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The equilibrium and dynamic properties of a new lattice model of proteins are explored in the 
athermallimit. In this model, consecutive a-carbons of the model polypeptide are connected 
by vectors of the type ( ± 2, ± 1,0). In all cases, the chains have a finite backbone thickness 
which is close to that present in real proteins. Three different polypeptides are examined: 
polyglycine, polyalanine, and po1yleucine. In the latter two cases, the side chains (whose 
conformations are extracted from known protein crystal structures) are included. For the 
equilibrium chain dimensions, with increasing side chain bulkiness, the effective chain length is 
smaller. The calculations suggest that these model polypeptides are in the same universality 
class as other polymer models. One surprising result is that although polyalanine and 
poly leucine have chiral sidechains, they do not induce a corresponding handedness of the main 
chain. For both poly leucine and polyalanine, the scaling of the self-diffusion constant and the 
terminal relaxation time are consistent with Rouse dynamics of excluded volume chains. 
Polyglycine exhibits a slightly stronger chain length dependence for these properties. This 
results from a finite length effect due to moderately long lived, local self-entanglements arising 
from the thin effective cross section of the chain backbone. 

I. INTRODUCTION 

Monte Carlo lattice dynamics have proven to be a very 
useful tool for investigations of the effect of excluded volume 
on the static and dynamic properties of polymeric chains, 1-3 

the statics and dynamics of polymer solutions and melts,4.5 
and other related problems. 6 

Single polymer chain properties, in particular, the coil­
globule transition of the chain, are frequently discussed in 
the context of polypeptide chain collapse or folding. 7

•
8 Re­

cently, we developed a high coordination lattice model of a 
polypeptide chain which was successfully used in the study 
of globular protein folding.9.10 Since this model is consider­
ably more complex than any of the earlier lattice models of a 
single polymeric chain, it is reasonable to ask if the general 
findings of previous lattice chain studies remain valid for the 
present model. In particular, we will address the following 
questions: First, what is the effect of side groups on the sta­
tics and dynamics of the model chain under high tempera­
ture (denaturing) conditions? We modeled these conditions 
employing the athermal solvent approximation. Conse­
quently, only hard-core repulsive interactions contribute to 
the mean force of interaction between polymer segments. To 
some extent, the present model may be viewed as a comb­
branched polymer, with appropriate dynamics. The second 
question concerns the influence, if any, of the built-in chira­
lity of the monomers on the properties of the model. Finally, 
the effect of varying size side groups is investigated. 

For easy reference, we need to consider well defined, as 
simple as possible, amino acid sequences of these model 

aj To whom correspondence should be addressed. 

chains. Thus, the following three types of polypeptides have 
been studied: polyglycine, poly-I-alanine, and poly-I-leucine. 
Polyglycine does not have any side chains, and its a-carbons 
are achiral. The other two have chiral a-carbons, and their 
side groups differ substantially in size, which allows us to 
address the above questions. 

Since the present model is generic to the one we are 
using to simulate globular protein folding,9 it is important to 
find out to what extent its dynamics is physical. If so, the 
folding pathways we observe can be considered to be more 
reliable. 

This paper is organized as follows. In the next section, 
we describe the details of the model chain geometry and its 
physical foundations. The accuracy of the lattice approxi­
mation to the polypeptide conformation is analyzed. The 
Monte Carlo dynamics of the model chains is discussed in 
Sec. III. Section IV gives a description ofthe sampling proce­
dure and defines several measured properties of the model 
polypeptide. In the following two sections (V and VI), we 
present the results of simulations and discuss the statics and 
dynamics of these systems. The last section contains con­
cluding remarks. 

