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A complex, cascaded neural network designed to predict the secon-.
dary structure of globular proteins has been developed. Information
about the local buried-unburied pattern and the average tendency of
the particular types of amino acids to be buried inside the globule were
used. Nonspecific information about long distance contact maps was
also employed. These modifications result in a noticeable improvement
(3 - 9%) of prediction accuracy. The best result for the average success
ratio for the testing set of nonhomologous proteins was 68.3% (with
corresponding Matthews’ coefficients, Cq8,coil equal to 0.60, 0.47, 0.43,
respectively).

* To whom correspondence should be addressed

**This research was supported in part by grant number GM-37408 from the Division of
General Medical Sciences, United States Public Health Service



370 M. VIETH and OTHERS 1992
For a given set of environmental conditions, the amino acid sequence
of a globular protein determines its three dimensional structure [1, 2]. The
conformation of the polypeptide chain inside these closely packed globules
exhibits several characteristic regular motifs: helices, B-strands, well
defined turns, etc. It is convenient to classify these secondary structure
elements according to the pattern of the hydrogen bonds between the main
chain atoms of the polypeptide backbone [3]. Some elements of the secon-
dary structure can be detected even under denaturing conditions. This means
that various sequences can exhibit an intrinsic tendency to adopt a specific
secondary structure, which is further modulated by tertiary interactions in
the folded state [1, 4]. Therefore, the ability to predict secondary structure
may be a very important step towards elucidation of the protein folding
problem, which is one of the most challenging tasks of contemporary
molecular biology [5 - 7].

" Various theoretical concepts have been applied to the problem of predic-
tion of the secondary structure from the amino acid sequence [8 - 13], and
provided new insights into the protein folding problem. Use of neural
networks provided one of the most accurate methods for the prediction of
secondary structure [14 - 16]. First, the neural network has to be "trained"
by presentation of the amino acid sequences and their corresponding
secondary structures. The trained neural network can then be applied to
other sequences, giving predictions for their secondary structure. By divid-
ing the secondary structure motifs into three classes: helix, B-sheet and coil
(which means all structures other than various helices or B-sheets) Qian &
Sejnowski [14] achieved an average success ratio at the level of 64%. The
a priori classification of the protein as all-o, all-B, and mixed o/f leads to
a considerable improvement in prediction accuracy [16]. An additional
increase in the success ratio has been obtained by designing a neural
network that incorporates the periodicity of a-helices and B-sheets. This
way Kneller et al. [16] achieved average success ratios of 79% for all
o-proteins, 70% for all B-proteins and 64% for o/} mixed proteins, respec-
tively. The neural network predictions of B-turns in globular proteins give
an average success ratio of 26% [17] that is more accurate than the results
obtained by other methods. Neural networks can also be used to detect
protein homology [18] and to predict surface exposure of the amino acids
[19].

In this work, we used a neural network model which was designed to
encode some additional information besides that of the amino acid sequence
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alone. We have investigated whether the use of this supplementary infor-
mation provides any improvement in the prediction accuracy. The follow-
ing additional information was used: the actual local buried-unburied
pattern of residues, the average buried-unburied pattern and specific residue
type information about tertiary interactions experienced by the residue for
which the secondary structure is predicted. We have found that, on including
tertiary interactions, the accuracy of prediction of secondary structure
(classified as helix, B-sheet, and coil) was significantly increased.

MATERIALS AND METHODS

a) Model of a simple neural network

For the sake of clarity, it is convenient to describe first a simple neural
network model with three layers. As shown in Fig. 1, several such networks
can be subsequently linked to form a more complex model. The top branch
in Fig.1 presents a scheme of a cascaded neural network for all proteins, the
branches at the bottom show cascaded neural networks trained on succes-
sive o, B and mixed o/P classes.

The simple computational model of a neural network consists of three
layers of units. The first one is the input layer where the amino acid sequence
is encoded. This layer consists of 13 input group with 21 units per group.
Each cluster encodes one of the amino acids (plus one dummy unit to
represent the chain ends). Each cluster contains, in the position which
encodes a particular amino acid, one and only one unit designated by a
number (other than zero) which is 1 for the simple network without any
additional information, and 1 or 2 for the network containing additional
information. A dummy residue is assigned to unit number 0. Alanine is the
unit number 1, etc. In this way, 13 clusters represent the sequence of 12
amino acids surrounding the central amino acid (which is placed in cluster
number 7). The second layer of the neural network, the so called hidden
layer, is linked with each unit of the input layer and with each unit of the
output layer. In the present work, this layer contains either 2 or 40 units.
The output layer contains three units corresponding to the helix, B-sheet or
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Fig. 1. Design of the complex neural network used for secondary structure prediction. Top
branch depicts the scheme of a cascaded neural network for all proteins. The three bottom
branches depict schemes of cascaded neural networks trained on o, B and mixed o/B
proteins :

coil state of the central residue of the 13 residue input window and is
connected only to the hidden layer.
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Information is propagated from the input layer to the hidden layer in the
following way:

of = —— o
1+ exp(-0B) '
N )
with Off = ZijIj +bf
j=1
where:

