (with (9) the mean-square radius 
of gyration). The crossover of (S2) and ( R z )  from n1.18 
to n1 scaling allows us to estimate nB, which is the 
number of monomers down a given chain in a melt after 
which the excluded-volume effect is screened out. For 
both diamondz3 and cubic lattice systemsz4 at 4 = 0.5, 
nB = 17, and for the diamond lattice when 4 = 0.75, nB 
z 12. This quantity is of interest in that nB has been 
employed as an estimate of the mean distance between 
dynamic entanglements ne.11,14,3z For the n = 800, 4 = 
0.5 case in particular, if nB is in fact the correct measure 
of dynamic entanglements, then n nB = 47, and by 

should reptate. However, even if ne > nB,32 it is evident 
from the above that the systems studied here are very 
dense and should be appropriate to qualitatively ex- 
amine the validity of reptation theory. 
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F i g u r e  2. (A) and (B) log-log plots of the center-of-mass auto- 
correlation function gCM(t) vs. time t and the single bead auto- 
correlation function g(t) vs. t, respectively, for n = 64,100, 216, 
and 800 chains reading from left to right (or top to bottom). The 
g( t )  are averaged over all the beads in the system. = 0.5 in all 
cases. 

Dynamic Properties 
Center-of-Mass Motion and Terminal Relaxation 

Times. We must first demonstrate that these systems 
are in the regime where the diffusion constant and 
terminal relaxation time of the end-to-end vector are 
consistent with eq l b  and 2b, respectively. We begin 
by discussing the center-of-mass motion and in Figure 
2A plot on a log-log scale g,(t) vs t for homopolymeric, 
cubic lattice systems. Two regimes are evident in g,,(t) 
vs. t. For distances such that l2  I g,(t) I 2(S2) (with 
1 the bond length) gc,(t) - t" with the values of the 
exponents a decreasing from 0.91 when n = 64 to 0.71 
when n = 800. These systems behave neither like a 
simple Rouse chain having a uniform bead friction 
constant (eq 3) nor like reptating chains (eq 6). 
Qualitively, identical behavior was seen in diamond 
lattice s i m ~ l a t i o n s ~ ~ * 3 ~  as well as in off-lattice simula- 
t i o n ~ . ~ ~  A value of a less than unity may indicate that 
there is coupling of the center-of-mass motion of the 
chain into the internal relaxation modes. This is also 
consistent with the fact that 2(S2) is the distance over 
which all the internal modes of a Rouse chain relax to 
their equilibrium values.23 

Table 11. 
Chain Length Dependence of the  Self-Diffusion Coefficient, 

D - (n - l)-a, and the Terminal Relaxation Time, T~ - 
(n - 1)@, on Cubic and Diamond Lattices 

I#J a P range of n fit 
Cubic Lattice 

Diamond Lattice 

0.5 1.52 (i0.006) 2.63 (*0.04) 64-216 

b 1.154 (f0.010)' 2.349 (i0.018)" 12-216 
0.25 1.372 (f0.021)' 2.563 (icO.061)" 12-49 
0.50 1.567 (i0.017)" 2.677 (f0.035)" 12-216 
0.75 2.055 (f0.016)' 3.364 (i0.082)" 12-96 

'Standard deviation of the slope obtained from linear least 
square fit of log-log plots. *Single chain. 

The long-time limit of g,(t) was employed to obtain 

gc,(t) = 6Dt + c (7) 

with c a small positive constant that reflects the faster 
motion of the center of mass at shorter times. Fitting 
the data for the n = 64-216 chains, we find D - n-1.52. 
However, there is a systematic deviation in the direction 
of increasing exponent. Lacking the computational 
resources to run the n = 800 system up to the free 
diffusion limit, we employed various extrapolation 
procedures to obtain D for this system, thereby allowing 
us to determine whether a in D - n-a has crossed over 
from a value of unity to a value of two (eq lb).24 A 
previous study of cubic lattice chains up to n = 48 
provides (Y = 1.2-1.25.37 The present system when n 
= 64-100 gives a N 1.4, when n = 100-216, a = 1.6, and 
finally, a very conservative estimate for the n = 216-800 
regime gives a = 2.05. This further suggests that the 
n = 800,$ = 0.5 system is a very good place to look for 
the existence of reptation. The values of a for all the 
cubic and diamond lattice systems studied are sum- 
marized in Table 11. 

