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The static and dynamic properties of a dense system of flexible lattice chain molecules, one of
whose ends is constrained to lie near an impenetrable interface, have been studied by means of
the dynamic Monte Carlo method. It is found that increasing the surface density of the chains
in the layer increases the orientational order. The value of the order parameter of the chain
segments decreases with increasing distance from the interface. The short time dynamics of the

model chains are similar to those observed in polymer melts. Then, there is a time regime of
strongly hindered collective motion at intermediate distance scales. Finally, for distances
greater than the chain dimensions, free lateral diffusion of the chains is recovered. It is shown
that the model exhibits many features of the real systems such as detergents on a surface and

lipid bilayers.

I. INTRODUCTION

The model system considered in the present work con-
sists of a collection of chain molecules that are terminally
adsorbed to a planar interface. The absorbed head of each
chain in the system is allowed to move freely in the direction
paraliel to the interface and can bob slightly up and down in
the direction perpendicular to the interface. Consequently,
lateral diffusion of the entire chain is possible. Since chains
essentially cannot diffuse in the direction orthogonal to the
interface, the time average density of the chain segments at a
given distance from the interface is strictly preserved.

A similar set of restrictions of the dynamics applies to
the motion of the chain molecules found in a large micelle
and when the detergents are on a surface.' Presumably, this
is also the situation that may be found when one focuses
attention on one side of a lipid bilayer.”™ Therefore, even
qualitative insight into the mechanism of the conformational
rearrangements and chain diffusion seems to be important; it
would provide a better understanding of the large spectrum
of phenomena observed in these motionally and orientation-
ally anisotropic systems.

The model chains are restricted to a diamond (tetrahe-
dral) type lattice. This is the lattice representation of the
rotational isomeric states model® (RISM) of the conforma-
tion of alkane chains. Monte Carlo dynamics® (MCD) are
used to model the chain motion in the layer. The reasons for
employing these simplifications are the following: First, it
has been shown for various polymer systems that the lattice
representation works very well when applied to the study of
equilibrium properties.”'" It is, also, qualitatively correct
for modeling the dynamics of dense polymer systems, al-
though the time scale for very local processes can be some-
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what distorted in comparison to the real time scale.'"'? Sec-
ond, while there is substantial work on lattice models of a
single polymer (or oligomer) chain absorbed onto an inter-
face,'>~'” there are few studies on the static properties of
lattice multichain systems with an absorbing surface. Over a
comparable range of model parameters, the lattice approxi-
mation'? leads to the similar results as the computationally
far more intensive off-lattice simulations.'’~!° Thus, the na-
ture of the dynamics of these systems and the possible corre-
lation between the static and dynamic properties seems to be
worth exploring. Finally, use of a lattice representation and
the application of MCD makes the task computationally
tractable. Since we are also interested in large scale displace-
ments of dense multichain systems, a more exact molecular
dynamics study of the detailed model would be extremely
expensive on contemporary computers. Typically, a molecu-
lar dynamics (MD)?® or a Brownian dynamics (BD)?'
study of the lipid bilayer covers a time scale corresponding to
very local relaxations of the system configuration. Thus, the
present simulations may be viewed as complementary to the
more detailed MD and BD studies.’®?" At the expense of
introducing the simplifications discussed above, we are at-
tempting to obtain a qualitative picture of the character of
the long distance dynamics. On the other hand, all the effects
related to the excluded volume, local geometry, and topolog-
ical restrictions on the chain conformation and dynamics
should be qualitatively the same, regardless of the model of
local dynamics used. Of course, there are specific require-
ments for the MCD scheme, which solves a Master equation
for the motion of the system under consideration.

The present model is athermal. Only hard core, ex-
cluded volume interactions between the chain segments are
taken into account. As a result, the behavior of the system is
temperature independent, except for the trivial contribution
of the temperature to the frequency of elementary jumps,
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which defines the time scale of MCD (or rather the relation-
ship between MCD time and the time scale of the real pro-
cesses that are modeled). Therefore, the polymer—polymer
interactions correspond to the case of a good solvent sur-
rounding the oligomer layer. Since the systems studied are
quite dense, this assumption does not exert too large of an
effect on the dynamics. Hence, the results of the simulations
can be considered relevant to the more general situation than
merely to the case of a strictly athermal system.

