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SUMMARY 
A simple cubic lattice model of the melt of 3-arm star-branched polymers of various length 

dissolved in a matrix of long linear chains (n, = 800 beads) is studied using a dynamic Monte 
Carlo method. The total polymer volume fraction is equal to 0,5, while the volume fraction of 
the star polymers is about ten times smaller. The static and dynamic properties of these systems 
are compared with the corresponding model systems of isolated star-branched polymers and 
with the melt of linear chains. It has been found that the number of dynamic entanglements 
for the star polymers with arm length up to 400 segments is too small for the onset of the arm 
retraction mechanism of polymer relaxation. In this regime dynamics of star-branched 
polymers is close to the dynamics of linear polymers at corresponding concentration and with 
equivalent chain length. The entanglement length for star polymers appears to be somewhat 
larger compared with linear chains. 

Introduction 

Computer simulations of model polymeric systems have proven to be very useful for 
understanding the complex dynamics of related physical systems ’ -3). Previous 
 work'^^*^) has shown that the effect of entanglement in polymer solutions and melts 
and its influence on the dynamics of linear and ring polymers is smaller than was 
originally anticipated based on theoretical considerations ’ 8  3, ’). The crossover from 
Rouse-like dynamics in the high friction limit to entangled dynamics at high concen- 
tration of long polymers is perhaps located at quite high molecular This 
statement is based on theoretical considerations @, experiments 9-’1) and computer 
sir nu la ti on^^^^^^^-^^). In the particular case of polymer chains based on the cubic 
lattice and consisting of n, = 800 segments at a volume fraction 4 = 0,s it was shown 
that in spite of “reptation-like” scaling of the diffusion coefficient D - n-’, the 
corresponding scaling of‘the longest relaxation time and the onset of the crossover 
regime for the single segment autocorrelation function characterized by the t ‘’4 
scaling, the model chains do not re~tate’-~). To the contrary, the lateral diffusion is 
not suppressed in respect to longitudal diffusion along a hypothetical tube. The 
observed scaling of the dynamic properties in this range of molecular weight and 
polymer density can be satisfactorily explained by a semiquantitative model that does 
not invoke reptation’.”). The reason for the constrained dynamics of the model 
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polymers in these systems comes from few long living entanglement points that act as 
a large effective friction coefficient superimposed onto the chain fragments that drag 
the other chains. That can be also shown by careful analysis of the time evolution of 
a properly defined “primitive ~ a t h ” ~ . ~ ) .  These results do not contradict reptation 
theory, however, they indicate that for the majority of high density polymer solutions 
and melts the reptation mechanism of chain disentanglement is perhaps shifted to a 
much higher degree of polymerization than it was expected initially. What these 
simulations show is that experimentally observed “reptation like” scaling of dynamic 
properties does not necessarily indicate the reptation mechanism on the molecular 
level2, 16). It should be noted that complementary simulations by Kremer and Grest 13), 

employing more straightforward Molecular Dynamics technique, lead to a very similar 
scaling of the single segment and the center of mass autocorrelation functions. For the 
longest chains, n > 100, there was a clear evidence for t”4 type behavior (the fit gives 
an exponent of 0,28 * 0,03). This is in very good agreement with predictions of the 
reptation theory and with the previously discussed results of lattice simulations ‘s47 5, if 
one takes into account the fact that the model chains in the model of Kremer and Grest 
correspond to about three times longer chains on the cubic lattice. For the longest 
chains in the work of Kremer and Grest (n = 400) the time of simulation needed to 
see relaxation of the entire chain is apparently many times too short. It should be noted 
that the recently proposed fast fluctuating-bond algorithm for melt simulations may 
allow studies of longer chains at high densities and over time intervals corresponding 
to longer times of the real systems 14). 

Static and dynamics properties of branched polymers employing continuous 17) as 
well as lattice models 18, 19) have been studied extensively by computer simulations. 
Much less work has been done for concentrated solutions and melts of branched 
polymers Needs and Edwards 19) performed Monte Carlo simulations of single 
3-arm star-branched long chain polymers (on a simple cubic lattice) in a system of fixed 
obstacles in order to simulate the cage effect. For this system a very good agreement 
with the expected 20, exponential scaling of the diffusion coefficient and the 
longest relaxation time with molecular mass has been observed. The microscopic 
mechanism was consistent with the arm-retraction mode of the chain relaxation as 
discussed in several theoretical works 3*6*20) .  