We next examined the terminal relaxation time TR of 
the end-bend vector, R(t),  obtained from the long-time 
decay of 

g(R,R(t)) = (R(t)-R(O)) (8) 

After a very rapid initial relaxation, g(R,R(t)) is in- 
variably well fit by a single exponential. The scaling 
of T~ - nB on cubic and diamond lattices is summarized 
in Table 11, column three. Note that the diamond 
lattice, 9 = 0.75 system is in accord with the experi- 
mentally observed dependence of D and 77 on n, if 7 
scales with TR. 

Observe that, for all concentrations, the product D T R  
in the diamond (cubic) lattice systems scales like n1.2 
(nl.l) rather than the expected nl (the product DTR is 
on the order of the radius of gyration which is pro- 
portional to n).2 One possible explanation of this dis- 
crepancy is the coincidence of statistical uncertainties 
in the estimation of both a and P (about 0.05 for each 
exponent a t  high densities). Another is that one is  
observing a crossover to the DTR - n limit. If so, this 
implies that the experimental 7 - n3.* behavior is in- 
dicative of a crossover regime that, consistent with the 
simulation, is rather broad. The justification of this 
statement is as follows: The observed TR is always below 
times when g,,(t) - t. In other words, consistent with 

D by fitting to13 
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experiment (see eq 1 and 2), the diffusion constant 
experiences the onset of dynamic constraints at smaller 
values of n than TR does, and the anomalous scaling of 
D T R  may merely reflect this. 

Single Bead Motion. We next turn to a discussion 
of the finer details of the chain motion and present in 
Figure 2B log-log plots of g( t )  vs. t for chains confined 
to a cubic lattice. Two different regimes of behavior 
in g(t)  vs. t are evident. In the first time regime, which 
extends up to 2(S2), g( t )  behaves like tb, with b de- 
creasing gradually from 0.54 when n = 64 to 0.48 when 
n = 216. Thus, these chains exhibit a Rouse-like de- 
pendence of g( t )  on t (see eq 4). Similar behavior was 
seen for all the diamond lattice chains studied. How- 
ever, the n = 800 case is distinctly different from all 
previous cases examined; a decreased slope whose 
minimum value is 0.36 is evident and is indicative of 
the more constrained dynamics of these very long 
chains. One's first response is to suspect that the 
regime is similar to the t1i4 regime predicted from 
reptation theory (see eq 5). However, we shall dem- 
onstrate below that the microscopic picture of chain 
motion is distinctly different. 

Construction of the Equivalent Path. In their 
treatment of reptation, Doi and Edwardsll employed 
the idea of a primitive path which basically involves the 
replacement of the actual chain by an equivalent one 
in which all the local fluctuations irrelevant to the 
long-distance motion are averaged out. Thus, we con- 
struct the equivalent chain path and follow its motion 
as a function of time. Every bead on the original chain 
is replaced by a point on the equivalent path which is 
the center of mass of a subchain or "blob" composed 
of nb beads. Thus, a smooth path composed of partially 
overlapping blobs is generated which should be very 
close to the primitive path of Doi and Edwardsll if nb 
is close to the entanglement length. 

At each time t ,  we generate the equivalent path and 
look at displacements down (the reptation component) 
and orthogonal to the primitive path defined at zero 
time. If in fact the chains are reptating, there should 
be substantial memory of the initial primitive path 
conformation, especially in the middle of the chain. To 
examine whether or not this is the case, we then com- 
pute the average mean-square displacement down, gl, ( t )  
(the reptation component) , and perpendicular to the 
original primitive path, g, (t). Since a reptating chain 
has a maximum in g l ( t )  of (2/3)dT2 for times t less than 
the tube renewal time, the ratio g l ( t ) /g l , ( t )  vs. t should 
monotonically decrease with increasing time. On the 
other hand, if the motion is globally isotopic with no 
memory whatsoever of a tube defined at zero time, 
g, (t)/gll ( t )  should monotonically increase. 

By simulating a chain in a partially frozen environ- 
ment where chains are known to we have 
demonstrated that g, ( t ) /g l , ( t )  monotonically decreases 
with thus, this procedure correctly demonstrates 
the presence of reptation when it is the dominant 
mechanism for long-distance motion. Moreover, our set 
of elemental moves do not somehow artificially suppress 
reptation. 