Wkj are the values of the connection weights between the j-th input unit and
the k-th hidden unit (j= 0,2, ...,20*¥13= 273 =N, andk = 1,2.... Nhidden),

Ij are the values of the input units, O}E‘ are the resulting values of the hidden

layer units, bl are the values of the biases (see our previous work [20] for
further details).

In a similar way, the information from the hidden layer is propagated to
the output layer. The output unit with the largest value determines the
structural assignment for the central amino acid of the input window.

b) Training procedure for the simple neural network

The training procedure starts from the random distribution of connecting
weights (uniformly distributed in the range of — 0.5; 0.5) and small positive
values of the biases. The learning rates for both biases and weights were
chosen to be 0.07 [14].

The input patterns from the sequences of the training set of proteins are
sequentially presented to the network input. Modifications of the connection
weights are made according to the delta learning rule [21] based on
comparison of the expected secondary structure with that obtained by the
network. Further details of the training procedure can be found in the
literature [14, 21]. The large number of hidden units and small values of the
learning rates assumed in the training procedure prevent weight oscillations.
On the other hand, the number of units in the hidden layer cannot be too
large, in order to prevent direct memorization of the data. To examine the
above possibility, either 2 or 40 hidden units were used. After several
hundred iterations over the entire training set (about 300 for 40 hidden units
and 800 for 2 hidden units) the values of weights and biases approached a
constant level.
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¢) Database

Appendix Alists 66 proteins (11049 residues) for which high resolution
X-ray structures can be found in the Protein Brookhaven Data Bank [22,
23). The first 56 proteins (R. Schneider, personal communication) (9370
residues) were used as the training set, the remaining 10 (1679 residues) as
the small testing set. Appendix B presents another training set containing
137 nonhomologous proteins (28 502 residues) [22]. Twenty nine proteins
from Appendix A (5 147 residues) nonhomologous to those from Appendix
B were used as the second testing set. Secondary structure assignments for
these proteins were generated using the Kabsch & Sander DSSPS program
[3]. The various kinds of helices (o, 7, 3.10) were grouped together as
"helix". Proteins from Appendices A and B were classified as all o, all § and
mixed o/p according to the following criterion: a protein was assumed to
be in the class when the fraction of the amino acids with B-strand assignment
according to the method of Kabsch & Sander [3] was less than 11.3%. All
proteins contained less than 12.1% of the amino acids with various helical
assignments. All other proteins were assumed to be mixed o/.

For all proteins, the average number of contacts per residue type was
generated from the X-ray positions of all heavy atoms; neighboring residues
in the sequence were omitted. Two residues were considered to be in contact
(often at multiple points) when the distance between any two heavy atoms
belonging to these residues was smaller than 1.1 times the sum of their Van
der Waals radii. For Cg, and C atoms of the side groups, the Van der Waals
radius was assumed to be 2 A, in accordance with the size of the methyl
group, the —CH2- or the =CH- groups in hydrocarbons. Because of the
limited accuracy of X-ray structures, this somewhat arbitrary choice seems
to be acceptable. The mean number of long range contacts for each amino
acid used for the training set (137 proteins) are compiled in Table 1.

d) Neural network with buried-unburied pattern

Based on the average number of contacts per residue obtained from the
set of 137 proteins, the buried-unburied pattern for all these proteins was
generated as follows: For each type of amino acid, the distribution of the
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Table 1
Average distribution of contact points for each amino acid of the training
set of 137 proteins listed in Appendix B

CODE | Noomt! | Nam? | Cav® | Cpe? %° | B-Uw®
1 ALA 8004 | 2447 | 33 3 63 B
2 ARG 6125 | 1125 | 54 3 42 U
3 ASN 4926 | 1280 | 38 2 43 U
4 ASP 6520 | 1663 | 3.9 2 43 U
5 CYS 3163 536 | 59 8 71 B
6 GLN 4588 | 1034 | 44 3 54 U
7 GLU 6552 | 1615 | 4.1 2 44 U
8 GLY 5879 | 2352 | 25 0 0 U
9 HIS 4086 635 | 64 6 60 B
10 ILE 8654 | 1500 | 58 4 50 B
11 LEU | 12887 | 2365 | 54 5 61 B
12 LYS 7372 | 1730 | 43 2 42 U
13 MET 3235 537 | 60 6 64 B
14 PHE | 10627 | 1152 | 92 9 59 B
15 PRO 4950 | 1391 | 36 3 49 U
16 SER 5990 | 1906 | 3.1 2 53 U
17 THR 6607 | 1800 | 37 2 46 U
18 TRP 5168 413 | 125 14 66 B
19 TYR 9526 | 1001 | 95 9 57 B
20 VAL 9547 | 2039 | 47 4 59 B