II. LATTICE MODEL OF POLYPEPTIDE CHAINS 

The model described here is a result of a compromise 
between simplicity and the desire to account for the most 
important conformational features of polypeptides. The a­
carbon representation of the main chain backbone and a 
spherical representation of the side groups is the option 
which has been selected. As shown below, the lattice is able 
to fit with reasonable accuracy the local and global geometry 
of polypeptides. It is constructed from a subset of simple 
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FI G. I. The set of allowed configurations of two consecutive bond vectors of 
the backbone of a model 21 ° lattice polypeptide in the a-carbon representa­
tion. There are three (the most expanded) 18-states, one 16-state, four 14-
states, two 12-, two \0-, and two 8·states. The corresponding bond angles 
are: l4J.l·, 126.8·, 113.6·, \01.5·,90·, and 78.5". 

cubic lattice points connected by vectors of the virtual bonds 
between nearest neighbor a-carbons of the type 
( ± 2, ± 1,0). For easy reference, it will be called a 210 lat­
tice. The coordination number of the lattice, (the number of 
possible orientations of the virtual bonds between nearest 
neighbor a-carbons) is equal to 24. The chain of consecutive 
a-carbons on this lattice ma.y be visualized as the three-di­
mensional generalization of a knight move in chess, with 
some restrictions related to the excluded volume of the back­
bone and side chains. How accurate is this approximation in 
comparison to a real protein backbone? The lattice distance 
(where an integer representation of lattice points is as­
sumed) between two consecutive a-carbons is equal to 51/2. 

If one associates this with the ECEPP" value for the virtual 
bond length which is equal to 3.785 A, then the local geome­
try of various structures can be compared. First, let us con­
sider the two most extended (however, with exclusion of the 
physically impossible collinear one), configurations of a pair 
of lattice vectors. These "configurational states" may be 
characterized by the distance rL I,i+ 1 = 16, or 18 in model 
units. This corresponds to ri_ I,i+ 1 = 6.77 and 7.18 A, re­
spectively, distances which are close to the 6.5 and 7.0 A 
repeat periods for the parallel and antiparallel f3 sheets. 12 In 
order to mimic the twist of f3 structures, the lattice chain has 
to contain some?; _ I,i + 1 = 14 states; thus, one obtains an 
average which is in quite good agreement with the conforma­
tion of real f3 proteins. A similar level of accuracy holds for a 
helices, f3 turns, or loops, as ?; _ I,i + 1 can assume six allowed 
values: 8, 10, 12, 14, 16, and 18. We will call these sequences 
of two virtual a-carbon bonds an 8 state, 10 state, etc. We 
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FIG. 2. Schematic representation of the main-chain backbone excluded vol­
ume envelope. The distance corresponding to a vector of the type [ 1,0,01 is 
about 1.69 A. 

have a priori excluded 2, 4, 6, and 20 states as unphysical; i.e., 
they do not have their counterparts in real protein chains. In 
Fig. 1, all possible orientations of two consecutive a-carbon­
a-carbon bonds are schematically shown, given a fixed ori­
entation of the first virtual bond. 

In order to account for the proper volume of the poly­
peptide backbone which includes other atoms besides the a­
carbons, it is assumed that the six simple cubic (sc) neigh­
bors of the a-carbon 210 lattice site are excluded, an example 
of which is shown in Fig. 2. This way, the hard core envelope 
of the main chain is created, where every glycine unit occu­
pies seven points of the underlaying sc lattice. This gives a 
reasonable radius for the excluded volume of the main chain 
in the range of 1.7 A. 

The configuration of the side chain of a given amino acid 
of the polypeptide depends on the local conformation of the 
main chain. In order to account for the excluded volume of 
the side chains, we followed the method described recently 
by Gregoret and Cohen (GC)Y Since we need a lattice 
representation, the method has to be slightly modified and 
consists of the following steps: First, we exactly reproduced 
the GC procedure and evaluated the close packing dimen­
sions of side chains for 67 high resolution structures of pro­
teins in the Brookhaven Protein Data Base (PDB).14 It 
should be remembered that in GC approach, most of the side 
chains including those of alanine and leucine, are represent-
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FIG. 3. An example of an alanine side group excluded volume. The distance 
from the a-carbon to the center of the side group is 1.50 A (the correspond­
ing vector for the given example of main-chain conformation, the l6-state, 
is equal to ([ - 0.4223, - 0.6572,0.4199]) and the side group radius is 
equal to 2.02 A. which is in nice agreement with the van der Waals radius of 
the methylene group. 

