
PROTEINS Structure, Function, and Genetics 18338-352 (1994) 

Monte Carlo Simulations of Protein Folding. I. Lattice 
Model and Interaction Scheme 
Andrzej Kolinski'" and Jeffrey Skolnick' 
'Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 and 'Department of 
Chemistry, University of Warsaw, 02-093 Warsaw, Poland 

ABSTRACT A new hierarchical method 
for the simulation of the protein folding process 
and the de novo prediction of protein three-di- 
mensional structure is proposed. The reduced 
representation of the protein a-carbon back- 
bone employs lattice discretizations of increas- 
ing geometrical resolution and a single ball 
representation of side chain rotamers. In par- 
ticular, coarser and finer lattice backbone de- 
scriptions are used. The coarser (finer) lattice 
represents C a  traces of native proteins with an 
accuracy of 1.0 (0.7) A rms. Folding is simulated 
by means of very fast Monte Carlo lattice dy- 
namics. The potential of mean force, predomi- 
nantly of statistical origin, contains several 
novel terms that facilitate the cooperative as- 
sembly of secondary structure elements and the 
cooperative packing of the side chains. Partic- 
ular contributions to the interaction scheme are 
discussed in detail. In the accompanying paper 
(Kolinski, A., Skolnick, J. Monte Carlo simula- 
tion of protein folding. 11. Application to pro- 
tein A, ROP, and crambin. Proteins 18:353366, 
19941, the method is applied to three small 
globular proteins. o 1994 Wiley-Liss, hc. 
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INTRODUCTION 
The inability to predict the three-dimensional 

structure of globular proteins from protein sequence 
is one of the most important unsolved problems 
of contemporary theoretical molecular b i ~ l o g y . ~ - ~  
There have been various approaches to solve this 
problem. Probably the most successful to date are 
methods based on sequence and structure homology 
matching5-14 to proteins for which the three-dimen- 
sional structures have been previously solved. These 
methods, when combined with molecular modeling, 
can predict the three-dimensional structures of some 
proteins or at least plausible structures of protein 
fragments. However, there is an obvious limitation 
of a homology-based approach to the protein folding 
problem. Namely, the number of known sequences is 
0 1994 WILEY-LISS, INC. 

growing many times faster than the number of 
known three-dimensional structures. It is unclear 
what fraction of these sequences will have folds with 
representatives in the library of known three-di- 
mensional structures. Some theoretical estimates 
suggest that the number of types of protein folds 
may be much larger than the number of distinct 
topologies seen in the present structural data 
base.16 Thus, while very powerful in principle, ho- 
mology modeling will always be restricted to com- 
paring new sequences to extant topologies. 

More straightforward approaches to the protein 
folding problem employ various computer simula- 
tion methods. Here, the ultimate aim is to build a 
computer model which, starting from sequence 
alone, generates the three dimensional structure of 
a given protein. These methods, which simulate the 
time evolution of the modeled system, could also pro- 
vide information concerning the folding pathway(s). 
Consequently, the properties of the folding interme- 
diates could be also studied. Some other methods, 
employing various types of energy minimization16J7 
and conformational search protocols4 could also ad- 
dress the nature of folding intermediates. While the 
computer simulation methods are in principle more 
general than homology-based methods, the practical 
realization of a successful folding algorithm has 
proven to be extremely difficult. 

Various computer models of protein folding em- 
ploy very different levels of molecular detai1.3*4,18,19 
Two extreme approaches may be considered. On one 
side, there are full atom models whose time evolu- 
tion is simulated using molecular dynamics (MD) 
with a very detailed force field.20321 Rigorous imple- 
mentations of MD studies of globular proteins usu- 
ally require the explicit simulation of a large num- 
ber of solvent  molecule^.^^*^^ These detailed MD 
simulations are extremely expensive, and the long- 
est simulations correspond to the real times in the 
range of nanoseconds. This is to be compared with 
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the time scale of real protein folding, which is of the 
order of milliseconds to seconds. Consequently, tak- 
ing into consideration the present state of comput- 
ing art, this approach can be used only for simulat- 
ing rather fast local rearrangements. Simulations of 
the entire folding pathway would perhaps be even 
more expensive than the above comparison suggests 
due to the larger volume of the denatured protein in 
solution. There is one additional question sometimes 
addressed in the context of the more general valida- 
tion of the MD methodology. It is not obvious that 
potentials currently used for MD simulations are ca- 
pable of distinguishing (based on an energy compar- 
ison) between topologically different folds of the 
same sequence.24 Nevertheless, MD simulations 
have proven extremely useful in studies of various 
local and/or small distance rearrangements of pro- 
tein  structure^.^^,^'^^^ For example, the relaxation 
of the structures of site-specific mutants with re- 
spect to the wild type structures has been success- 
fully investigated. Another type of MD study in- 
volves the small distance relaxation of entire 
globules,2°*22*26 as for example, the hinge bending 
motion of human lysozyme.22 Recently, it has also 
become possible to predict the three-dimensional 
structure of apoproteins based on relaxation of the 
known structure containing the prosthetic 
These are just some examples of applications based 
on MD, the most mature technique for the study of 
biomolecular systems. Detailed force field Monte 
Carlo simulations of the biomolecular systems have 
been much less popular. 

Recognizing the time scale limitations inherent in 
detailed molecular dynamics simulations of protein 
dynamics, various reduced representations of the 

plications of reduced simplified models to the study 
of protein stability, dynamics, and folding rely on 
the assumption that the fundamental properties of 
proteins are rather robust, and independent of many 
atomic details. To what extent this assumption is 
valid should also be addressed in studies of simpli- 
fied models. Typical reduced representation models 
ignore most of the atomic details. Usually a single 
amino acid fragment of the main chain backbone is 
represented as a single united atom. Similar simpli- 
fications are frequently invoked to account for the 
side groups. This class of models can explore time 
intervals much larger than the longest relaxation 
time of such model polypeptide chains. Various 
types of seqiempirical p ~ t e n t i a l s , ~ * ' ~ J ~ * ~ ' * ~ ~  usually 
derived from the statistical properties of the known 
three-dimensional structures of the globular pro- 
teins,29,30 have been used in the context of reduced 
models. Due to the very flat free energy surface of 
such models (which lack sufficient interaction spec- 
ificity), the predicted three-dimensional structures 
of even very small proteins were of rather low accu- 

In most applications, they are just on the 

conformations of proteins were propo~ed.~*'*,'~ AP- 

border of being randomly packed, dense collapsed 
structures. In all cases, the pattern of side chain 
packing hardly resembled the specific arrangements 
seen in real native proteins. When a target potential 
was employed in these simplified models, the explo- 
ration of the effect of various forces on the stability 
of the globular state and cooperativity of the folding 
process became possible." Related lattice models of 
the protein conformational space, which employed 
Monte Carlo dynamics (MCD) to simulate protein 
motion, generated the folding pathways of quite 
large globular  protein^.^'-^^ Using local conforma- 
tional propensities consistent with the native struc- 
ture, these model proteins very quickly folded to the 
proper unique "native state," thereby providing an 
example of how real proteins might "beat" the 
Levinthal para do^.^,^^ However, these simplified 
models, while quite helpful in understanding vari- 
ous aspects of protein folding dynamics and thermo- 
dynamics, also failed to predict three-dimensional 
structures of good accuracy when sequence informa- 
tion alone was used. 