Noont indicates total number of contact points for all residues of this type,

Nam total number of residues of this type,

Cav — average number of contact points for a given type of residue,

Cpr - the most probable number of contact points,

% — percentage of cases in which the given type of residue was considered to be in the
buried state,

B-Uav — average buried/unburied pattern: B - buried on average, U - unburied on
average.

number of contact points was obtained and histograms showing this dis-
tribution were plotted. For most of the amino acids, these plots show single
well defined maxima. An example of such a histogram for glutamine is
presented in Fig. 2. For a given residue, when the number of contact points
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Fig. 2. Distribution of contact points for glutamine

exceeds a specified threshold, that residue is considered to be buried. It
should be noted that this pattern is correlated with the surface exposure
parameters described in the literature at the level of 67% (the Matthews’
coefficient equals to 0.44) [24]. It isalso possible to predict this pattern from
the sequence of the amino acids [19] at the level of 72% (the Matthews’
coefficient is 0.52). For testing the prediction accuracy, we used either a
pattern obtained from the real contacts map or that predicted for the
sequence by the neural network method.

There are many ways of supplying additional information to the network
[14, 20]. In order to represent the buried-unburied pattern, instead of setting
the units as equal to 1 in the 13 cluster amino acid window, we set each unit
as equal to 1 when the residue was unburied and as 2 when it was buried
(Fig. 3). In this way, in addition to the sequence itself, the local buried-un-
buried pattern was propagated through the network. A schematic repre-
sentation is shown in Fig. 3.
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Fig. 3. Method of presenting the buried-unburied pattern to the network. 1) Polypeptide
chain of plastocyanin (Priestle, J. P, personal communication) with the 13-residue window
circled. 2) Buried-unburied pattern for these 13 residues. Some of the residues are buried

(b), some are unburied (u). 3) Coding this pattern by numbers 2 and 1, respectively, in the
input layer

e) Neural network with burial status statistically defined

The 20 types of amino acids were classified as buried or unburied "on
average" based on the percentage of cases in which they were buried. Table
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1 lists the number of average contact points, the number of the most probable
contact points for every type of amino acid and the percentage of cases in
which these residues are buried. Those which are buried in more than 55%
of the cases were considered as "buried on average" (i.e, the particular type
of residue has a greater or lesser tendency to contact other residues). This
division shows that residues "buried on average" are almost always
hydrophobic in most hydrophobicity scales [25] (see Table 1, where B
indicates residues "buried on average" and U residues that are "unburied on
average").

Additional information about residues that are buried on average was
presented to the network in a manner described above in Section d. How-
ever, here all types of residues which were buried on average have the unit
set as 2 in the code position of each cluster, irrespective of the actual number
of contact points, and residues which are unburied on average have the unit
set as 1 in their code position.

J) Neural network with residue specific tertiary information

The tertiary information about long range contacts between side groups
(and hydrogen bonds) can be employed to design the neural network
described above [20]. An additional cluster containing 20 units is added to
the input layer. In contrast to the other units which encode the amino acid
sequence and consequently have exclusively the values of 0 or 1, these
additional units contain the exact number of contacts for the central residue
with each of the other types of residues deduced from the protein’s contact
map. In this way, this additional cluster encodes information about the
number and the type of contacts for the central residue in the input window.

RESULTS AND DISCUSSION

In this section, the results of supplying various kinds of additional
information to the network are presented. Modifications of the network
design which lead to the successive improvements of the prediction ac-
curacy are also discussed. The standard measures of neural network perfor-
mance were applied. The overall success ratio is given as:
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3)

1
Q3 =1 (Pee+ PB = Peoil)

where pa, pp and pcoil are the number of helix, B-sheet and coil assignment,
predicted correctly for the total number of residues N. Matthews’
coefficients [26] Cq, Cp and Ccoil provide a more adequate measure of
performance of the algorithm, where

Co = (Pana — 4o0a) @

V(na + 0q) (Not + uar) (Po: + Uar) (Pex + 0cr)

where pja, Njo, Bj and 0jq are the numbers of j = o, B or coil assignment
properly predicted, properly rejected as non j type, underpredicted (not
predicted) and overpredicted (predicted in non j type positions),
respectively. These measures allow comparison between various methods
used in this work and with other works. However, since different databases
have been employed, the comparison is only qualitative.