ed as a single sphere. As a result, we obtained r ALA = 2.02 A, 
which is equivalent to the excluded volume radius of the /3-
CH3 group in alanine. The average location of the center of 
mass of the side group for alanine is at a distance R ALA' from 
the a-carbon and varies over the range from 1.49 to 1.51 A. 
Thus, this distance is almost independent of the main-chain 
conformation; however, the orientation of side group always 
depends on the main-chain conformation. The correspond­
ing values for the leucine side group, - CH2 CH(CH3 )2' 

are rLEU = 2.3 A and R LEU = 2.36 - 2.48 A, depending on 
the value of r7 _ I,; + 1 . In the second step, we projected every 
sequence of three amino acids, with the central one being 
leucine or alanine, onto the nearest possible two bond se­
quence of the 210 lattice. This defines the side chain orienta­
tion and hard-core envelope for every conformation within 
the lattice approximation. All the sc lattice points inside a 
given side chain sphere are then considered as excluded to 
the other side chains as well as to the main chain backbone. 
Of course, the sphere which mimics the hard-core envelope 
of the a-carbon under consideration partially overlaps with 
the sphere of the side group. Both constitute the hard core of 
a given amino acid. The above representation is quite accu­
rate in spite of the fitting procedure and the averaging of all 
the proteins over the Brookhaven Protein Data Bank. 14 The 
proper chirality of all the amino acids are preserved, and 
presumably, the effect of side chain excluded volume on the 
conformational spectrum of the model polypeptide is well 
accounted for. An example of an alanine side group lattice 
representation is schematically depicted in Fig. 3. 

Finally, let us point out that the above lattice model of a 

polypeptide (with, of course, a proper representation of side 
groups of the other amino acids) is able to fit the conforma­
tion of all native structures in the PDB with a single set of 
parameters for a given amino acid. The root-mean-square 
deviation of a-carbons and centers of mass ofthe side chains 
is in the range of 1.5 A, which is the level of accuracy of the 
PDB structures. This means that it is possible to simulta­
neously reproduce the local as well as global geometry of 
proteins in the framework of a relatively simple (lattice) 
model. As a matter of fact, an a posteriori test of chirality of 
the lattice chain representations shows 80% agreement with 
the corresponding PDB data. Therefore, one may conclude 
that the model is quite accurate in spite of the assumed lattice 
representation. (This will be discussed in further detail else­
where.) Parenthetically, let us note it is implicitly assumed 
that the side groups conformation (given the backbone con­
formation) extracted from native structures are equivalent 
to those in denatured state. Elsewhere, we demonstrate this 
assumption is in fact very well fulfilled for most of amino 
acids, and qualitatively is good for all ofthem. 15 

III. MODEL OF DYNAMICS 

The high coordination number (z = 24) of the 210 lat­
tice allows for a lattice dynamics model which is very close to 
an off-lattice, bead-and-sticks2 model with its essential spike 
dynamics. Of course, there are substantial lattice restric­
tions, which are mostly related to the limitation of confor­
mational flexibility in real polypeptides, and therefore they 
are rather physical. 

The dynamics of the entire model chain results from a 
succession oflocal conformational transitions. In this sense, 
it is analogous to the lattice dynamics of a simple cubic (sc) 
lattice,16 a diamond lattice,17 or a face-centered-cubic ls 