In this series of papers, we present a novel hier- 
archical approach to the protein folding problem. At 
least for some small proteins, it can predict their 
three-dimensional structure with an accuracy in the 
range of 2-4 A rms (coordinate root mean square 
deviation after the best superposition) from the 
known (or expected) native state, using amino acid 
sequence as the only protein-specific input informa- 
tion. The hierarchy of simulation modules is as fol- 
lows: First, a coarser, but rather flexible, lattice 
model is used to fold the protein of interest to a fam- 
ily of three-dimensional structures. The precision of 
the model is in the range of 3-4 A rms for the Ca 
trace, and is about 4-5 rms for all the heavy at- 
oms. In these structures, the reproducibility of the 
packing pattern of the side chains is low, but it is 
still much higher than was observed in other simu- 
lations of simplified models. Then, the obtained folds 
are subject to refinement by a more precise, but still 
discrete, lattice model. This finer lattice representa- 
tion produces a well-defined pattern of hydrogen 
bonds and protein-like side chain packing. The re- 
sulting finer lattice conformations provide a set of 
secondary structure and tertiary contact constraints 
which can be used in target MD folding, employing 
an all atom representation and a detailed force field. 
Using this hierarchical protocol, several simple pro- 
teins have been successfully folded with rather high 
reproducibility, and good accuracy of the obtained 
folds. In the accompanying paper,' we describe three 
examples: the B domain of staphylococcal protein A, 
a designed monomeric, 120 residue, version of Es- 
cherichiu coli ROP dimer, and the 46 residue protein 
crambin (lcrn). The present paper provides a de- 
tailed description and discussion of the reduced 
model and simulation method. The force field incor- 
porated into the model consists of several terms. 
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Some of these terms are similar to various knowl- 
edge-based potentials used in other studies of model 
polypeptides. However, since a large part of the in- 
teraction scheme is rather novel, it requires more 
detailed analysis; this is especially true since the 
various contributions to the secondary and tertiary 
interactions have to be appropriately balanced. 

The key part of the proposed protocol for tertiary 
structure prediction is the discrete, reduced repre- 
sentation model of protein conformation and dynam- 
ics. What, then, are the major differences between 
the present approach and other applications of re- 
duced models to the protein folding problem? First, 
our model of protein conformations uses high coor- 
dination lattice representations of the polypeptide 
 hai ins.^^,^^,^^ The coarser (finer) lattice has an un- 
derlying grid spacing equal to  1.70 (1.22) A. Due to 
the “protein-like” geometry of the lattice Ca back- 
bone, the accuracy of the finer lattice side chain rep- 
resentation is about two times better than the 
coarser lattice description. These high coordination 
lattices reproduce, with a high degree of fidelity, 
various angular correlations seen in real proteins. 
For example, the virtual bond angle between two 
consecutive Ca-Cor vectors, and the angles between 
the main chain Ca backbone and the vectors defin- 
ing the centers of mass of the attached side groups 
can be reproduced with an average error smaller 
than lo”. This level of accuracy is probably neces- 
sary to make any meaningful simulations of real 
proteins. At this level of resolution, various collec- 
tive effects related to the fine details of protein pack- 
ing start to become manifest. Furthermore, the dis- 
cretized model is about two orders of magnitude 
faster in computer realization when compared to 
equivalent off-lattice models in the framework of a 
similar Metropolis scheme of the Monte Carlo dy- 
namics. This is because the lattice model enables the 
“in front,” prefabricated computation of various geo- 
metric transformations (elemental moves of the dy- 
namic scheme) as well as numerous contributions to 
the energy. 

A second distinguishing feature of the present ap- 
proach is that the model force field contains several 
novel elements designed to mimic, as closely as pos- 
sible, various interactions in globular proteins. 
Some terms of the potentials are sequence indepen- 
dent and are designed to keep the system in the 
portion of conformational space that is “protein- 
like.” For example, the model system most fre- 
quently samples the valleys in an “averaged” 
Ramachandran map. This is achieved by the intro- 
duction of an energetic bias that regularizes the 
main chain backbone by enforcing the proper dis- 
tribution of the short-range Ca-Ca distances and 
chirality. Then, a highly cooperative model of the 
hydrogen bond network drives the system to pro- 
tein-like secondary structure. This could be either 
helical, P-~heet:~.~~ or a mixture of regular frag- 

ments with less regular ones. The important feature 
is that large, completely irregular globules are very 
unlikely, even in the absence of any amino acid spe- 
cific interactions. The amino acid specific part of the 
conformational energy consists of several potentials 
of mean force describing the short- and long-range 
interactions. These potentials are derived from a 
statistical analysis of a database of high resolution, 
three-dimensional structures. They contain at  least 
two terms that were absent in other studies. These 
terms are crucial for the predictive strength of the 
model. The first is an amino acid pair specific, mean 
force potential describing the angular correlation 
between side groups down the chain. This short- 
range potential triggers the formation of a particu- 
lar type of secondary structure, when permitted by 
other interactions. The second is a multibody poten- 
tial which reflects the specific, regular packing of 
the side groups. Thus, not only is secondary struc- 
ture formation cooperative, but the transition from a 
globule with a loosely defined hydrophobic core to 
the globular native-like state possessing well orga- 
nized packing pattern is also quite cooperative. 

In what follows, we will try to provide a detailed 
physical justification for the various potentials used 
in this work, although the discretized model could be 
also viewed as a system whose physical meaning is 
justified by the ex post fact0 correct mapping of 
amino acid sequences to their respective three di- 
mensional structures. In fact, recent simulations” 
of two proteins designed by DeGrado and co-work- 
e r ~ ~ ~ . ~ ~  provide strong evidence for the validity of 
these potentials, a t  least for simple folds of globular 
proteins. The predicted folds, and the striking dif- 
ferences between the nature of the compact states 
(molten globule versus native-like) of these proteins, 
are in agreement with all known experimental 
f a ~ t s . ~ ~ - ~ ’  Since these proteins have not been in- 
cluded in the database used for constructing the sta- 
tistical potentials, the possibility of specific “target” 
biases in the folding simulations can be safely elim- 
inated. Of course, there is always the possibility that 
the force field is biased toward a particular class of 
globular proteins, as characterized by size, content 
of regular secondary structure, etc. Due to the in- 
trinsic character of reduced models and model po- 
tentials, the possibility of this kind of bias can only 
be examined by computer folding experiments on a 
variety of proteins. 

The remainder of this paper is organized as fol- 
lows: First, we describe the discretized representa- 
tion of the protein main chain backbone on the 
coarser and finer lattices and the representation of 
the side groups in the framework of these models. 
Second, the Monte Carlo dynamics scheme is pre- 
sented. The description of the geometric representa- 
tion is followed by a detailed discussion of the inter- 
action scheme and its implementation within the 
Metropolis sampling procedure. We conclude with a 



341 MONTE CARLO SIMULATIONS OF PROTEIN FOLDING I 

discussion of possible future refinements of the pro- 
posed method. The results of the folding of two he- 
lical proteins, and the folding of crambin, a small 
alp protein, with a rather unique topology, are de- 
scribed in the accompanying paper.' 

LATTICE MODELS AND MONTE 
CARLO DYNAMICS 

The lattice model in the coarser representation is 
very similar to that used p r e v i o ~ s l y . ~ ~ , ~ ~ * ~ ~  Fo r both 
discretizations, the interaction scheme has been up- 
dated and refined. 