Il. METHOD OF SIMULATION

The model system consists of N chains of the same
length n. Hence, every chain the system occupies n = 17
diamond lattice points (chain beads), separated down the
chain by a bond vector of type ( + 1, + 1, + 1). The tetrahe-
dral valence angle is preserved, and three rotational isomeric
states (one trans and two gauche states) are allowed for
three successive bonds. As a result, the model chains are
flexible and can appear in a large number of conformations.
All of the chains are loosely attached to a planar (Z =0 in
an arbitrary Cartesian coordinate systems) interface. The
head of every chain can move in the X and Y directions;
however, a marginally small excursion (by the distance

+ 1) from the Z = O plane is also allowed. This negligible
thickness of the absorption surface is necessary in order to
make the motion of the lattice chains physically possible.

The dimensions of the Monte Carlo box are L, XL,

XL, with L, = L, = L. The value of L, is sufficiently large
enough to accommodate the n = 17 chain, even in its most
extended conformation. There are superimposed periodic
boundaries in the X and Y directions, and every chain leav-
ing the MC box on one side wall is at the same time entering
the box on the opposite wall. Therefore, the system repre-
sents a virtually infinite layer of terminally attached chains.
Recognizing the periodicity of the configuration, the surface
packing density may then be defined asp = N /(L */8). The
factor of 1/8 emerges from the assumed integer representa-
tion of the diamond lattice points. Here p = 1 corresponds to
the close packing of the chain heads on the interface, and
consequently, the close packing of the chain segments in the
entire layer. The idea of the MC box used in these simula-
tions is presented in Fig. 1.

The model of the chain dynamics consists of the follow-
ing set of elementary conformational rearrangements. First,
there are the three bond, two bead, kink motions.® This in-
volves a simple permutation of two bond vectors separated
by a third vector. The chain ends (head segments, as well as
tail segments) need to be treated differently; their motion
involves a two-bond, end jump.° Single bond end jumps are
also allowed. The third type of elementary motion is the very
small distance slithering of the entire molecule down the
chain contour in a randomly selected direction. This is real-
ized by adding a new segment on one end of the chain and
clipping-off one segment on the opposite end, provided that
the distance of the chain head from the impenetrable inter-
face remains 0 or 1. These reptation-like moves are attempt-
ed with a frequency of 1/n, with respect to the frequency of
the two-bead kinks. The above scaling roughly acounts for
the assumption of a uniform friction constant per chain

N
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FIG. 1. Schematic representation of the Monte Carlo box. The shaded walls
are impenetrable. The solid circles represent the chain head ona Z=0
plane, and the open ones, the head at Z = 1. See the text for more details.
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bead. More complicated models of dynamics, including, for
example, four-bond rearrangements were also tested. These
have only a marginal effect on the dynamics due to the high
density, the local nematic type of ordering of the chain seg-
ments and the small chain length. Under these conditions,
the relaxation of the chain conformation by four-bond mo-
tions is much less frequent than by the propagation of the
three-bond kinks. A more detailed discussion of the problem
can be found elsewhere.'**'

The time unit is defined as the time necessary for N *n
attempts at kink jumps plus N attempts at reptation steps.
The sequence of elementary motions and their location (the
chain index and the bead number in the case of kink) are
carefully randomized.

Systems at various densities were studied. In each case,
the initial configuration has been equilibrated by a sufficient-
ly long run. Then, the results of MCD production runs are
used to study the static and dynamic properties of the sys-
tem. The average values of these properties are obtained by
both ensemble and time averaging.