(fcc) lattice chain. The difference is in the larger number of 
local jumps involved. Consider a sequence ofthree beads (a­
carbons). For each of the allowed distances between bead 1 
and 3, the central bead can be in at least two positions. This 
condition obtains for conformations ri3 = 10, 14, 18. For 
ri3 = 8 and 16, there are four positions of the central bead. 
For ri3 = 12, there are six possible conformations with fixed 
beads 1 and 3. Thus, a new a-carbon-a-carbon orientation 
may be easily created within the chain interior, and the pro­
cess can be considered to be microscopically reversible, satis­
fying proper detailed balance. In Fig. 4, the set of allowed 
conformational transitions is shown for every rl3 distance. 
The chain ends have to be treated separately, and for them, 
the new random orientation of the two end segments is al­
ways generated. The model polypeptide chains are con­
structed as a sequence of (n + 2) beads on the 210 lattice, 
numbered from 0 to (n + 1). Only n of them can be consid­
ered as the a-carbon centers (with side groups for alanine 
and leucine), while the two end beads serve only to define the 
conformation of the 1st and the nth amino acid. 

The Monte Carlo algorithm works as follows: 
( 1) The ith bead (one of the n + 2 beads) of the model 

chain is selected at random. For an inner bead, the new con­
formation is generated by the permutation of two bond vec­
tors (states 10, 14, and 18) or by a random mechanism 
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FIG. 4. The set of allowed elementary conformational transitions for the 
inner segments of model chain, for 8-states (Al, lO-states (Bl, 12-states 
(el, 14-states (Dl, 16-states (El, and IS-states (Fl. 

(states 8, 12, and 16). Then, for that obtained trial confor~ 
mation, it is checked if: 

(a) The conformations of the (i - 1 )th and (i + 1)th 
amino acids belong to the 'set of allowed conformations. 
(b) The side chains [ind uding the rotated side chain of 
amino acids (i - 1) an4 (i + 1)] as well as the new 
position and orientation of the side chain of the jth ami~ 
no acid do not overlap with themselves or with the rest 
of the chain. 
(c) The jth a~carbon and its envelope do not overlap 
with the rest of the chain. 
(2) If all the restrictions are satisfied, the new confor~ 

mation is accepted, and then a new iteration is attempted. 
When j< 1 or t;m, two bond, end rearrangements are 

invoked with a new conformation generated at random. 
A natural unit for the time scale of the model chain 

dynamics is the time requin!d for (n + 2) attempts at a bead 
(beads in the case of an end) move. Of course, since the 
process is controlled by a random number generator, some 
beads will be not invoked at all in any particular single time 
unit cycle. The average for every bead over a long time of 
simulation is, however, the same. 

The above procedure requires some comment. It is easy 
to note that the dynamics is restricted rigorously by the 

chains excluded volume. What is less obvious is that topo~ 
logical restrictions are exactly obeyed in that the set oflocal 
moves ensures that any portion of the chain cannot pass 
through another portion of the chain. In other words, one 
must be careful to avoid bond cutting. The thickness of 
main~chain hard~core envelope is large enough to prevent 
such an event for the particular model of local conforma~ 
tional transitions employed here. This way, the model chain 
dynamics should reproduce the dynamics of a real chain, 
which is presumably somewhat different than that of an ide~ 
alized phantom chain (e.g., Rouse l9 dynamics). 

IV. SAMPLING PROCEDURE 

The initial conformations of non~self~overlapping 

chains were generated by a separate Monte Carlo algorithm. 
After that, short equilibration runs were performed. For all 
three model polypeptides and for each chain length of inter~ 
est, a few different starting conformations have been pre~ 
pared. The dynamics of these systems are simulated over a 
period which was ten (the case of the longest chain, 
n = 249) to several hundred times longer than the longest 
relaxation time of the chain conformation. The averages 
from separate independent runs are used to estimate the level 
of accuracy of the measured properties. The size of the coil is 
measured by (R ~ ), the mean~square end~to~end distance for 
the chain of length n, and by (S~), the mean~square radius 
of gyration of the coil. To facilitate comparison between po~ 
lyglycine, polyalanine, and polyleucine models only the a~ 
carbons contribute to (S ~ ). Accounting for side chains in 
the calculation of (S ~ ) changes the obtained values margin~ 
ally, probably within the statistical error of the simulations. 
Some higher moments of Rn and Sn were also calculated, 
which allows for the analysis of the coil shape. 