Our reduced models use an a-carbon, lattice rep- 
resentation of the main chain backbone, i.e., every 
single amino acid segment of the main chain is 
treated as an united atom. The Ca trace serves as a 
reference frame for the definition of the side chain 
positions, and the orientation of the hydrogen bonds. 
The side groups are also treated as single united 
atoms. The location of the center of the side group 
depends on the amino acid identity, the local confor- 
mation of the Ca trace, and the actual rotamer of the 
side chain. As indicated previously, two lattice mod- 
els are used in the folding algorithm. The first model 
has a coarser underlying grid. This model is em- 
ployed when simulating the folding from an ex- 
panded, random coil state. The second, finer lattice 
model is used for the simulation of the later stages of 
folding. In principle, the finer lattice could be (and 
in a limited number of cases has been) used to sim- 
ulate the entire folding process; the hierarchical ap- 
proach was elected for the practical reason of mak- 
ing the entire simulation less CPU intensive. The 
descriptions of the geometric properties and Monte 
Carlo dynamics scheme are given separately for 
both models. Since the interaction scheme is essen- 
tially the same for both lattice representations, it is 
presented in a separate section. 

Coarser Lattice Model 
The set of basis vectors consists of all cyclic per- 

mutations of the 5, y, and z (including sign permu- 
tations) coordinates of the following vectors: (2,1,1), 
(2,1,0), and (l,l ,l).  There are a total of 56 such vec- 
tors. Suppose that a lattice path is fit to the set of Ca 
Cartesian coordinates of a real protein. In order to 
obtain a good overall rms deviation from native as 
well as a good local angular correspondence to the 
real chain, some restrictions on the basis vectors are 
necessary. Namely, the valence angle for the model 
Ca trace is restricted to the range (78.5', 143.1'). 
The boundaries were selected to cover the distribu- 
tion seen in real proteins. The best fits to three- 
dimensional structures from the protein database 
are obtained when the spacing of the underlying cu- 
bic lattice (1,0,0) equals 1.70 A. 

This lattice is quite flexible. Large helical motifs 
can be represented with an accuracy of 0.7 A rms, 

P-sheet motifs with an accuracy of 0.6 A, and the 
average rms for the entire database is slightly below 
1.0 A rms for the Cas. Moreover, the estimated an- 
gular error in the definition of the Cp direction (see 
ref. 35 for more details) is in the range of 15-25'. 
These rms deviations and angular distortions are 
much smaller than in other simplified lattice models 
of proteins.35 

The excluded volume of the model chain backbone 
is slightly exaggerated. The distance of the closest 
approach for a pair of nonbonded a-carbons is equal 
to 4.78 A [the length of a lattice vector of the type 
(2,2,0)1. 

For each amino acid, a library of side chain rota- 
mers was built within the framework of a single 
sphere representation. The number of model rotam- 
ers depends on the amino acid identity, the actual 
conformation of the main chain backbone, defined 
by two consecutive vectors of the Ca trace, and the 
assumed resolution for the side group representa- 
tion. For the N-terminal (as well as for C-terminal) 
amino acid, the definition of the side group orienta- 
tion is provided by a dummy backbone segment, 
which may also be treated as an N-terminal (C-ter- 
minal) cap of the polypeptide. The centers of inter- 
action for the side groups have off-lattice coordi- 
nates, except for glycine whose center of interaction 
is located at  the Ca position. The resolution of the 
model for the side groups equals 1.7 A. Each side 
group has a strongly repulsive, square well core 
and a weaker square well interaction sphere. The 
cut-off distances for these envelopes are amino 
acid pair specific, reflecting the possibility of dif- 
ferent packing of a given side group with var- 
ious other side groups. Figure 1 schematically shows 
a short fragment of the model chain. The average 
side group diameters are drawn for the sake of clar- 
ity. 

The dynamics of the model system is simulated by 
a stochastic process of small, random micro modifi- 
cations of the chain conformation. The process is 
controlled by the asymmetric Metropolis scheme.*' 
Monte Carlo dynamics (MCD) is the natural choice 
for discretized models and is to a large extent equiv- 
alent to an off lattice, Brownian dynamics simula- 
tion with a relatively long time step and a large 
random force. This means that the obtained trajec- 
tories are numerical solutions of a stochastic equa- 
tion of motion, provided that the set of elemental 
moves spans the entire space of possible conforma- 
tional transitions and that the probabilities for the 
elemental moves satisfy detailed balance. MCD has 
a physical meaning for those dynamic properties 
whose characteristic time scales are considerably 
larger than the time scale of the elemental micro 
modifications implemented in the algorithm. Lattice 
MCD has proven to be a very efficient method of 
studying long time dynamics of polymer sys- 
t e m ~ . ~ ~ - ~ ~  
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Fig. 1. Schematic drawing of a short fragment of the model 
polypeptide chain on the coarse hybrid lattice. The spacing of 
underlying cubic lattice grid is equal to 1.7 A. The spheres cen- 
tered on the vertices of the main chain correspond to the main 
chain portion of the excluded volume. The side chains have re- 
pulsive cores (shaded spheres) and square well attractive or 
weakly repulsive regions (open spheres). The radii shown in the 
figure are approximate, since the cut-off distances are amino acid 
pair specific. 

MCD on the coarser lattice employs the following 
set of elemental moves: 

A. A random modification of the rotamer repre- 
sentation of the randomly selected amino acid. The 
Ca trace remains unaffected (Fig. 2A). 

B. A virtual two bond spike move (Fig. 2B), sub- 
ject to the bond angle restrictions mentioned above. 
The end segments are treated separately, and a new 
orientation of two affected bonds is selected ran- 
domly (not displayed). 

C. A four bond kink move (Fig. 2C). Similar to the 
two bond moves, a prefabricated library of all possi- 
ble four bond moves is employed. 

D. Eight and 10 bond moves, where a fragment of 
the model chain moves a distance that is small 
enough to prevent crossing another portion of the 
model chain (not displayed). 

E. A small random displacement of a large part of 
the chain, starting from the randomly selected seg- 
ment up to the chain end (Fig. 2D). In contrast to the 
elemental moves (A-D), most of the side chain rot- 
amers remain the same, due to the rigid body-like 
translation of the subchain. 

The unit of the model time of a chain of length, n, 
is the time required for on average n attempts at 
moves A and B, n-4 attempts a t  moves C, n-8 plus 
n-10 attempts at the two kinds of moves of type D, 
and one attempt at move E. The moves are randomly 
mixed. The scaling of the model time to real time 
based on the frequency of local conformational tran- 
sitions in real proteins would be rather ambiguous. 

Fig. 2. Schematic representation of elemental moves em- 
ployed in the MCD scheme on the coarser lattice. (A) An example 
of motion of the center of the model side group, simulating an 
internal isomeric transition for a flexible side chain. (B) Two bond, 
spike moves; for clarity, the rotamer displacements are not shown. 
(C) Four bond move. (D) Small distance, rigid body displacement 
of a large fragment of the model chain, starting from the rotation 
of a randomly selected single bond up to the chain terminus. 

Rather, attempts to relate the model time to real 
time should be based on longer relaxation phenom- 
ena. In this way, one may obtain a qualitative esti- 
mate of the time scales of various stages of the mod- 
eled protein dynamics and folding. The acceptance 
ratio of a particular move depends on the stage of 
the folding process and the system's temperature. 
With decreasing temperature, there is a slow down 
in the frequency of various processes. The model of 
dynamics allows for the slow diffusion of assembled 
fragments of secondary and supersecondary struc- 
ture. Of course, these assembled fragments can also 
dissolve and reassemble in a different place. There- 
fore, various possible mechanisms of protein assem- 
bly are not a priori excluded. 