. RESULTS AND DISCUSSION
A. Static properties

Five systems, at various surface densities of the chain
molecules were studied in this work. Table I, columns 2 and
3, contains the description of the size of these systems. For
easy reference in the remainder of this work, the surface
density is used as a label for the systemn under the considera-
tion. Several equilibrium properties of the model systems
were measured in order to analyze the effect of density on the
conformation of a single chain and consequently, on the dis-
tribution of the chain segments across the layer.
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TABLE I. Summary of properties.
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D T
P N L MCD Eq.(7) MCD Eq. (9)
0.2 10 20 0.54( + 0.02) 0.540 10.0 10.0
0.375 12 16 0.31( + 0.01) 0.311 15.0 13.3
0.5 16 16 0.14( + 0.02) 0.140 19.0 21.5
0.625 20 16 0.04 0.040 50.0 49.2
0.75 24 16 0.005 0.007 175.0 175.1

A comparison of the numerical values of the self-diffusion coefficient, D,
and the relaxation time, 7, of the parallel to the interface component of the
head-to-tail vector for various surface densities, p, in arbitrary units.

In some sense, the equilibrium properties of this system
are related to those of a polymer brush, except that in a brush
one of the chain ends are grafted to the surface, and here both
ends of the chain are mobile. Thus, we shall compare the
equilibrium results obtained from these simulations with ex-
tant polymer brush theories of Alexander”” and Milner
etal®

The thickness of the model monolayer depends upon the
surface density of the chains. It may be characterized by the
average distance of the chain tail bead from the interface
(R,). As seen in Fig. 2, (R,) at high densities increases
linearly as p'/3, in agreement with the scaling theory of Alex-
ander®” and the SCF theory of Milner et al. Similar behavior
has been observed in a molecular dynamics simulation of
polymer brushes by Murat and Grest,’*** who find a linear
regime when Np” 3>15. Here, the linear regime occurs for
Np'/?2 14. The conformation of the chains tends to be more
extended for high density. Simultaneously, this increases the
orientational order of the chain segments, and consequently,
the orientational order of the entire chain. Let us define the
angle between the end-to-end vectors of a pair of chains.

cos(y) = (ryor,)/(|r;|*r;]), (D

wherer; is the vector from head to tail of the ith chain. Then,
the following-order parameter may be calculated:

s, = [3{cos’(»)) — 1172,
with {cos’(y)) computed as an ensemble average.
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FIG. 2. Plot of the average distance of the chain tail from interface, as a
function of the surface density p'/*. The open circles represent the simula-
tion data. The line is an arbitrary interpolation.

Figure 3(a) shows the dependence of s, on the surface
density p. One can see that the increase of p from 0.2 t0 0.75
is accompanied by the increase of the order parameter s,,
from the value close to zero, characteristic of a random ori-
entation, up to a value in the range of 0.4, which indicates
that substantial ordering of the system has occurred. On a
more local level, it is useful to consider the angle, 3, between
the bond vectors and the orthogonal to the surface. Due to
the lattice representation, pairs of bond vectors are used in
order to describe the orientation of the chain segment. Then,
the following-order parameter defines the degree of the layer
ordering as a function of distance from the chain head:

5, = [3{cos? B) — 11/2. 3)

This quantity is dependent not only upon density p, but also
on the position down the chain (k is the segment number
counted from the head to the tail). In Fig. 3(b), s, profiles
are plotted for various values of the surface density p. These
curves are in qualitative agreement with NMR data for the
phospholipid bilayer.?¢-?8 Murat and Grest?*?* have calcu-
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FIG. 3. (a) Plot of the order of parameter s, for head-to-tail vectors [ Eq.
(2)] versus surface density p. (b) Plots of the order parameter s, for the k th
chain segment versus k (counted from the interface). The curves are arbi-
trary interpolations through the MCD data for p = 0.75 (top), p = 0.625,
p=0.5,p=0.375,and p = 0.2 (bottom).
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lated a quantity that is related to {cos 8 ), which exhibits
qualitatively similar behavior at high density as Fig. 3(b).
Due to the fact that here the ends are mobile and in the
Murat-Grest simulation they are pinned, differences
between the two simulations are seen at low densities. Murat
and Grest observe a monotonic increase the closer one gets
to the wall; here, oscillatory behavior is observed.

The curve for p = 0.75 is actually in quantitative agree-
ment with Brown and Williams’ *> compilation of various
NMR data for membranes in which the alkane chains con-
tain n = 16 carbon atoms; i.e., the close, real equivalent of
the present model.