In Figure 3A we plot g,(t)/gll(t) vs. t for n = 216 and 
800 chains on a cubic lattice at 4 = 0.5 for times below 
the tube renewal time of reptation theory. We set rh, 
equal to the excluded-volume screening value nB; that 
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Figure 3. Plot of the ratiog,(t)/g,,(t) vs. time for n = 216 (upper 
curve) and n = 800 (lower curve) homopolymeric melt in (A), and 
a np = 100 probe chain in a nM = 800 matrix in (B). In all cases, 
the simulations were done on a cubic lattice at  C#J = 0.5. 

is, nb = 17. But we have also set n b  equal to 101 and 
find no qualitative difference in the behavior of g,/gll. 
We remind the reader that if nB corresponds to the 
dynamic entanglement length, then by every theoretical 
criterion the n = 800 chains should r e ~ t a t e . ~ ? ' ~  The 
qualitative features displayed here are identical with 
those seen for shorter chains on a diamond lattice at 
equivalent and higher densities.23 At short times, 
transverse chain motion is clearly preferred; this arises 
from both chain connectivity and the nature of coop- 
erative motion at high density. Consider the following:22 
Suppose a given piece of chain has undergone a three- 
bond (two-bead) jump. Now, the probability that 
correlated motion in a neighboring bond occurs is the 
product of the probability that (i) the bond is in a 
conformation that can undergo a jump and (ii) there 
are unoccupied sites which the beads can jump into. (i) 
is the same for both down and cross-chain motion. (ii) 
is unity for cross-chain motion and, to lowest order, (1 
- 4)2 for down chain motion. Thus, as the density in- 
creases, cross-chain motion dominates at short times. 
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Figure 4. Snapshot projections of the “primitive path” of a chain 
with n = 800 in the melt, with 4 = 0.5. Triangles indicate one 
of the chain ends. (A) The displacement after (A) 6 X lo4 steps 
and (B) ‘2 X lo5 steps. Every bead in the plot corresponds to the 
center of mass of a blob, and for clarity only every fourth bead 
is plotted. The density of the beads reflects the density of the 
chain beads (in addition to the effect of the projection from three 
onto two dimensions). 

Subsequent to the short-time preference for tran- 
sverse motion, there is a period when down chain 
motion becomes somewhat more important (the mini- 
mum in the two curves). This corresponds to distances 
on the order of the excluded-volume blob size. Finally, 
a t  longer times the longitudinal component becomes 
increasingly less important. Therefore, we conclude 
that reptation-like motions down the chain are in fact 
strongly damped, and the motion of the equivalent 
chain is essentially isotropic. In other words, there is 
no tube confining the  chain of interest!  This is 
graphically illustrated in Figure 4A,B where the dy- 
namic evolution of one of the n = 800 chains is pres- 
ented. The thin curve depicts the initial configuration 
of the equivalent path, and the solid curves show the 
equivalent path at a time t = 6 X lo4 (2 X lo5) later in 
Figure 4A (4B). For ease of visualization, nb was set 
equal to 101, a very conservative value. As anticipated 
from the ratio g ,  ( t ) / g l l  ( t ) ,  significant transverse fluc- 
tuations are apparent, and the motion down the original 
path is hardly noticeable. Thus, we once again conclude 
that these model chains simply do not know that they 
are in a tube. We hasten to point out that the snap- 
shots presented here are typical ones. Thus, for the 
homopolymeric melt we see no evidence of reptation as 
the dominant mechanism of long-distance motion. 

We next examined the case of a probe polymer of size 
np dissolved in a matrix of polymers, each containing 
nM beads. In all cases, the total volume fraction of 
probe plus matrix polymers was kept essentially con- 

stant a t  = 0.5. We chose np = 100 and allowed nM 
= 50, 100, 216, and 800. This series of simulations was 
undertaken because an essential assumption of repta- 
tion theory that there is a time scale separation of the 
matrix and the probe chain certainly holds when nM = 
800 and np = 100; their diffusion constants differ by 
about 2 orders of magnitude. Moreover, the variation 
of D of the probe with nM has been experimentally 
examined, and we wished to see whether these model 
systems exhibit the same qualitative behavior. We 
found that the behavior of D vs. nM is qualitatively 
consistent with real experimental self-diffusion constant 
measurements of Green et al.38 and Antonietti et al.39 
on polystyrene (PS) in matrices of different degrees of 
polymerization and decreases by about 25% as nM goes 
from 50 to 800. 