Finer Lattice Model 
For this lattice, the set of basis vectors is built 

from all the permutations of vectors of the type 
(3,1,1), (3,1,0), (3,0,0), (2,2,1), and (2,2,0). There are 
90 vectors in the set. The mesh size of the underly- 
ing simple cubic lattice (1,0,0) is equal to 1.22 A. The 
backbone valence bond angle lies in the range (72.5", 
154"), and the distance of closest approach for two 
Cas is equal to 3.45 A. In contrast to the somewhat 
exaggerated excluded volume of the coarser lattice 
backbone, the backbone of the finer lattice slightly 
underestimates the excluded volume of the main 
chain. These differences are in the range of the res- 
olution of the finer lattice. Moreover, a small frac- 
tion of the proper volume of a given residue could be 
associated either with the main chain, united atom 
or the side group, united atom. In general, the new 
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TABLE I. Maximum Number of Side Group 
Rotamers for Lattice Models 

Lattice 
Amino acid Coarser Finer 
Alanine 
Serine 
Cysteine 
Valine 
Threonine 
Isoleucine 
Proline 
Methionine 
Aspartic acid 
Asparagine 
Leucine 
Lysine 
Glutamic acid 
Glutamine 
Arginine 
Histidine 
Phenylalanine 
Tyrosine 
Trwtouhan 

1 
1 
2 
1 
1 
2 
1 
5 
3 
3 
4 
9 
8 
7 
13 
4 
5 
4 
6 

1 
1 
3 
2 
3 
6 
1 
13 
8 
10 
7 
25 
21 
18 
58 
6 
5 
6 
6 

discretization is somewhat more permissive; how- 
ever, it is closer to the geometry of real proteins. The 
rms of fitted lattice backbones from Ca traces of 
PDB structures3' is about 0.8 A. The quality of fit is 
somewhat better than for the coarser lattice. The 
accuracy of the side chain representations improves 
significantly and is in the range of 1.0 A for the 
centers of mass of particular rotamers. The number 
of side group rotamers for a given backbone confor- 
mation is on average two to three times larger than 
the corresponding number for the coarser lattice 
model (see Table I). 

The model of the Monte Carlo dynamics is simpli- 
fied. This seems to be acceptable due to the larger 
inherent flexibility of the finer lattice. On the other 
hand, one has to take into account the larger num- 
ber of basis vectors. Consequently, tabularization of 
the four- (and more) bond moves is rather impracti- 
cal on most computers. Taking these facts into con- 
sideration, the following set of elemental moves is 
used 

A. Random change of the rotamer of the randomly 
selected residue. 

B. Three bond moves (Fig. 3A). The precalculated 
set of moves contains only those micro modifications 
that preserve the geometrical restrictions men- 
tioned above. For a sequence of three backbone vec- 
tors, there are up to 168 acceptable new three bond 
sequences. Rotamers of the affected residues are 
randomized. 

C. The small distance motion of a large, randomly 
selected, part of the chain (Fig. 3B). It is recon- 

Fig. 3. Examples of finer lattice elemental moves. (A) Three 
bond kink move-there are up to 168 such modifications, given a 
particular starting geometry. (B) Larger distance moves, gener- 
ated as a sequence of three bond moves applied to the randomly 
selected subchain. A conformational bias is applied in order to 
increase the acceptance ratio. The full conformational energy 
change is computed after the entire trial rearrangement is com- 
pleted. 

structed by successive application of the three bond 
moves to the adjacent parts of the chain. 

The definition of the model time unit and organi- 
zation of the Monte Carlo algorithm are similar to 
that for the coarser lattice model. Both lattice mod- 
els in the high temperature limit exhibit Rouse-type 
dynamics and the proper scaling of random coil di- 
mensions with chain length.27,45 This provides some 
additional evidence that MCD mimics to a large ex- 
tent the qualitative features of the long time dynam- 
ics of real polypeptides. 

INTERACTION SCHEME FOR 
LATTICE MODELS 

The interaction scheme is divided into three parts. 
A part of the interaction scheme is sequence inde- 
pendent and is designed to keep the model system in 
that portion of conformational space which resem- 
bles proteins. Then, there are short- and long-range 
interactions that are amino acid specific, pairwise 
amino acid specific, and finally, there are multibody 
interactions. Schematically, the energy of the model 
polypeptide can be written as follows: 

where Ec,.trace is the sequence independent statis- 
tical potential for the main chain Ca-trace confor- 
mation, E,-,, is the cooperative potential simulat- 
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Fig. 4. Comparison of the distribution of chiral distances between the ith and i+3th =-carbons in the 
database (solid line) and in the finer lattice which has been regularized by an effective Ramachandran 
background potential, but without tertiary interactions (dashed line). Thus, the lattice discretization is consis- 
tent with the PDB distribution. 

ing the hydrogen bond network in real proteins, Em, 
is the rotamer energy for the single ball representa- 
tion of the side chains, Esg-local is the energy depen- 
dent on the local angular correlations of the side 
group orientations, E, is the amino acid specific 
centrosymmetric force, E,,,, is the pairwise interac- 
tion of the side groups, and Etem is the four body, 
side group contact map template interaction. The 
particular terms are described below. The method of 
derivation of the potentials, their statistical me- 
chanical justification, their implementation in the 
Monte Carlo algorithms, and their different effects 
on the behavior of the model proteins are also dis- 
cussed. The numerical values of various parameters 
of the proposed force field are either published2’ or 
in the case of large files, they are available by e-mail 
from the authors.46 

Sequence Independent Potentials 
Effective Ramachandran potential 

Because various atomic details are neglected, lat- 
tice models have their own distribution of intra- 
chain distances that are typical of random coil poly- 
mers. Therefore, protein like chain geometry has to 
be introduced into the model. To achieve this, the 
distribution of the distances between the ith and 
i+3th a-carbon vertices in the model chain, rL,,+3, 
and the chirality of these three bond fragments is 
compared to the corresponding distribution for real 
proteins. Then, the bins in the discrete lattice dis- 
tribution of these states are weighted by the appro- 
priate Boltzmann factors in order to mimic the av- 
erage distribution in proteins. The resulting set of 
energy parameters, Eca-trace(b,-l,b,,b, + where b, 

denotes the ith Ca backbone vector (from Ca i to 
i+  11, was subsequently used in all folding simula- 
tions. This term plays the role of an effective aver- 
age Ramachandran potential whose contribution to 
the total conformational energy for entire polypep- 
tide is calculated by summation along the chain. 