a) Cascaded neural networks and filtration of the data

It was shown by Qian & Sejnowski [14] that a cascaded neural network
improves the performance of neural network models. The simple neural
network often produces an artificial sequence of structural assignments, for
example, a separated helical or B-strand assignment. These artifacts can be
partially removed through the use of a second neural network with the
values of output units from the first network used as the input data to the
second network [14]. Thus, the input layer of the second network consists
of a window of 13 clusters, each containing 3 units with values correspond-
ing to the output values from the first network (helix, B-sheet, coil). This
network is separately trained on the same training sct of proteins. Briefly
speaking, the second network uses the secondary structure predicted by the
first network as the input and gives improved secondary structure assign-
ments as the output. The testing procedure uses a cascade of both networks.

The above procedure, while considerably improving the network’s
performance, still leaves some artificial sequences of structural assign-
ments. Therefore, we introduced a filter which replaces some sequences of
structural assignments by other, presumably more physical, ones. The
complete procedure is schematically depicted in Table 2. Figure 4 shows an
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Table 2
Filtration of the predicted secondary structure assignments
Predicted assignment Accepted assignment
HH+H HHHH
H+HH HHHH
-E- N-
+H+ +N+ -
+HH+ +77+
-EE~- =17-
Residues at the beginning and at the end of the chain are always coil

+, means an assignment other than helical

-, means an assignment other than f-sheet

7, means assignment generated in random fashion (53% chance for coil, 28% chance
for H (helix), 19% chance for E (B-sheet))

N, means coil assignment

example of the effect of application of the second cascaded network, and
the filtration of predicted secondary structure assignments.

b) Coniplex neural network and prediction of protein classes

The accuracy of prediction of secondary structures of globular proteins
significantly increases when the prediction is performed within a given class
of protein (o, B or mixed o/B). Therefore, it seems appropriate to design a
neural network to make the classification assignment. The entire complex
network is constructed according to the idea given in Figure 1.

The first two networks which work as a cascade described in Section a
are used only for the assignment of the protein into a structural class. These
networks are trained on the whole training set of 137 proteins. If a given
protein is predicted to contain less than 15% B-sheet and more than 40%
helix, it is considered to be an all o-protein. When the prediction gives less
than 15% helix and more than 25% B-sheet, the protein is considered as all
B. The remaining proteins are considered to be o/p. The applicability of this
method for the prediction of structural classes for the large testing set was
also examined, giving a 79% accuracy. It should be noted that in the
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remaining 21% of the cases, one o and four B class proteins were classified
as mixed o/B and there was no case in which the network classified a B
protein as all & or vice versa. This means that, in the worst case, the
prediction accuracy of a complex network will be on the same level as for
the simple neural network.

The second part of the complex neural network is very similar; however,
each branch of the cascade is trained on the subsets of the training set (o,
B, mixed classes of proteins). The results for these cases are compared in
Table 3. It can be seen that the use of the complex network improves the
prediction accuracy by 3% on average, giving better predictions especially
for helices as compared to the cascaded network for all proteins.

c) Effect of the number of hidden units

For all the tested cases the effect of using either 2 or 40 hidden units was
examined. Better results were obtained for 2 hidden units. This can be
rationalized by the argument that using 2 hidden units (less elements) one
obtains a more general local sequence — secondary structure dependence.
The poorer results of the network with 40 hidden units indicate that the
network tends to memorize some sequential patterns present in the training
set.

d) Effect of additional information

The division of proteins into structural classes improves the prediction
accuracy by 2 - 4% for the case of 2 hidden units. For 40 hidden units, this
effect is much smaller. The use of the real or predicted buried-unburied
pattern improves the prediction accuracy of a complex network by 1% on
average. Both the real buricd-unburied pattern and the division of the
proteins into structural classes gives a 4 - 5% increase in prediction accuracy
compared to the network with only sequence information [14, 16]. The best
result, 68.3%, was obtained from the complex network with two hidden
units and the predicted buried-unburicd pattern. This is by 4.5% better than
the value of 63.8% obtained from the complex network using no additional
information and by 8% better than with the cascaded network for all proteins
proposcd by Qian & Scjnowski [ 14] for these particular training and testing
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sets. In general, these effects allow for better prediction of helices. Using
40 hidden units, the success ratio for the complex network with additional
information was no better than for the simple complex network. This can
be rationalized by the conjuncture that information about the buried-un-
buried pattern is partially coded by the sequence and does not provide any
important additional information to the network.

e} Complex neural network with residue specific tertiary interactions

Suppose that for a protein from the testing set some information about
the number and type of contact points for the central residue is given. The
network is of a design similar to that shown in Fig. 1, however, an additional
(20 units) input cluster as described in Materials and Methods Section d is
used. As shown in Table 3, this network gives the best prediction of 72.6%.
The values of the Matthews’ coefficients (greater than 0.5) indicate very
high correlation to real structures. We also examined the prediction accuracy
of a network with information about specific residue type contact maps for
all 13 residues in the amino acid window (20*13 additional units), with
about the same average success ratio. This indicates that either the accuracy
of the neural network method is limited to 72% for secondary structure
prediction or there is some other, more important physical information for
secondary structure formation that is not encoded in the model.