In this study we address the problem of star-branched polymers in a matrix of long 
linear chains. This is to our best knowledge the first simulation study of relatively long 
star-branched polymers in a matrix of long linear chains. The possible cage effect was 
not assumed a priori but it might emerge from entanglements of long linear chains. 
Among the questions we address in these simulations are the following 3, ’, 21): 

1. Are the star-branched polymers entangled in a way similar to the linear chains? 
2. Is “arm retraction” the leading mechanism of chain disentanglement for the 

polymer length accessible in simulations on contemporary computers? 
3. Is the matrix dynamics (of long linear chains) and consequently the dynamics of 

the entire system affected by the presence of a small but non negligible fraction of 
star-branched polymers? 

Since the system studied here consists of quite long polymers and the simulation time 
is sufficient to estimate most of the dynamic properties, the above questions can be 
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answered to a large extent. We studied a weakly branched system - three-arm stars - 
in order to observe the entanglement effect in the most straightforward way. 

Model 

The model of polymers confined to a simple cubic lattice and the model of Monte 
Carlo dynamics is exactly the same as the one employed in the previous simulations of 
isolated star-branched polymers22. 23) and in the extensive studies on melts of mono- 
disperse polymers4) and on melts composed of chains of two degrees of polymeriza- 
tion%). For this reason we omit here a description of details of the model dynamics 
since they can be found elsewhere, together with the discussion of the model ergodicity 
and its correspondence to the real physical  system^^,^). For quick reference, let us just 
briefly note that the model of the dynamics on the simple cubic lattice employs one- 
bead (two-bond) corner moves, two-bead crankshaft moves, three-bond (two-bead) 
permutation moves, and two-bond end moves. All these moves are local and are subject 
to excluded volume and connectivity restraints. The single time unit of the model 
simulations is defined exactly as before and expires when each chain is subject to (on 
average) (n-2) - N, (n- 3) * N, (n-3) - N, and 2 attempts of each kind of the above 
listed local micromodifications, respectively. For star polymers there is one additional 
move that changes the orientation of the branching p ~ i n t ’ ~ , ~ ~ ) .  The time scale of the 
present simulations is somewhat longer than that of the corresponding simulations of 
polymer melts. 

Results and discussion 

Simulations were performed for the volume fraction of polymer 4 = 0,5. This 
volume fraction is defined according to the formula 4 = 4, + 4, = (Ns-n, + 
N, . n,)/L3, where N, (N,) denotes the number of star-branched (linear) chains, n, (n,) 
the total number of beads in one star-branched (linear) chain and L the edge of the 
Monte Carlo box. 

The linear component was always of length n, = 800 beads. The length of an arm 
of the star-branched polymer m was assumed to be 32, 50, 100 and 400 beads what 
implies that the total number of segments n, = 94, 148,298 and 1 198 (n, = f * (m- 1) 
+ 1, f = 3 is the number of arms). The number of star-branched polymers N, was 
equal to 4 for all systems under consideration in order to keep the probe concentration 
considerably lower than the matrix concentration. The number of linear chains N, was 
always about 10 times greater in order to obtain 4 = 0,5. The edge of the Monte Carlo 
box L was 40 (L is always greater than ( R 2 > / 2 )  for all the lengths of chains under 
consideration (periodic boundary conditions were used). The summary of the 
parameters of the studied systems are listed in Tab. 1. 

The configurations of the entire system under consideration were recorded at various 
intervals dependent on the chain length. These trajectories were then used for the 
calculations of static and dynamic properties. 
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Tab. 1. Summary of the systems 