A more detailed description of the local structure of the 
model chains comes from the inspection of various equilibri~ 
um correlation functions. The most important seem to be 
orientational correlations down the chain. We measured the 
average cosine of the angle between bond j and j. 

(coseij) = (1;'1)1/ 2 (1) 

with 12 = 5. The averaging process involves the chain bond 
index i, time aven~ging, and averaging over independent 
runs. The chirality of the main chain backbone has been 
measured as 

Iij=«(l;_I®I;)'I); j>l, (2) 

where the term in the inner brackets denotes cross product. 
In the case of a nonchiral chain, the average value of Iij 
should be equal to zero for all values of i andj. Any nonzero 
value signals some chirality effect of the side groups on the 
main~chain conformations. 

The dynamics of the model system can be conveniently 
characterized in terms of various autocorrelation functions. 
We measured the single bead autocorrelation function g( t), 

the center of gravity autocorrelation function gc.m. (t), and 
the autocorrelation function for end~to~end vector gR (t); 

g(t) = ([rCt) -r(0)]2), (3) 

gc.m. (t) = ([rc.m (t) - rc.m. (0) ]2), 

gR(t) = <[Rn(t)'Rn(O)])/(R~), 

(4) 

(5) 
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with rand rc,m, being the Cartesian coordinate of a single 
bead (a-carbon) and the center of gravity ofthe coil, respec­
tively. Rn is theend-to-end vector. The averaging ofgc,m, and 
gR is performed over time and over multiple runs, while the 
calculation of g also involves down the chain averaging. The 
behavior of these autocorrelation functions can be easily 
compared with theoretical predictions, other simulations 
and some experimental findings. 

v. STATIC PROPERTIES 

The average properties of the model polypeptides were 
obtained by time averaging over sufficiently long trajectories 
(in most cases, a single trajectory corresponds to the time 
equivalent of hundreds of T R' the terminal relaxation time of 
the chain conformation) and over a few (2 to 5) separate 
runs. For two systems, we also performed an additional sim­
ulation using a quite different algorithm, in which one side 
(randomly selected) of the chain is rotated, or bent, by a 
random mechanism. The equilibrium results coincided 
(within the statistical uncertainty) with those obtained by 
dynamic sampling. This may be considered as an additional 
test of the ergodicity of the Monte Carlo dynamics of these 
models. 

A. Chain dimensions 

In Table I, we compare the average characteristics of the 
model polypeptide coils. The standard deviation of the (S2) 
and (R 2) is given for all those cases where at least three 
independent simulation runs were performed. Inspection of 
the coil dimensions of various types of polypeptides of equal 
degree of polymerization shows a substantial increase of 
(S2) and (R 2) with increasing molecular mass of the 
amino acid. Meanwhile, there is an opposite tendency in the 
changes of (R 4)/(R 2)2. The behaviorofthis ratio at small n 
shows that model polyglycine (then polyalanine) more rap­
idly approaches the long-chain limit of the segment distribu­
tion, with the associated proper limiting values of the various 

TABLE I. Average dimensions of model chains. a 

n (R ~) (S~) (R !)/(R !)2 (S!)/(R !) 

polyglycine 
24 301.0 45.9 1.39 0.153 
49 741.0 114,9 1.46 0.155 
99 1749.0 265.5 1.45 0.152 

149 2833.0 445.6 1.47 0.157 
poly-I-alanine 

49 855.(34.) 128.5( 1.3) 1.41 0.150 
99 2181.(141.) 330.2(19.2) 1.44 0.151 

149 3311.0 516.8 1.50 0.156 
199 4794.(444.) 738.7(55.2) 1.50 0.155 
249 6415, (878.) 974.0( 44.1) 1.48 0.155 

poly-I-leucine 
49 963.0 144.2 1.35 0.150 
99 2444.(47.) 369.(8.) 1.43 0.151 

149 3950.(274.) 620.(22.) 1.47 0.157 

a The numbers in brackets indicates the standard deviation of a single run 
when three to five independent runs have been performed. 

moments. For the ratio of (S2)/(R 2), the limiting value is 
close to 0.157 (the value observed in other simulations of 
lattice chains with excluded volume) in contrast to 1i6-the 
value for an ideal chain. The model poly leucine seems to 
exhibit the most short chain character, at least for n = 49 
(via a small value of the (R 4)/(R 2)2 ratio). 