Finally, let us note that the prediction accuracy for secondary structure
of homologous proteins by the above described neural network method
approached 90 - 100%, when the network was trained on the set of
homologous proteins, or, at least, on sets containing a substantial fraction
of homologous sequences.

This work demonstrates that neural network can be successfully used to
divide proteins into structural classes, and that a complex ncural network
which gives a prediction accuracy for secondary structure at the level of
68% can be developed. The overall effect of all modifications used in t~is
work is at the level of a 4% improvement. Surprisingly, no kind of local
buried/unburied pattern information did improve noticcably the success of
sccondary structure prediction. Another finding is that inclusion of residue
specific tertiary information leads to a greater improvement in the accuracy
of secondary structure prediction. This makes sense, from the physical
point of vicw. since it is rather unlikely that local sequence of the amino
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Table 3

Comparison of the performance of various neural networks
For details see text

TYPE OF THE | TYPE OF PREDICTION ACCURACY

INPUT CASCADED

INFORMATION | NETWORK 2 HIDDEN UNITS 40 B:lnrg_mn-s

: . e -
or lc o leoo Hoo c. Cy Coos

1SEQUENCE + aLr? 60.9 ] 0.43 | 0.36 | 0.42 ¥ 64.3]0.49 | 0.36 | 0.43

*BURIED ON s

AVERAGR" a 76.4 { 0.0 ] 0.0 0.48 75.5 | 0.46 | -.01 | 0.46

PATTERN g4 73.4 | 0.0 |o0.53 | 0.49 ] 70.5] 0.0 |o0.45 |0.44
urxep 5 62.2 | 0.45 | 0.35 | 0.41 } 61.1] 0.48 | 0.36 | 0.36
coupLExS 68.0 | 0.57 | 0.45 { 0.45 || 67.7 | 0.56 | 0.41 | 0.47

TSEQUENCE aLL 2 59.0 | 0.44 }0.37 } 0.42 |}l 63.0] 0.50 | 0.33 | 0.38

ONLY
al 72.6 | 0.42 0.0 ]Jo0.42 } 75.910.48 | 0.21 | 0.46
as 74.0 0.0 |o0.54 |0.48 }l 75.7 [ 0.0 | 0.59 | 0.52
mrxep 3 62.3 | 0.43 | 0.36 { 0.41 || 59.5 | 0.42 | 0.27 | 0.38
COMPLEX® 64.4 | 0.53 | 0.42 | 0.37 || 64.9 ] 0.51 | 0.46 | 0.39

SEQUENCE AND aLL 2 63.5 | 0.46 | 0.42 | 0.42 # 63.0] 0.52 | 0.32 | 0.37

REAL "B=U" s

PATTERNS a 73.4 | 0.38 J 0.0 |0.36 [ 72.2 | 0.44 J 0.0 | 0.40
g 73.4 | 0.0 |o0.51 Jo.s0 |l 72.8 0.0 ]o.51]0.44
MIxep 3 60.1 | 0.45 | 0.29 | 0.30 [ s8.8 | 0.41 | 0.29 | 0.36
comprex ¢ | 68.3 {0.57 | 0.50 | 0.43 |l 67.0] 0.59 | 0.40 | 0.41

SBQUENCE AND | ALL 2 61.0 | 0.46 | 0.42 | 0.42 || 59.7 | 0.43 | 0.28 | 0.37

B-U PATTERN s

PREDICTED_ BY a 77.0 | 0.48 | €.0 0.46 77.3 ]| 0.83 { 0.0 0.50

A NETWORK g 7¢.0 | 0.0 |o0.53 Jo.52 || 75.1} 0.0 |o0.52 | 0.53
uIxep 5 62.2 | 0.50 | 0.3 } 0.37 [l s7.8 | 0.41 | 0.27 | 0.33
couprex ¢ | e8.3 ] 0.60 | 0.47 | 0.43 || 64.7 ] 0.53 | 0.39 | 0.39

SEQUENCE AND al 81.6 |o.6 {0.0 |o.56 j80.8}0.59 |0.0 |o0.54

REAL RESIDUE

SPECIFIC g ¢ 70.5 | 0.0 ] 0.49 | 0.4 74.0 0.0 | o0.55 | 0.49

10
CONTACT MAP M’ 61,5 | 0.39 {0.39 | 0.41 64.5 | 0.53 | 0.38 | 0.43

coMpLEX & 68.7 | 0.56 | 0.49 | 0.46 72.6 | 0.66 | 0.52 | 0.51

! Results for the network with input information about residues "buried on average”.
Cascaded network trained and tested on all types of proteins with filtration.
Cascaded network trained and tested on o proteins with filtration.