In Figure 4, we compare the finer lattice distribu- 
tion of the intrachain distances, a t  a temperature 
T= 1.0 (the temperature is dimensionless, since en- 
ergy is always expressed in kBT units), with the cor- 
responding distribution for a set of 56 high-resolu- 
tion globular proteins found in the Brookhaven 
Protein Data Bank2s930 (PDB). The values of ?i,i + 

for the right-handed fragments are plotted along the 
positive x-axis, while the values for left-handed frag- 
ments are plotted along the negative x-axis. It may 
be noticed that the database distribution and the 
time averaged distribution from the long lattice sim- 
ulation practically overlap. Therefore, the plot 
shows clearly that there is no bias toward any par- 
ticular conformation (helices, extended, etc.) in the 
model lattice chain, when all other interactions are 
turned off. In this kind of “generic protein,” the he- 
lix content is equal to the average helix content seen 
in the entire structural database. The highest nar- 
row peak in the plot corresponds to helical confor- 
mations (along with a contribution of tight turns), 
while the two broader peaks correspond to less 
unique (with respect to backbone conformation mea- 
sured by ?i,i+3) extended P-strand and coil confor- 
mations. In the presence of other interactions, this 
potential has to be suppressed by a factor in the 
range of 0.5. This is because other forces also tend to 
favor the proper local geometry of the model protein. 
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Hydrogen bonds 
The second, sequence independent contribution to 

the potential implemented in the reduced model is 
the hydrogen bond potential with explicit coopera- 
tivity. The model hydrogen bond is designed to sim- 
ulate some aspects of the hydrogen bond network of 
real proteins. The positions of backbone atoms par- 
ticipating in hydrogen bonds are not explicitly de- 
fined for lattice models. In principle, a reasonable 
approximation for all the heavy atom backbone co- 
ordinates can be generated based on the value of the 
bond angle between two consecutive virtual Ca-Ca 
bonds.47 However, taking into consideration the 
limited accuracy of such a procedure as applied to 
lattice chains as well as the computational cost, a 
simplified scheme is proposed. The model H-bonds 
are generated explicitly from the Ca vertices, with 
account for different lengths and directionality. The 
model H-bond can be formed between two main 
chain beads i and j ,  provided that I i - j l r 3 ,  and that 
the following geometrical restrictions are fulfilled 

Rmin 5 rY I R,, (2a) 

I (bi-l-bi) . ri,, I 5 am, (2b) 

(2c) 

where bi is the backbone vector, and rij is the vector 
between "H-bonded" C a  vertices. R,,,=4.8 hi (4.6 
hi) and R ,  = 7.0 hi (7.3 hi) for the coarser (finer) 
lattice, respectively, and a,, is equal to 17.3 hi' 
(13.4 hi") for the coarser (finer) lattice. The different 
cut-off values reflect the different resolution of the 
two lattices. There is no asymmetry (donor versus 
acceptor) of the model H-bonds. Every model amino 
acid, except proline, can participate in a t  most two 
H-bonds, and proline can participate in one H-bond. 
These limitations suppress the number of possible 
realizations of the model H-bonds given only by Ca 
coordinates. The degeneracy of the model H-bond 
network is further suppressed by its implicit coop- 
erativity. Allowing for lattice fluctuations, the 
above definition nicely corresponds to the geometry 
of the hydrogen bonded network of real proteins. In 
fact, the model definition recovers about 90% of the 
main chain hydrogen bonds as assigned by the 
Kabsch and Sander4' method when applied to real 
proteins. Since the elements of secondary structure 
(helices, P-hairpins, and larger fragments) are re- 
produced by the lattice Ca traces with an accuracy 
in the range of 0.3-0.9 hi rms from native,35 the 
method of Levitt and Greer could be also used for 
secondary structure assignment of the local and glo- 
bal Indeed, allowing for some fluctuations of 
the lattice models, the geometric constraints given 
in Eq. (2) are very close to the Ca based distance 
definition proposed by Levitt and Greer.4s 

The model hydrogen bonds are cooperative. The 
system is additionally stabilized when each pair of 

I (b,-l-bj). ri,, I 5 am, 

adjacent H-bonds forms a helical or p-sheet type of 
hydrogen bond pattern. It has been noted that due to 
the Ca based definition of the H-bond pattern, there 
is no qualitative difference between the pattern seen 
in model parallel versus antiparallel p-sheets. The 
model definition neglects peptide bond orientations. 
The energy of the hydrogen bond network can be 
expressed as follows: 

EH-b,,, = BZ E H W , j )  + 
ZZ EHHG(i,j)G(i * 1 , j k l )  (3) 

where i and j indicate the two residues of interest, 
EH and Em are the energy of a single hydrogen 
bond and the cooperative contribution when a con- 
secutive set of residues i ,j  and i ? l , j * l  are hydro- 
gen bonded, and W,j] = 1 when the geometric crite- 
rion for H-bonds between Cas i and j are satisfied. 
The geometric definition of hydrogen bond and its 
cooperativity are illustrated in Figure 5. In the ab- 
sence of fine atomic details and the lack of explicit 
account of electrostatic interactions, the model coop- 
erative network of hydrogen bonds plays the impor- 
tant role of a structure regularizing factor. The nu- 
merical values of EH and EHH were selected based 
on two criteria. First, the secondary structure as- 
signment in the folded state (lattice realizations of 
the native state of plastocyanin and flavodoxin have 
been used) has to be as accurate as possible, and, on 
the other hand, the amount of secondary structure 
in the unfolded state (near the folding temperature) 
has to be marginal. EH-0.5, and EHH-0.75 have 
been used in the folding simulations (all the numer- 
ical values correspond to T = 1) .  This is of the same 
range as the values used previously in MCD simu- 
lations of cooperative coil-helix and coil-p-globule 
transitions in much simpler ~ystems.'~ 

Short-Range Interactions 
Rotamer energy 

For a given local backbone conformation defined 
by two consecutive Ca-Ca vectors, there is a set of 
side group rotamers. Each rotamer is represented by 
a single ball. The number of rotamers in the set 
depends on amino acid identity. For alanine, there is 
always only one rotamer; for the bigger amino acids, 
the number of rotamers is larger. The maximum 
number of rotamers for various amino acids are pre- 
sented in Table I. The rotamer library was con- 
structed as follows: First, for each residue in all the 
proteins from the structural database, the best fit of 
two lattice vectors was calculated. The resulting 
projections were grouped according to backbone con- 
formation and the amino acid identity. Then, the 
average center of mass of all heavy atoms (equal 
mass assumed) of the most populated side chain ro- 
tamer was calculated. If the next most populated 
rotamer's average center of mass was within a spec- 
ified distance threshold, then that rotamer was not 
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Fig. 5. Illustration of the geometry of the model H-bonds 
(A). rd from Eq. (2). the vector between two Cas, is shown as 
dashed arrow, the vectors b,-,-b, with k= i or j are shown as 
thin solid arrows. (B) p-Sheet fragment, with model H-bonds 
shown in dashed lines. (C) Helical fragment. In cases A and B, 
there is one cooperative contribution due to the regular ordering of 
the two H-bonds. 

added to the rotamer library, but was counted as 
belonging to the first rotamer. If the distance be- 
tween the two centers of mass was beyond the 
threshold, then the second rotamer was added to the 
library. The process is repeated until all side chain 
rotamers have been compared to the existing li- 
brary, subsumed as belonging to a previous rotamer 
or added as a new member. The distance threshold 
was set equal to 1.7 A (1. A) for the coarser (finer) 
lattice. The energy of a given rotamer is defined as 
-In( f,, x N,,,), where for a given backbone confor- 
mation, fmt is the frequency of occurrence of the ro- 
tamer in the library (Zf,, = I), and N,,, is the num- 
ber of different rotamers of the residue under 
consideration. 

Local side chain orientationul coupling 
At least for the reduced representation employed 

here, a statistical analysis of the structural database 
seems to indicate that the most specific information 
about sequence-dependent local conformational pro- 
pensities is encoded in the angular correlations be- 
tween the orientations of the side groups. Figure 6 
schematically shows a small fragment of the protein 
Ca backbone, with arrows pointing toward the av- 
erage center of mass of the side group. Statistics 
have been the collected for pairs of amino acids at 
Psition i and z+l, z and z+2, z and i + 3 ,  and 2 and 
i+4,  using 10 bins for the cos(Oi,i+k). The energy 

Fig. 6. Illustration of the geometry associated with the short- 
range angular correlation of the side group vectors. See the text 
for details. 