Additional confirmation of the above conclusions come 
from an analysis of the (S~) or (R ~) vs n scaling. In Fig. 5, 
the obtained values of (S ~ ) are compared with the theoreti­
cally expected scaling for large n. One may expect an univer­
sal behavior of the type (S 2) ~ n2v. Indeed, the value of 2v 
for poly glycine is equal to 1.2, in good agreement with 
2v = 1.184 ± 0.04. This seems to be the limit value for ex­
cluded volume, athermal chains. For polyalanine and poly­
leucine, the exponent over the entire range of n studied is 
equal to 1.27; however, in the case of poly alanine, the fit to 
the window n>99 is in reasonable agreement with 2v = 1.20. 
These observations strongly suggest that the model polypep­
tides belong to the same universality class as other models of 
"real" (with excluded volume) polymers. However, the 
large n limit behavior is approached for larger values of n 
when the size of the side group of the amino acid increases. 

B. Bond-bond correlations 

In Fig. 6, the logarithm of < cos (0 ij ) is plotted vs dis­
tance down the chain li - il + 1. Apparently, the results of 
simulations can be well fit by straight lines. Therefore, 

(cos(0ij) = <li - il + 1) -a, (6) 

with a = 1.52 for poly glycine, 1.29 for polyalanine, and 1.18 
for poly leucine. In other words, the local correlation of the 
main chain backbone increases with increasing size of side 
group. 

A somewhat surprising result comes from analysis of 
the chirality factor for the main chain Iij vs distance down 
the chain. For all the systems studied, the obtained values of 
I'j are equal to zero within the statistical noise (some sam­
ples are very large), even for short distances down the chain. 

10' 

~ 
V 

/0' 

n 

FIG. 5. Log-log plot of (S;,) vs chain length n, for polyglycine (solid dia­
monds), polyalanine (circles), and model polyleucine (diamonds). The 
solid line corresponds to the expected scaling for a self-avoiding random 
walk with exponent 1.184. 
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FIG. 6. Semilog plot of (cos(9,) > vs distance down the chain, for model 
polyglycine, polyalanine, and poly leucine in the solid diamonds, circles, 
and diamonds, respectively. Lines correspond to the simple exponential 
least square fit. 

There is no handedness of the main chain induced by the 
chirality of amino acids under the strongly denaturing con­
ditions described here, i.e., when uniform backbones having 
chiral side chains are considered. In real polypeptides, the 
steric clash of the main chain and side chain atoms induces 
local chirality; such effects are absent in the present model. 
Therefore, the right-hand twist observed in proteins (a he­
lices, twist of f3 strands) may be partially induced by attrac­
tive interactions (hydrophobic interactions of side groups, 
hydrogen bonding), or by other tertiary interactions in the 
native state, or perhaps there must be a high amino acid 
density (in the native state) in order to enforce the handed­
ness by the steric interactions ofside groups. This is not the 
case in the present simulations. 

In Table II, we compare the relative frequency of var­
ious conformational states in the three types of model poly­
peptides. There is a clear increase of population of 18 states 
(corresponding to expanded f3 structures) and a slight, but 
non-negligible, increase of probability of 12 and 14 states 
(which correspond to wide helical conformations) with in­
creasing size of the side groups. This is accompanied by a 
decrease in population of the 8 states and to a lesser extent of 

TABLE II. Probability of various conformational states in model chains.· 

Chain 
type (R !> 10 12 14 16 18 

Polygly-
cine 0.1259 0.1357 0.1380 0.2913 0.0760 0.2331 

Poly-l-
alanine 0.1112 0.1275 0.1358 0.3009 0.0796 0.2450 

Poly-I-
leucine 0.0944 0.1222 0.1404 0.3037 0.0791 0.2602 

• All data for n = 149. The statistical uncertainty, as well as the differences 
between the figures for various values of n, are conservatively estimated to 
be below 1%. 