Cascaded network trained and tested on B proteins with filtration .

Cascaded network trained and tested on mixed o/p proteins with filtration.

Complex neural network with intemal division of proteins into classes.

Results for the network with only sequence information but with protein classes.
assigned from the known structures.
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acids alone determines the secondary structure of the native Sgn\formation.
While there are some (sometimes rather well defined) intririsic tendencies
to form secondary motifs, the actual secondary structure is also dictated by
packing and long range interactions within the globular state [1, 2, 4, 27].
However, the fact that information about residue specific contacts doesn’t
on average give an accuracy for secondary structure prediction greater than
‘712% may indicate that this is the upper precision limit of this method. Thus,
alternative schemes may be required to improve the level accuracy of
secondary structure prediction. One such scheme that uses a supersecondary
structure predictor is currently under devélopment.

We wish to thank Drs. Adam Godzik and Mariusz Milik for stimulating
discussions.

Appendix A

List of proteins used as the smaller training set and testing set. The last
10 proteins were used as the small testing set. Proteins marked with ? were
used as the large testing set:
1ALc®! 1BP22 1cCR® 1ECO* 1FD2° 1HMQ® 1L017 1MBD?
1R69° 1UTG!® 2cDV2! 20PP12 2cYP! 2LH2!* 2LHB2L? 2WRP!6
3c2c? sTNC!®  1HNEY® INXBZ 20NA?2! 2FB4222 2pK A%
250D 3RP2%2 511B%° 2GCRY 25GA*28 2RHE? 1CSE?Y 1CTF!
1FDX>21Fx1%3 16D13* 1RDG? 1UBQ? 2ACT? 3APP*38 247A%
3B5C*02cA2t! 2c12#*2 20v0* 2PRK* 3EST* 3RNT#S 3TLNY
sCPA*SSRXN® 6LDH® 7RSA®! 8DFR?2 9PAPY? 9WGA* 1PAZ
3APR3GRS®7 4FXN® 1SNs®? 1PCY*® 15GT*! 1HOES?
4HHB3 2cCY?1MBA2 11721296 '

References to Appendix A

1. K.R.Acharya, D.I.Stuart, N.P.C.Walker,M.Lewis, D.C.Phillips (1989), J.Mol.Biol., 208, 99.

2. B.W.Dijkstra, K.H.Kalk, W.G.J.Hol, J.Drenth (1981), J.Mol.Biol., 147, 97.

3. H.Ochi, Y.Hata, N.Tanaka, M.Kakudo, T.Sakurai, S.Aihara, Y.Morita (1983), J.Mol.Biol., 166,
407.

Legend to Table 3 cont.

8 Results for the network with real local buried-unburied pattern.
? Results for the network with the buried-unburied pattern predicted by the network.
0 Results for the network with information about type and number of contact points for
the central residue.
*Percentage of correct prediction.
** Matthews’ coefficients.



386 M. VIETH and OTHERS 1992

4. W.Steigemann, E.Weber (1979), J.Mol.Biol., 127, 309.

5. A.E.Martin, B.K.Burgess, C.D.Stout, V.L.Cash, D.R.Dean (1990), Proc.Natl.Acad.Sci.USA, 87,
598. :

6. R.E.Stenkamp, L.C.Sieker, L.H.Jensen (1983), Acta Crystallogr., Sect.B, 39, 697.
7.M.G.Gruetter, T.M.Gray, L.H.Weaver, T.Alber, K.Wilson, B.W.Matthews (1987), J.Mol.Biol., 197,
315.

8. S.E.V.Phillips, B.P.Schoenborn (1981), Nature, 292, 81.

9. A.Mondragon, S.Subbiah, S.C.Almo, M.Drottar, S.C.Harrison (1989), J.Mol.Biol., 205, 189.

10. L.Morize, E.Surcouf, M.C.Vaney, Y.Epelboin, M.Buehner, F.Fridlansky, E.Milgrom, J.P.Mornon
(1987), J.Mol.Biol., 194, 725.