(dimensionless) associated with a particular bin has 
been determined by comparing the observed popula- 
tion with respect to a “random” population, i.e., one 
with a uniform distribution in all the bins, in the 
usual way by: 

dcos(B)I = -k,T x In(obseruedlmndom), with k,T = 1 (4) 

The short-range interactions for the entire chain 
read as follows: 

Eshort = Erot + Esg-local 

1 I 4 

= z{ Erot(ai) + x E k ( @ i , i + k , a i , a j + k )  (5) 
k = l  

where ai is the amino acid at  position i down the 
chain, @i, i+k  is the angle between the side group 
vectors for the actual rotamers. Em&) is the energy 
of a particular rotamer. Again, this contribution to 
the potential of mean force comes from the statistics 
of three dimensional structures in the PDB data- 
ba~e.~’,~’ 

General observations 
The short-range angular interaction potential 

triggers the formation of secondary structure ele- 
ments. In the absence of any sequence specific, long- 
range interactions, although in presence of the ge- 
neric interactions discussed above, the resulting 
secondary structure is on average about 70% correct, 
when backbone distance criteria are applied. This 
means that on average helical (or turn) conforma- 
tions, as measured by the Ca-Ca distances down the 
chain (and backbone handedness), are correctly re- 
covered. A similar level of accuracy is observed for 
expanded states. The implicit cooperativity of this 
potential and its explicit coupling with the side 
group degrees of freedom facilitate a much better 
accuracy of secondary (and supersecondary) struc- 
ture prediction when moderated by long-range in- 
h-aCtiOnS. This interesting application of the pro- 
posed protein model will be exploited elsewhere.50 
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The best results are obtained when the strength of 
the short-range interactions is scaled by a factor of 
0.75. Otherwise, the chain mobility is strongly sup- 
pressed, and the system tends to be locked in local 
minima on the conformational energy landscape. 
The necessity of scaling down the various potentials 
emerges from the incomplete separation of the con- 
tributions of the various potentials and the intrinsic 
cooperativity of intraprotein interactions. 

LongRange Interactions 
One body, centrosymmetric burial potential 

There are three contributions to the long-range 
interactions. The first one is a central, one body, 
amino acid specific potential. It is based on the ob- 
servation that some amino acids tend to be buried in 
the interior of the globular protein, others tend to be 
just below the surface, while still others like to be 
exposed to the surrounding solvent. The potential 
for each amino acid has been derived from the sta- 
tistics of single domain globular proteins. It assumes 
spherical symmetry of the compact globule, and the 
energy of each amino acid is a function of its identity 
and the distance of the center of the side group (Ca 
in the case of glycine) from the center of gravity of 
the protein chain.51 Application of this potential re- 
quires an estimate of the radius of gyration ( S )  of the 
modeled (n residue) protein in its folded state. Since 
all globular proteins are more or less closely packed 
and have on average the same density, the requisite 
estimate can be done with sufficient accuracy. 

S = 2.2 (in A). (6) 

The above equation is derived from the fit to  a set 
of single domain structures from PDB. Note that the 
exponent is somewhat larger than 0.33 expected for 
a closely packed long polymer:2 reflecting a finite 
size effect. The one body potential makes a marginal 
contribution to the energy of the native states; how- 
ever, for denatured, expanded states, it can have 
quite a large positive contribution. Of course, this 
simplified potential cannot be applied to larger pro- 
teins having well-separated domains. In such cases, 
a different approach is required, the detailed discus- 
sion of which is beyond the scope of the present pa- 
per. However, we note that an alternative approach 
may invoke an energy penalty for strongly hydro- 
phobic side groups being exposed (whose degree of 
exposure is measured by comparison of the actual 
number of contacts for a given side group with the 
expected average number of binary contacts for this 
amino acid type). In some refinement runs employ- 
ing the finer lattice discretization, this kind of one 
body, amino acid specific burial term has been in- 
troduced in addition to the central, one body force. 
This part of the potential has been also derived from 
the statistics of the database. For a given side group, 
and a given actual number of contacts with other 

side groups, the energy is assumed to be propor- 
tional to -ln(number of contacts/average number of 
contacts for this amino acid). Local contacts (up to 
the fourth nearest neighbors along the chain) and 
nonlocal contacts have been treated separately. The 
effect of this update, however small, tends to gener- 
ate better defined conformations of loops and chain 
ends. 

Pair potential 

be written as follows: 
Then, there are pairwise interactions. These can 

EEp,  for rd < REPc 

fee, 
EMr = E", for Rrepu < r,j < Re, and cg 2 0 (7a) 

where i and j are the interacting amino acids sepa- 
rated down the chain at least by one residue (the 
nearest neighbors down the chain do not interact). 
The cut-off distances REP and R ,  are amino acid 
pair specific. Ere,,, which is in the range of 4 kBT, is 
a penalty for overlapping the repulsive cores of the 
side groups. The same repulsive force is applied to 
the side group-main chain overlaps. The E, are pair- 
wise, amino acid-specific interaction parameters 
and are derived from the statistics of a database of 
high resolution three dimensional structures (see 
Appendix for the details of the derivation of these 
parameters). The factor fdepends on the angle be- 
tween average orientations of the backbone frag- 
ment, defined by the vectors ui=rit2-riP2, with ri 
being the Cartesian coordinate of the ith a-carbon. 
In particular: 

for R"PQ < re < R,, and EQ < 0 i 

f= 1.0 - {cos~(u~,u~)-cos~ (20"))'. (7b) 

The above factor reflects the average angle between 
elements of secondary structure seen in globular 
proteins. The maximum occurs a t  20", and the min- 
imum, which occurs when the chain elements are 
perpendicular, is about 0.22 of the maximum 
strength. Note that small deviations from perpen- 
dicular orientations make painvise interactions 
much more favorable (e.g., for 70°, f=0.56). Some 
interactions, like those between distant P-strands in 
TIM barrel motifs (and in some other folds), will be 
artificially suppressed. However, most binary inter- 
actions occur between adjacent strands or helices. 
Consequently, this bias is rather small. Identical re- 
sults are obtained for the folding of protein A when 
Eq. (7b) is supplemented by the term, l-cos2(u,uj), 
which has a maximum at  90". 

Some comment is required about the definition of 
the pairwise interaction contact cut-off. Two side 
groups in a real protein are considered to be in con- 
tact when any pair of their heavy atoms is "in con- 
tact," i.e., the distance between these atoms is 
smaller than 4.2 A. A compilation of the database 
statistics on the pairwise contact distances reveals 
that they exhibit a rather sharp distribution (see 
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Table I of ref. 28). A strongly repulsive core is as- 
sumed up to a distance equal to the average contact 
distance minus two standard deviations. The soft, 
square well envelopes extend one standard devia- 
tion beyond the mean values. The numerical values 
of the one body potential, pairwise potentials, and 
the sizes of the spherical side groups can be found 
elsewhere.” 