10 states. This way, excluded volume, even in very expanded 
conformation, enforces a bias towards more expanded, f3 
sheetlike global configurations. 

VI. DYNAMIC PROPERTIES 

The dynamics of the single polymeric chain, when hy­
drodynamic interactions are ignored (which is also the case 
of present model) should be similar to dynamics of a bead­
and-spring Rouse19 model. The Rouse model is solvable 
analytically and predicts that the terminal relaxation time, 
(which is equal to relaxation time for end-to-end vector of 
the chain) to be proportional to n2

, and the diffusion coeffi­
cient should be proportional to n - 1. Marginally, let us note 
that it has been proven that freely jointed20 chains which are 
very similar to high coordination number lattice chains and 
lattice chain dynamics,21 without excluded volume and top­
ological restrictions, is homeomorphic to Rouse dynamics as 
far as the time scales considered are large in comparison to 
the single bond relaxation time. The introduction of ex­
cluded volume and topological restrictions is essentially pos­
sible only in simulated models and seems to substantially 
increase the terminal relaxation time. Most of the simula­
tions on simple lattice models suggest that for this kind of 
model, the terminal relaxation time should scale at least like 
n2

.
2

, with 2.2 being the limiting (large n) value of the expo­
nent. 18,22,23 Approximate theoretical estimations23 of this 
exponent agree with the simulations. If one uses the original 
Rouse model, TRa n(S2) and thus the dynamic scaling hy­
pothesis with (S2) _n1.2 gives TRa n2.2• 

First, we checked if the present models exhibit a well 
defined terminal relaxation time. If so, one should observe, 
after a very shott initial relaxation period, an exponential 
decay of gR (t); 

gR (t) -exp( - t iTR) (7) 

with T R the longest relaxation time of the chain conforma­
tion. Of course, there are additional internal modes that con­
tribute at short time. Figure 7 shows that there is indeed a 
very well defined longest relaxation time and that the other 
modes relax very fast. Therefore, we may use a simplified 
method to estimate TR; namely, the time whengR (t) decays 
to 1/ e of its initial value. As a matter of fact, this estimate 
provides the same degree of accuracy as values obtained 
from slopes of semilog plots of g R (t) vs t. The log-log plot of 
TR vs chain length n is given in Fig. 8. 

In Fig. 9, we plot examples of g(t) and gem. (t) autocor­
relation functions. Again, it is qualitatively the picture ex­
pected for Rouse-like dynamics. The diffusion coefficient D, 
which is defined as 

D = lim (gc.m. (t)/6t) (8) 
t-oo 

may be extracted from log-log plots of gc.m. (t) against t, 
from gc.m. (t) vs t plots (slope), or just from the ratio 
ge.m. (t)/6t at large times, i.e., larger than the terminal relax­
ation time. A consistent method we use employs the ratio at 
the times when gc.m. (t) = 2(S ~). The obtained values of D 
are plotted in Fig. 10 vs chain length on a log-log scale. 
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t 

FIG. 7. Semilog plots of gR (t) vs time for model polyalanine of various 
chain lengths. The longest relaxation time was estimated as that when gR (t) 
decreases to II e of its initial value. The average slopes of the curves in this 
figure reflect the longest relaxation time as well. 

o 0 0 

10' 

N~ 

10' 

• 
10' 

10' 10' 10' 

n 

FIG. 8. Log-log plot of the longest relaxation time 1'R vs chain length n, for 
model polyglycine (solid diamonds), polyalanine (circles), and polyleu­
cine (diamonds). The solid line with a slope of 2.2 is drawn for comparison 
with the expected scaling. 
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FIG. 9. Log-log plot ofa single a-carbon autocorrelation function g(t) and 
center of mass autocorrelation function g<,m (t) vs time for model polyalan­
ine having a chain length of n = 99. 
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FIG. 10. Log-log plot of the diffusion coefficient D vs time for model poly­
glycine (solid diamonds), polyalanine (circles), and poly leucine (dia­
monds). The solid line corresponds to D~ lin scaling. 