11. Y.Higuchi, M.Kusunoki, Y.Matsuura, N.Yasuoka, M.Kakudo (1984), J.Mol.Biol., 172, 109.

12. T.L.Poulos, B.C.Finzel, A.J.Howard (1987), J.Mol.Biol., 195, 687.

13. B.C.Finzel, T.L.Poulos, J.Kraut (1984), J.Biol. Chem., 259, 13027.

14. E.G.Arutyunyan, LP.Kuranova, B.K.Vainshtein, W.Steigemann (1980), Kristallografiya, 25, 80.
15. R.B.Honzatko, W.A .Hendrickson, W.E.Love (1985), J.Mol.Biol., 184, 147.

16. C.L.Lawson, R.-G.Zhang, R.W.Schevitz, Z.Otwinowski, A.Joachimiak, P.B.Sigler, to be pub-
lished.

17. G.E.Bhatia, Thesis, University of California, San Diego.

18. O.Herzberg, M.N.G.James (1988), J.Mol.Biol., 203, 761.

19. M.A Navia, B.M.McKeever, J.P.Springer, T.-Y.Lin, H.R.Williams, E.M.Fluder, C.P.Dorn,
K.Hoogsteen (1989), Proc.Natl.Acad.Sci.USA, 86, 7.

20. D.Tsernoglou, G.A.Petsko, R.A.Hudson (1978), Mol. Pharmnacol., 14, 710.

21. G.N.Reeke, Jr., J.W.Becker, G.M.Edelman (1975), J.Biol. Chem., 250, 1525.

22. H.D.Kratzin, W.Palm, M.Stangel, W.E.Schmidt, J.Friedrich, N.Hilschmann (1989), Biol.
Chem.Hoppe-Seyler, 370, 263.

23. W.Bode, Z.Chen, K.Bartels, C.Kutzbach, G.Schmidt-Kastner, H.Bartunik (1983), J.Mol.Biol.,
164, 237,

24. J_A Tainer, E.D.Getzoff, K.M.Beem, J.S.Richardson, D.C.Richardson (1982), J.Mol.Biol., 160,
181.

25. S.J.Remington, R.G.Woodbury, R.A.Reynolds, B.W.Matthews, H Neurath (1988), Biochemistry,
27, 8097.

26. D.H.Ohlendorf, A.C.Treharne, P.C.Weber, J.J.Wendoloski, F.R.Salemme, M.Lischwe, R.C.New-
ton, to be published.

27. H.E.White, H.P.C.Driessen, C.Slingsby, D.S.Moss, P.F.Lindley (1989), J.Mol.Biol., 207, 217.
28. J.Moult, F.Sussman, M.N.G.James (1985), J.Mol.Biol., 182, 555.

29. W.Furey, Jr., B.C.Wang, C.S.Yoo, M.Sax (1983), J. Mol.Biol., 167, 661.

30. C.A.McPhalen, M.N.G.James (1988), Biochemistry, 27, 6582.

31. M .Leijonmarck, A.Liljas (1987), J.Mol.Biol., 195, 555.

32. E.T.Adman, L.C.Sieker, L.H.Jensen (1976), J.Biol.Chem., 251, 3801.

33. K.D.Watenpaugh, L.C.Sieker, L.H.Jensen, in: Flavins and Flavoproteins (1976), T.P.Singer (ed.),
Elsevier Scientific Publ. Co., Amsterdam.

34. T.Skarzynski, P.C.E.Moody, A.J.Wonacott (1987), J.Mol.Biol., 193, 171.

35. M.Frey, L.Sicker, F.Payan, R.Haser, M.Bruschi, G.Pepe, J.Le Gall (1987), J.Mol.Biol., 197, 525.
36. S.Vijay-Kumar, C.E.Bugg, W.J.Cook (1987), J.Mol.Biol., 194, 531.

37. E.N.Baker, E.J.Dodson (1980), Acta Crystallogr, Sect.A, 36, 559.

38. M.N.G.James, A.R.Siclecki (1983), J.Mol.Biol., 163, 299.

39. E.N.Baker (1988), J.Mol.Biol., 203, 1071.

40. F.S.Mathews, P.Argos, M.Levine (1972), Cold Spring Harbor Symp., 36, 387.

41. A.E.Eriksson, P.M.Kylsten, T.A.Jones, A Liljas (1988), Proteins.Struct., Funct., 4, 283.

42. C.A.McPphalen, M.N.G.James (1987), Biochemistry, 26, 261.

43, W.Bode, O.Epp, R.Huber, M.Laskowski, Jr., W.Ardelt (1985), Eur.J.Biochem., 147, 387.