Multibody side chain packing interactions 
The set of interactions discussed above can fold a 

limited set of small globular proteins. Moreover, it 
can distinguish between correct and incorrect folds 
of larger globular proteins. However, the obtained 
folds are of low resolution, and their side chain pack- 
ing is rather nonspecific. These folds usually have 
the character of molten glob~les,5~,’~ with well-de- 
fined secondary structure, a somewhat larger vol- 
ume than close packed structures, and a liquid like 
hydrophobic core. In contrast, it is known that the 
pattern of side chain packing in native proteins is 
highly specific and is more solid than liquid-like. 
Moreover, experimental studies show that the tran- 
sition from the molten globule state to the native 
state is very ~ooperat ive.’~,~~ Therefore, somewhat 
in analogy to the cooperativity of the H-bond net- 
work, a cooperativity of the side chain packing is 
proposed. Since our cooperative model of H-bonds 
reproduced quite well the cooperative helix-coil 
transition, it is expected that a similar parameter- 
ization, when applied to side chain packing, could 
perhaps facilitate cooperative fixation of side chains 
in the native state. In the present and our previous 
simulations,” the cooperativity of the side chain 
packing is accounted for by generic multibody inter- 
actions of the following form: 

Ebl?l = (‘L,J + ‘Z+k,J+n)  ‘ , J X  ‘Z+k,J+n;  with I 1 
= I n I, n = - ~ 3 ,  and 5 4  (8) 

where C,,J = 1 (0) if side chains i a n d j  are (not) in 
contact, i.e., rr,J<Rz,J. This “template” contribution 
makes some patterns of the side chain packing ex- 
plicitly more favorable. The templates used here are 
applicable to helical, as well as to j3-sheet type pat- 
terns of the side chain contacts. We also note that 
the cooperative templates only make a substantial 
contribution to the total energy subsequent to for- 
mation of the topology found in the native state. 
Since these molten globule intermediates already 
have a substantial amount of the native state’s sec- 
ondary structure, it is evident that the inclusion of 
the cooperative packing templates is not responsible 
for the structural class (helix, beta, or mixed motif) 
that the sequence chooses to adopt. 

Figure 7 shows, as typical examples, several pairs 
of contacts coupled according to the above coopera- 
tive term. The patterns of helix-helix and p-sheet 
contacts were literally taken from the X-ray contact 

map of the real protein, thioredoxin, (2trx), a small 
d p  globule consisting of 108 amino acids. In most 
proteins, these patterns are not so clean; there are 
usually some additions or deletions from such 
“ideal” templates. Nevertheless, very similar pat- 
terns can be seen many times in practically all glob- 
ular proteins.56 The templates embodied in Eq. (8) 
are generic in that they do not bias toward any spe- 
cific secondary structure; however, they facilitate a 
specific side chain packing pattern when the second- 
ary structure develops. Folding sir nu la ti on^^^^^^ of 
two proteins designed by DeGrado and co-work- 
e r ~ ~ ~ * ~ ~  showed that the proposed multibody cooper- 
ative interactions do not enforce side chain fixation 
when the real protein36 does not undergo a transi- 
tion from the molten globule to the native state. 
However, for a reengineered sequence,37 in agree- 
ment with experimental data, the simulationsz8 
show native like side chain fixation. Parentheti- 
cally, we note that instead of a cooperative term that 
favors proper, protein-like, contact-contact correla- 
tions, it is possible to use an apparently equivalent 
approach where nonphysical clusters of the side 
groups are penalized. In the last case, the pairwise 
interactions have to be somewhat stronger. 

Why are these kinds of cooperative terms neces- 
sary? First, the reduced representation model, due 
to the “fuzzy” description of the side groups, cannot 
reproduce the fine effects of close atomic packing, 
where perhaps the cooperative thermodynamics of 
the side group nestling occurs. In this respect, the 
contact templates simulate the observed fine pack- 
ing. However, even in detailed MD simulations of 
protein structures, the specific patterns of the side 
chain packing seen in the native state seem to de- 
generate.56 Therefore, it is possible that multibody 
interactions have a more fundamental physical jus- 
tification than the practical one invoked in these 
reduced models. This question will be further ad- 
dressed in the near future in the context of MD sim- 
ulations. 

The scaling of various contributions to the force 
field of the present model has been done in prelim- 
inary runs, by requiring a marginal level of second- 
ary structure in the unfolded state and a high level 
of secondary structure in the collapsed not necessar- 
ily native states. Since the long- and short-range 
interactions are not strictly separated, they have to 
be properly balanced. While this procedure seems to 
be somewhat arbitrary, it a t  least allows us to fold 
several proteins using the same set of interaction 
parameters. Due to insights gained from the previ- 
ous ~ o r k , ~ ~ , ~ ~  the search was not completely blind. 

OVERVIEW OF THE 
FOLDING PROCEDURE 

The folding simulations start from randomly gen- 
erated unfolded states of the model protein re- 
stricted to the coarser lattice. Folding proceeds by 



MONTE CARLO SIMULATIONS OF PROTEIN FOLDING I 349 

A B 

W 3  

w n  
W L  

W S  
Wcl 
w u  
W 4  

L T V A K L N  
E E E E E E E  

f-* 
x w  
X 4  
x u  
x w  
Xcl 
x u  
X &  

m a  

x n  

K G Q L K E F L D A  
H H H H H H H H H H  

Fig. 7. Examples of contact maps for parallel p-stranbp-strand and parallel helix-helix motifs. The num- 
bers indicate the number of cooperative "template" terms which stabilize particular contacts. 

simulated temperature annealing, or under isother- 
mal conditions, depending on whether the transition 
temperature has been already estimated. The 
coarser lattice model, with a mesh size equal to 
1.7 A, tends to adopt loosely defined folded confor- 
mations much faster than the finer lattice model 
does. It is unclear if use of the finer lattice model 
over the entire folding pathway would decrease the 
fraction of misfolded, kinetically trapped, compact 
states observed in some folding experiments. The 
answer to this question will require numerous 
lengthy simulations. 

In most cases, the folds obtained from the coarser 
lattice simulations have the correct secondary struc- 
ture and an average contact map describing the side 
chain packing which could be considered native- 
like. However, the instantaneous contact maps from 
various simulations differ substantially; the overlap 
between them is in the range of 20-35%. These val- 
ues appear to be too small for a plausible represen- 
tation of the unique native state, even taking into 
consideration the limited resolution of the model. 
Moreover, when the lifetimes of these binary con- 
tacts are measured, it becomes clear that the native- 
like side chain fixation is not always possible to 
achieve in the coarser lattice representation. In- 
stead, the packing of the model protein interior is to 
some extent liquid-like, exhibiting high side chain 
mobility. On the other hand, for very simple de- 
signed helical proteins, the difference between mol- 
ten globule and native-like states has been qual- 
itatively reproduced.28 This provides additional 
evidence that the generic side chain packing tem- 
plates do not guarantee that a native-like state, 
with long lived side chain contacts is achieved. 

Once a series of coarser lattice folds are obtained, 
each is subject to a refinement procedure. First, the 
Ca trace is projected onto the finer lattice, whose 
mesh size is 1.22 A. After a short relaxation of the 

minor packing incompatibilities introduced by the 
projection procedure, the finer lattice systems grad- 
ually adopt well-defined packing, will all signatures 
of side chain fxation. These folds, when simulated 
well below the transition temperature, have a back- 
bone rms from real native states in the range of 2 to 
4 A, depending on protein size and identity. In the 
final stage of the folding protocol, the entire full 
atom structures may be re~onstructed.~~ 

DISCUSSION AND CONCLUSION 
The relatively high accuracy of our reduced mod- 

e l ~ ~ ~ , ~ ~  has been achieved due to  a sufficiently flex- 
ible lattice representation3' of the main chain con- 
formation and a careful implementation of the 
geometric structure of proteins. In addition, several 
terms, novel in the context of "simplified model po- 
tentials, have been implemented, which apparently 
mimic in a reasonable way a protein-like force field. 
Of course, we realize that the potential which is 
presently used has not been self-consistently de- 
rived. That is, the various terms are introduced in- 
dependently and are designed to represent particu- 
lar aspects of the interactions controlling protein 
folding. Therefore, future work will be focus on the 
preparation of mean force potentials that are de- 
rived in a more consistent way. Using a genetic al- 
gorithm as an optimization procedure, it should be 
possible to obtain a more specific, and self-consistent 
potential consisting of one body, pairwise and multi- 
body interactions of the united atoms employed in 
these reduced models. In addition, the model H-bond 
network scheme should also be reexamined. Obvious 
improvements may include hydrogen bonding with 
side groups, as well as accounting for the donor- 
acceptor asymmetry of the H-bond. 