Prior to the discussion of chain length and amino acid­
type dependence of these global dynamic properties, we 
should note that side groups have some effect on local dy­
namics. In Table III, we compare the acceptance ratio of 
local conformational jumps. With an increase of side chain 
size, there is a considerable decrease of acceptance ratio, and 
the dynamics is slowed down due to local conformational 
stiffness. Part of the observed increase of T R (and decrease of 
D) with increasing size of the side group seen in Fig. 8 (Fig. 
10) could be connected to the decreasing frequency of ele­
mental jumps. The lines drawn in. Fig. 8 and in Fig. 10 have 
slopes 2.2 and - 1, respectively. Therefore, the dynamics of 
model nonglycine, polypeptides seems to be consistent with 
the dynamics of simpler lattice models of single polymer 
chains. The accuracy of our data does not allow for an exact 
estimation of these exponents. For the case of polyglycine 
chains, there seems to be a somewhat stronger chain length 
dependence. The fit of TR exhibits the exponent 2.45 ± 0.1, 
and for D, the exponent seems to be - 1.1 ± 0.2. We may 
rationalize this by a finite length effect, which is enhanced 
for polyglycine by local, moderately long lived self-entangle­
ments of the chain backbone. Thin chains having just a single 
point backbone (with appropriate methods of accounting 
for topological requirement of non-self-intersection) exhibit 
this effect even more dramatically-segments get caught 
much like hooks, therefore enforcing long lived contacts. 

TABLE III. Fractions of accepted moves for model chains.' 

Chain type 

Polyglycine 
Poly-I-alanine 
Poly-I-Ieucine 

One bead jumps 

0.4388 
0.4341 
0.3940 

End flips 

0.9128 
0.8720 
0.8164 

a Data for all values of n exhibit a statistical uncertainty well below 1%. 
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These entanglements are more frequent and of a longer life­
time for polyglycine than for two remaining models due to 
the small backbone thickne~,s.24 The effect can artificially 
enhance the chain length dependence of the relaxation time 
in the range of relatively short chains. 

VII. CONCLUSION 

In this work, we described a discretized model of poly­
peptide chains. The approach is based on an appropriate 
high coordination lattice representation of the main chain 
backbone and the side chain excluded volume envelope. 

It has been shown that side groups contribute to the 
excluded volume of the entire polymer, increasing its coil 
size. However, these model chains belong to the same uni­
versality class as other simpler lattice chains with excluded 
volume. We have shown that in the absence of an attractive 
interaction between side groups (and/or when coil is ex­
panded) there is no handedness of the main chain backbone 
induced by the built-in chirality of model aminoacids. 

The dynamic properties of model polypeptides are also 
consistent with the dynamics of simple lattice chains. The 
results of our Monte Carlo lattice dynamic simulations show 
that the dynamics is essentially similar to that of a Rouse 
chain, with some enhancement of the chain length depend­
ence of the terminal relaxation time. The results are consis­
tent with r R - n2

.
2 and D- n - I, in qualitative agreement 

with other lattice dynamic studies of single polymeric 
chains. 

Consequently, we may expect that the lattice dynamics 
of similar 210 lattice models for the globular proteins (of 
course, with a manifold of side chains sizes in accord with 
the amino acid sequence) can be considered as a reasonable 
approximation to the dynamics of real proteins. The time 
scale when various short and long range factors are intro­
duced will probably be somewhat distorted, but Rouse-like 
dynamics should be preserved. 
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