Next, let us consider the segment density in the model
monolayer, as a function of the distance from interface. The
Alexander scaling theory®? assumed a uniform density pro-
fite, while the SCF approach predicts a parabolic surface.
For ease of comparison between the various profiles, the
data are normalized by p, == p,/(n*p), where p, is the aver-
age segment density (the fraction of the lattice sites occupied
by the polymer beads) at the distance z from the interface.
Figures 4(a) and 4(b) present plots of p as a function of (2/
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FIG. 4. Profiles of the density of the chain segments in the model layer ver-
sus (z/p)?, with z as the distance from the surface. (a) The open circles are
for p = 0.2 and the squares are for p = 0.375. (b) The solid circles are for
p = 0.5, the crosses are for p = 0.625, and the triangles are for p = 0.75.
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p)2. At lower densities, these plots are qualitatively similar
to those of Murat and Grest’**® and provide support for a
parabolic density profile, as predicted by Milner ef al.?* At
higher density, in particular at p = 0.75, the density profiles
are decidedly nonparabolic.

The above brief analysis shows that the equilibrium
properties of our model system are in quite close agreement
with the properties of the corresponding real physical sys-
tems and exhibit similar equilibrium features as polymer
brushes.”>** In spite of some simplifications discussed in
previous sections of this paper, there is also good agreement
with theory. In the next section, we discuss the dynamic
behavior of the model.

B. Dynamic properties

The dynamic properties of the model system can be
characterized by the behavior of various autocorrelation
functions. Let us consider, as an example, the center-of-mass
autocorrelation function of a single chain. This is the mean-
square displacement of the chain center of mass as a function
of time given by

Zerm. (1) = {[Fem (B) — 1., (O)]P), (4)

where r_ . (2) is the center of gravity coordinate at time ¢,
and all averages are corrected for the center-of-mass displa-
cements of the entire collection of chains.

To further examine the character of the chain dynamics,
the single bead autocorrelation functions were computed for
the following parts of the chain:

(i) g., (1), the mean-square displacement of the three
central beads of the chain, (ii) g, (¢}, the mean-square dis-
placement of the chain head (the beads that move on the
interface), and (iii) g, (7), the mean-square displacement of
the chain tail. In all of these cases, the motion of the center of
mass of the entire system has been subtracted, as was done
for g .-

In Fig. 5, g.... (£)/t is plotted versus time for various
surface densities p. At long times, a plateau is reached, and
the value of this plateau divided by 6 gives the seif-diffusion
constant. Standard free-diffusion behavior is recovered at
long times. Numerical values of D, together with the values
of 90% confidence limits (when available), are compiled in
Table L.

08}
06}
Qm(‘%

041

02

3

X,

\\\:’:A: .

A

1 ' 2 A
00 200 400 600 800
t
FIG. 5. Plots of mean-square displacement of the center-of-mass of the
chain divided by time, g, (£)/2, versus time, £, for various values of p. The

lines are arbitrary interpolations of the simulation data:
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Is this dependence similar to that seen for the polymer
solutions??® To answer this question, the D data have been
fitted by

D = D, exp( — ap"), (5)

where @ and v are adjustable parameters. Here D, can be
considered either as the value of the self-diffusion coefficient
at the infinite dilution or as an adjustable parameter. The
fitting procedure gives D, = 0.981, @ = 6.09, and v = 2.73.
The values of D calculated from Eq. (5) with these param-
eters are also given in Table I for comparison. The fit is of
rather good quality. The value of v obtained is larger than
typical values (1/2-1) for polymer solutions,?® and conse-
quently, the self-diffusion coefficient exhibits a stronger de-
pendence upon the density than is usually observed for poly-
mer solutions.