One may also wonder if the single ball represen- 
tation of side group rotamers is not the weak link in 
the present model. Very likely, the resolution of the 
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model could be improved by a finer side chain rep- 
resentation; however, it appears that the single ball 
rotamer representation is not yet fully exploited. 
The relatively good structures obtained for various 
helical bundles and the rather irregular fold of 
crambin suggest that the packing in the present 
model is surprisingly good. Moreover, application of 
a more elaborate set of side chain contact map tem- 
plates may fix some ambiguities of the model pro- 
tein packing and make the transition from the mol- 
ten globule to  the native state more cooperative. It 
also has to be kept in mind that a more accurate 
representation of the side chains could prohibitively 
increase the computational cost. This is another 
reason why improvements in the potential using 
the present level of discretization will be at- 
tempted first. Hopefully, this will allow the folding 
of the more complicated motifs of P-protein and 
larger alp barrels. Preliminary attempts a t  folding 
these more complicated motifs indicate that while 
the number of secondary and supersecondary ele- 
ments are in general correctly predicted, to date the 
native topology has not been recovered. Whether 
this merely reflects insufficient computer time, in- 
adequate potentials or both remains to be estab- 
lished. 

Another question that has to be addressed is the 
possibility of implicitly built-in biases in the pro- 
posed force field. This kind of bias could manifest 
itself as a hidden target potential. On the trivial 
level, the description of various potentials shows 
that it is not the case. On the other hand, up to now 
only a few simple and small proteins have been 
folded using the described m e t h ~ d . ~ , ~ * * ~ ’ , ~ ~  Th ere- 
fore, one has always keep in mind the chance that 
the model and its potentials somehow favor these 
folds. Some evidence that there is no significant bias 
comes from stability tests and refolding experiments 
performed on more complicated p and alp-proteins. 
These proteins (plastocyanin, flavodoxin) when 
started from conformation having a relatively large 
rms (in the range of 12 A from native Ca trace), but 
with substantial memory of the native like overall 
fold, collapse to conformations having mostly correct 
secondary structure, an rms deviation from native 
in the range of 4-6 A, and about 50% of the native 
side group contacts. Due to their simpler topology, it 
is very likely that small helical proteins are easier 
to fold on the computer than @-proteins (or alp-pro- 
teins) of comparable size. Finally, it appears that the 
further justification of this reduced, but nontrivial, 
model of protein conformation and protein folding 
will have to be provided by expanding the set of 
tractable folds. Of course, each update of the force 
field, the Monte Carlo algorithm, or the folding pro- 
tocol should not only allow us to fold new proteins, 
but should also improve the accuracy of the previ- 
ously folded structures. This way one may learn 
about various factors controlling protein folding, 

therefore providing elements of a solution to the pro- 
tein folding problem. 
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APPENDIX 
In the calculation of the pair potential, we divide 

the protein into classes consisting of the backbone 
and the side chains appropriate to the twenty amino 
acids; thus, there are 21 different types of interact- 
ing groups. A contact between group i and j occurs 
when any heavy atom in the side chain i (or back- 
bone) is within 4.2 b of a heavy atom of group j. We 
count the total number of observed individual con- 
tacts between group i and j, N(i,j).,bs. Alternatively, 
one could simply count a contact as that when at 
least one side chain heavy atom of i lies within 4.2 b 
of side chain j. We have opted for the former defini- 
tion, because it may reflect the relative strength of 
contacts. That is, if a pair of side chains has on av- 
erage many individual contacts, then the strength of 
the interaction should be stronger than if it makes 
just one contact on average. Of course, we have to 
correct the interaction scale for side group size, i.e., 
bigger side chains have more contacts simply be- 
cause they are larger. 

The pair potential between residues i and j is de- 
fined by 

eii = -ln[N(i,~3,~,/N(i,j)] (Al l  

where N(i,j?,,,, and N(i,j) are the observed and ex- 
pected number of contacts if the distribution is ran- 
dom. The crux of the calculation is the estimation of 
N(i,.j). In reality, the determination of N(i,j) is very 
complicated. In the environment of folded proteins, 
one desires the expected number of contacts between 
amino acid pairs having the shape and sue of real 
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amino acids, but where there are no interactions 
other than those which preserve the excluded vol- 
ume. To estimate N(i,j7, we adopt a Bragg Williams 
approximation and proceed58 by analogy to the 
Flory Huggins theory for polymers, generalized here 
to a heterogeneous system including side chains. 
Each side chain and backbone heavy atom is as- 
sumed to have a total coordination number of z. (In 
what follows, we take the average coordination 
number of 5.) For each chemical bond formed, the 
remaining sites available for interaction is reduced 
by one. Thus, the backbone N has 2-2 available 
sites, the carbonyl oxygen has z- 1 sites, the alanine 
methyl group has 2-1 sites, etc. Let Zj  be the total 
number of available sites of group j .  (It is equal to 
the sum of the non bonded sites of all the heavy 
atoms comprising group type j . )  Thus, if there are Nj 
molecules of type j ,  then the total number of possible 
interacting sites is 

21 
N = C N j T j .  

j = 1  

Now, the total number of observed interactions is 
obtained by counting the total number of contacts in 
the system, NT,obs. If the calculation is done cor- 
rectly N2NT,obs. The fraction of “holes” in the sys- 
tem is obtained by 

For z = 5, we find that = 0.026, a quite reason- 
able value for a densely packed system such as a 
protein. 

The fraction of interaction sites (or the surface 
fraction) contributed by group type i is 

(A4) 

j = 1  

If all the heavy atoms are taken to be equal in size 
and having the same coordination number, then +i 

is the volume fraction of i .  For molecule i, neglecting 
end effects, the total number of possible interacting 
sites is N J i .  The probability that these sites can 
interact with group type j ( f i )  is $j. Thus, the ex- 
pected number of @ contacts 

Similarly, the expected number of contacts between 
identical groups is 

(A6) 

The factor of two corrects for over counting. 
At this juncture, a number of observations are ap- 

propriate. First, this treatment accounts for the fact 
that groups of different size will have a different 
number of interactions even if the ensemble is ran- 
dom. Because a site fraction, &, is used, bigger 
groups have more interactions simply because they 
are larger. Note that $i  is not equal to the mole 
fraction of residues; this would only hold if all 
groups contained an identical number of heavy at- 
oms having an identical coordination number. Thus, 
the use of the mole fraction in the calculation of the 
expected number of contacts is incorrect; it makes 
larger groups more attractive simply on the basis of 
their size. Finally, this treatment could be general- 
ized to include the actual surface fraction of differ- 
ent groups, thereby improving the accuracy of the 
approximation to the expected number of contacts. 