Vol. 39 NEURAL NETWORKS 387

44. C.Betzel, G.P.Pal, W.Saenger (1988), Acta Crystallogr., Sect.B, 44, 163.

45. E.Meyer, G.Cole, R.Radhakrishnan, O.Epp (1988), Acta Crystallogr., Sect.B, 44, 26.

46. D.Kostrewa, H.-W.Choe, U.Heinemann, W.Saenger (1989), Biochemistry, 28, 7592.

47. M.A.Holmes, B.W.Matthews (1982), J.Mol.Biol., 160, 623.

48. D.C.Rees, M.Lewis, W.N.Lipscomb (1983), J.Mol.Biol., 168, 367.

49. K.D.Watenpaugh, to be published.

50. C.Abad-Zapatero, J.P.Griffith, J.L.Sussman, M.G.Rossmann (1987), J.Mol.Biol., 198, 445.
51. A.-Wlodawer, L.A Svensson, L.Sjolin, G.L.Gilliland (1988), Biochemistry, 27, 2705.
52.].F.Davies, D.A.Matthews, S.J.Oatley, B.T.Kaufman, N.-H.Xuong, J.Kraut, to be published.
53. L.G.Kamphuis, K.H.Kalk, M.B.A.Swarte, J.Drenth (1984), J.Mol.Biol., 179, 233.

54. C.S.Wright (1990), J.Mol.Biol., 215, 635.

55. K.Petratos, Z.Dauter, K.S.Wilson, to be published.

56. K.Suguna, E.A Padlan, C.W.Smith, W.D.Carlson, D.R.Davies (1987), Proc.Natl.Acad.Sci.USA,
84, 7009. .

57. P.A Karplus, G.E.Schulz (1987), J.Mol.Biol., 195, 701.

58. W.W.Smith, R.M.Bumett, G.D.Darling, M.L.Ludwig (1977), J.Mol.Biol., 117, 195.

59. M.J Legg, Thesis, Texas Agricultural and Mechanical University.

60. J.M.Guss, H.C.Freeman (1983), J.Mol.Biol., 169, 521.

61. R.J.Read, M.N.G.James (1988), J.Mol.Biol., 200, 523.

62. ].W.Pflugrath, G.Wiegand, R.Huber, L.Vertesy (1986), J.Mol.Biol., 189, 383.

63. G.Fermi, M.F.Perutz, B.Shaanan, R.Fourme (1984), J.Mol.Biol., 175, 159.

64. B.C.Finzel, P.C.Weber, K.D.Hardman, F.R.Salemme (1985), J.Mol.Biol., 186, 627.

65. M.Bolognesi, S.Onesti, G.Gatti, A.Coda, P.Ascenzi, M.Brunori (1989), J.Mol.Biol., 205, 529.
66. P.J.Artymiuk, C.C.F.Blake (1981), J.Mol.Biol., 152, 737.

Appendix B

List of 137 proteins used as the second (large) training set and testing
set

lPrcl labp2 1cc5®  1coh® lcrn5 lcsc6 1cy37 leca® 1fc2’
3fxb lgcn 1mp2 1hmz13 1121 llhl 11 pRc 7 1ppt!® 1prc??
1pyg lrhdl lms 2aat 2atc2 2bp2 20pp27 2cyp28
2ins 2mlt 20r1 2t 2utg 3gap 3pgk35 3pgm?’6 4ins’’
4ts138 5cpv 51dh™0 Smb"1 5tnc*? 5xiat 9wga44 1F19% lacx46
1bds* 1bmv4 1bmy* 1cbh5° 1cd4! 1f19 1fc1’ 1gc15 1p09>>
1rmu5 ltnf 2en5°% 2n1A% i 1650 2kaif 21tN6 21m 2mEv64
2meV 5 2mey%® 2mrt6 2pab 20kz” 9 21067 2rsp 2s0d’? 2st”’
2tbv 3hmg845 4cpa derq’ 4sgb 5£:bx7 6h1r 8ap 181 lcho
lcla lems letu86 1£cb®? 1£x%8 llgp18 1i18%0 lpaz
1ptk°2 1phh?3 lprC 1r08% 1rbb 1mt97 1sn3 1tec99 Itgs, 100
luqul 1wsY 192 1wsyl® 24c¢10% 2541105 254,106 2dhf 2fd2 8
2gbp'®? 2541110 241511 2hla“2 21w“3 2sbt!14 2s31l 3 taa 2tp1
2ypi't® 3aqk!?? 3b5c 2" 3bc1'?! 3b1m!?? 3ca 2 3dfr 24 3fxc!?
3hmG'?® 3icd!?” 4dfr!? 4mdh 129 45bv'30 4tmn!3! 5cpal®? spxn!33
6acn!34 7cat!33 8adh!36 8ap1
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