Next, let us consider the motion of different parts of the
chain. In Fig. 6, the autocorrelation functions for the chain
head, the middle part of the chain, and the chain tail are
plotted against time for the case of p = 0.2. There is a clear
difference between the short time (and distance ) mobility of
chain segments at different positions down the chain. As
expected, the most mobile are the tail segments. The lowest
mobility is exhibited in the middle section of the chain. Fas-
ter, short distance motion of the chain ends is typical for
polymer solutions and melts.'*® Here, this phenomenon is
seen in systems with quite different restrictions on the dy-
namics. This suggests that the short time dynamics may be
rather similar. The somewhat slower motion of the chain
head, when compared with the tail, may be caused by the
restriction of the head displacements to the vicinity of the
planar interface. This restriction slows down the motion of
the rest of the chain at relatively long times. Eventually, all
parts of the chain move with the same long-time self-diffu-
sion coefficient—all the curves in Fig. 6 coincide. Their co-
alescence takes place after times when the memory of the
chains’ initial conformation disappears. The increase of sur-
face density slightly changes the above picture. For larger
values of p, the tail motion still dominates, and the short
distance mobility of the head segments becomes closer to the
motion of the middle segments. The effect is most likely re-
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FIG. 6. Log-log plots of the single-bead autocorrelation function versus
time for p = 0.2. Here g, chain tail, g, chain head; and g,,, average for the
three middle beads. The straight line represents free diffusional motion.
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lated to the increase of the orientational order of the chain
segments in denser systems, which is dependent on the dis-
tance from the interface. The more disordered tail side of the
layer exhibits higher mobility at short times, and the motion
is less cooperative for the tail segments.

It is interesting to analyze in more detail the various
time regimes of the chain dynamics. For the sake of clarity,
the simulation data for the tail segments autocorrelation
function of the p = 0.2 case are plotted separately in Fig. 7. It
is clear that prior to free diffusion (long distance) motion,
which is characterized by g, () ~¢' dependence, there is a
broad range of times and distances where the motion is
strongly hindered. At very short times, which corresponds
to the displacement of the chain beads over the range of the
average distance between the closest pair of chains, the mo-
tion is characterized by an autocorrelation function roughly
proportional to z /2, This is typical for every kind of flexible
molecule; with a ¢ /2 predicted by the classical Rouse model
of chain dynamics.'? Then, there is a time regime of even
more restricted motion, which is quite well described by a
g(t) ~t'’* dependence (we have drawn straight lines of var-
ious slopes in Fig. 7 to make the comparison convenient for
the reader). This range of segment dynamics can be viewed
as a motion of chain fragments between obstacles superim-
posed by other chains. Finally, these obstacles disappear,
since the chains in the system eventually move. This disen-
gagement process presumably corresponds to the second ¢ /2
regime or the crossover to the 7 ! regime. A ¢! regime means
that the memory of the initial conformation is already for-
gotten, and the free-diffusion limit is recovered. Figure 8
shows for the same times, the center-of-mass motions in
which two distinguishable regimes can be observed. The first
one, where g, ~#'/? strictly corresponds to the entire
range of hindered motion of an individual segment. The sec-
ond one, the g, . ~¢' regime, begins at the same time when
8. ~1, as it should.

Very similar behavior can be seen for other parts of the
chain, as well as for the systems of higher density. The only
difference is in the width of the various regimes. As it might
be expected, a higher surface density p leads to stronger re-
strictions on the local dynamics. In Fig. 9, one can see that
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FIG. 7. Detailed log-log plot of the single-bead autocorrelation function g,

versus time ¢ for p = 0.2. The circles represent simulation data. See com-
ments in the text.
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FIG. 8. Log-log plot of chain center-of-mass autocorrelation function g, ,
versus time ¢ for p = 0.2.

the g, ~¢ '/* regime lasts for a significantly longer time for
p = 0.625, than was seen for p = 0.2.

The above interpretation of the autocorrelation func-
tions of the model system is, of course, somewhat specula-
tive; however, it is consistent with all the simulation data.
There is a striking similarity between the plots given in Figs.
7-9, and the results of theoretical'®' and computa-
tional'®"'? studies of dense polymer solutions and melts of
long flexible polymers where chain entanglements become
important. According to various criteria of entanglement
onset for polymer systems,'®*° the chains in our model layer
are not entangled, at all. This is due to both the small chain
length and the considerable orientational ordering in the sys-
tem. The restrictions on chain dynamics in the layer are of a
different origin. Among the most important are (1) the re-
striction of the head motion to the planar interface, with the
concomitant strongly hindered relaxation of the orthogonal
to the surface component of the chain dimensions and (2)
the short-lived topological barriers. In other words, a rather
different microscopic mechanism of system dynamics may
lead to very similar observations, the best example of which
is the behavior of the autocorrelation functions discussed
above.