The mechanism of the probe chain motion in the nM 
= 800 environment was further analyzed by decom- 
posing the equivalent chain motion into the reptation 
component, g, , ( t ) ,  and g,(t) as described above for the 
homopolymeric melt. The results are displayed in 
Figure 3B. Again, reptation does not dominate probe 
chain motion. Even in an environment whose diffusion 
constant is 2 orders of magnitude less, the surrounding 
matrix is not fixed and once again there is no tube! 
Snapshots of the equivalent path trajectory are similar 
to those shown in Figure 4 and show no difference in 
qualitative behavior when nM = np as compared to that 
when nM > np. , 

This behavior may be qualitatively rationalized if the 
dynamic entanglements between chains are rare and are 
not fixed with respect to the laboratory frame, as as- 
sumed in reptation theory, but rather “slosh” around. 
The probe chain, while somewhat slowed down by the 
globally slower moving matrix (or more to the point the 
dynamic contacts on the probe chains when nM > np 
are longer lived), undergoes isotropic motion precisely 
because the environment itself is not reptating. 
Whatever their exact microscopic nature, if a contact 
between two chains is short-lived (much like in a 
small-molecule fluid), apart from modifying the local 
friction constant, it cannot change the scaling of the D 
and TR with n. Only those dynamic contacts that are 
long-lived, Le., which persist on the order of the ter- 
minal relaxation time of the end-to-end vector, can 
change the molecular weight dependence of single- 
chain, long-time dynamic variables. A search of the 
simulation for the dynamic contacts bears out this 
qualitative picture and provides an ne of about 133. 

Concluding Remarks 
The present series of dynamic Monte Carlo simula- 

tions has attemped to examine the validity of reptation 
theory at its most fundamental level. In particular, the 
assertion of reptation theory that in a melt the domi- 
nant long-wavelength motion is highly anisotropic and 
consists of the slithering of a chain down the tube 
formed by the matrix of neighboring chains does not 
survive scrutiny. For the range of chain lengths studied, 
which qualitatively mimic real experiments remarkably 
well, we find that the motion is isotropic, and the 
polymers simply do not know that they are confined in 

(38) Green, P. F.; Mills, P. J.; Palmstrom, C. J.; Mayer, J. W.; Kramer, 

(39) Antonietti, M. A.; Coutandin, J.; Sillescu, H. Macromolecules 
E. J. Phys. Reu. Lett. 1984, 53, 2145. 

1986, 19, 793. 
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a tube. Thus, these studies cast severe doubt on the 
validity of reptation as applied to finite-length polymer 
melts. Indeed, even when the probe and matrix diffu- 
sion constants differ by 2 orders of magnitude, reptation 
fails to dominate. While we cannot rule out the pos- 
sibility that these chains will reptate with increasing n, 
such a crossover would not be evident from standard 
experimental measurements of viscosity and diffusion; 
we have found systems where 9 is proportional to n3.4 
and D - n-2, and yet the chains do not reptate. These 
studies clearly indicate that the widely accepted rep- 
tation model of polymer melt dynamics does not ade- 
quately describe the motion in these model systems and 
alternative models are required. 

Physically, then, what are the dynamic entanglement 
contacts? Although we recognize that further, more 
detailed analysis is required, the physical picture that 
emerges is as follows. In order to have a long-lived 
dynamic contact, two requirements must be satisfied: 
First, the pair of chains must be in contact a t  short 
times and have a topology that admits the possibility 
of a long-lived contact, as, for example, when one chain 
loops around the other. Second, the pair happen to 

move together in a direction that leads to a long-lived 
dynamic contact. Thus, a dynamic entanglement re- 
sults when one chain drags the other through the melt 
for times on the order of TR. Such dynamic entangle- 
ments are created and destroyed by the random motion 
of the chains. This picture rationalizes why short chains 
in a melt behave like simple Rouse chains. They are 
not long enough for the dynamic entanglements to live 
a time on the order of rR. As n increases, so does the 
likelihood of long-lived contacts. Thus, one has a 
crossover from simple Rouse-like behavior to entangled 
behavior in which a given chain behaves at short times 
like a rubber due to these dynamic entanglements and 
at longer times like a Rouse chain with some slow- 
moving points. This simple physical idea forms the 
basis of a phenomenological theory of polymer motion 
that is in the process of being developed. This is one 
step in the process of understanding the nature of the 
viscoelastic behavior of polymeric liquids. 
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