From the present MCD studies of a simplified model
monolayer, the following picture of chain rearrangements
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FIG. 9. Log-log plot of g, vs ¢ for the case of p = 0.625.
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and diffusion within the layer emerges. At very short times,
the local dynamics is essentially indistinguishable from the
dynamics of chain molecules in dense solutions or polymer
melts. Then, the layer restrictions begin to control the chain
dynamics. There is a relatively long waiting time when the
chain finds itself in the cage created by surrounding, mostly
parallel, chains. It is not an entanglement effect that slows
down this intermediate distance motion. Rather, it is the
highly cooperative relaxation of chain conformation and the
interchange of position of two, or more likely several, chains
which allows longer distance motion. Finally, the chain
finds itself a new conformation and a new environment. This
signals the onset of free lateral diffusion regime.

Note that the chain tails are more mobile than the chain
heads over the entire intermediate time regime. This is due to
“waving” of the chain portions on the more disordered, open
side of the layer. This waving effect may be measured by the
relaxation of the parallel to the surface component, of the
head-to-tail vector. This can be described by the following
autocorrelation function:

gy () = <l';|(t)'l'|| (0))/<r2||>- (6)
Plots of g, versus time ¢ are compared in Fig. 10 for various
values of p. Unlike in polymer melt systems, a much broader
spectrum of relaxation times is present. There is no simple,
single exponential regime in the relaxation curves. Conse-
quently, there is no leading, longest characteristic relaxation
time. An average relaxation time 7 may be defined as a time
at which g,; decays to the value equal to 1/e of the initial
value. The resulting values of 7 are given in Table L.

T =T, exp(bp"). (8)

The dependence of 7 on p can be fitted by Eq. (8) with
To = 9.54, b =7.19, and p = 3.15. Apparently, there is no
simple correlation between changes of 7 and the self-diffu-
sion coefficient D, with increasing density p. However, the
width of the ¢ '/* regime of the tail motion is roughly propor-
tional to 7. The stretched exponential scaling dependence of
the various autocorrelation functions can be related by a
generalization of the coupling models of Ngai.*'
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FIG. 10. Plot of the In(g,; ) versus time for various surface densities. The

triangles present MCD data for p = 0.75; crosses, p = 0.625; solid circles,

p = 0.5;squares, p = 0.375; and open circles, p = 0.2. The lines represent an
arbitrary interpolation through the data.
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IV. CONCLUSION

The simplified lattice model of a monolayer of chain
molecules terminally joined to an interface, may be consid-
ered as a crude model of the configuration of chain deter-
gents, lipid bilayers, and related systems. In spite of the sim-
plifications employed, the measured equilibrium properties
of the model are in surprisingly good agreement with theo-
retical predictions,”* with computer simulations of more de-
tailed models®*?* and for the equilibrium properties, with a
computer simulation of grafted polymer brushes®*** and
with experiments on real systems.>**** The short time dy-
namics of the model also agree with the related molecular
dynamics and Brownian dynamics simulations®>*! on mem-
brane models. Therefore, there is reason to believe that the
picture of longer time and distance dynamics which emerges
from present simulations is relevant to the dynamics of the
corresponding real systems.

It has been shown that the tails of the model chains,
which correspond to the nonpolar alkane (alkene) chains of
real systems are more mobile then the rest of the molecule.
The mobility of the entire chain depends upon the degree of
orientational ordering of the layer, which is an increasing
function of surface density. After relatively long times asso-
ciated with local wiggling of the chain, cooperative rearran-
gements of the chain position in the layer can be observed.
This is then followed by lateral diffusion over long distances.
Long distance diffusional motion is even more strongly de-
pendent upon system density than is the local mobility.

The present model was not designed to study large dis-
tance motions of entire layers. This will be done in future
work, which is in progress. There, a much more detailed
model of a self-assembling lipid bilayer will be presented.
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