n, Ns "I Y L 

94 4 
148 4 
298 4 
1198 4 

39 800 40 
39 800 40 
38 800 40 
34 800 40 

Static properties 

We calculated the following parameters describing the macromolecular coil of a star: 
(i) the mean-square center-to-end distance ( R 2 ) ,  (ii) the mean-square radius of 
gyration of the entire star macromolecule (S2), and (iii) the hydrodynamic radius 
(RH). In lhb. 2, a summary of the static properties is given. All the three parameters 
mentioned above exhibit the expected scaling behaviour: ( R 2 )  - (n,  - l) l~ol*o~ol 
(values after f are standard deviations of the regression lines in log-log scale; real 
errors could be larger), (S2) - (n,  - 1)0*95'0*02, and (RH) - (n,  - 1)o~"1*o~oo6. The 
values of the exponents are close to those in the case of homopolymeric melts of linear 
chains4) where ( R 2 )  - (n, - 1)09987 (for the linear chain R2 has the usual meaning of 
a mean-square end-to-end distance) and ( S 2 )  - (nl - 1) The ratio ( S 2 ) / ( R 2 )  
is in the same range as results for many models of an isolated star-branched 
polymerz2). The fourth moments oR = ( R 4 ) / ( R 2 ) '  and os = (S4)/(S2)2 are slightly 
higher than those for a single star-branched chain22) and close to those of linear 
chains in the melt4). The parameter g = (S2)br/(Sz)1 ('br' corresponds to branched 
and '1' corresponds to linear with same number of segments) is close to that of a single 
chain'8s22) and to the random flight model chain (g = (3f - 2 ) / f 2  = 0,778). The 
parameter g' = (R2)b , / (R2) ,  is considerably lower for all the systems under consider- 
ation compared with the simulation results for an isolated star-branched polymer 

and with random flight chain model  prediction^^^) (g' = 1 + -c f -  1) (In2 - 1/4) 

= 1,166). Moreover, the ratio is rather reversed: arms of the star macromolecule in the 
melt are more contracted compared with linear chains in melt. The next parameter p 
= (S2)1/z/(RH) is especially useful because it does not involve any data concerning 
linear chains. p is slightly smaller than the corresponding results of simulations for 
isolated star polymer  chain^'^,^^) (the random flight chain model gives p = [(3f - 

In Tab. 2 we also present parameters describing the matrix consisting of linear chains 
of length n, = 800 beads. All these results are the same (within a small statistical 
error) as for the Monte Car10 simulation of the pure homopolymeric melt of linear 
chains '). 

Dynamic properties 

1 
8 

2)/cf7t)]1'2 [8(2 - f + 2''' cf - 1)/(3fl] = 1,401). 

We studied the center-of-mass motion by means of the autocorrelation function 
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where r,, ( t )  is the center-of-mass vector at time t. Fig. 1 shows the function g,, 
versus time t in log-log scale for all the lengths of star macromolecules studied. One 
can observe from Fig. 1 that the scaling behavior of g,, is qualitatively similar to that 
of the melt of linear chains4). For the mean-square displacements of the center- 
of-mass lower than (S2), g,, - t' and the exponent a is lower than unity (see Tab. 3). 
The value of exponent a decreases with increasing length of the chain (the same as for 

Tab. 2. Static properties of star-branched and linear polymers in the systems under consider- 
ation 

94 55,92 22,28 0,398 1,5078 1,1137 0,770 0,951 4,152 1,136 
148 91,42 36,51 0,399 1,5189 1,1183 0,793 0,989 5,132 1,176 
298 178,8 70,15 0,392 1,5467 1,1246 0,744 0,966 6,842 1,218 

1198 742,O 257,4 0,347 1,6895 1,0623 0,657 1,013 12,82 1,258 
799a) 1649 273,7 0,166 1,5434 1,2138 - - 12,OO 1,379 

a) This row displays data concerning the properties of the matrix of linear chains of length 799 
segments. 

Fig. 1. Log-log plot of the mean- 10' 
square displacement of the center- 
of-mass g,, versus time t for various 
chain lengths (n, = 94, 148, 298 and 
1198 reading from top to bottom) 100 

lo2 lo3 l o L  lo5 lo6 
f 

the linear melt4)). After a short crossover regime, g,, scales as t '. The function g,, 
calculated for the linear matrix is the same as in the pure linear melt. For the two largest 
stars, however, the plot does not reach the displacement above the mean radius of 
gyration. Consequently the obtained estimations for diffusion coefficients have to be 
treated with some cautions. We discuss this problem below. Deviation of the g,, plot 
from t' scaling may be related to large differences in mobility of particular stars in this 
range of time reflecting a rather small number of entanglements. A small number of 
long living enthanglements may lead to large relative differences in the degree of 
constraint of particular stars (and their arms) measured in the time window in the range 
of the terminal relaxation time. One also cannot exclude a residual contribution to the 
very slow process of arm retraction. 
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Tab. 3. Dynamic properties of star-branched and linear polymers in the systems under consider- 
ation 

94 8,86 1,483k0,052d) 2,35 0,846+0,004 2,188 +0,042 0,612+0,015 
148 5,25 4,500+0,120 2,58 0,844+0,001 6,920+0,066 1,948 f 0,016 
298 137 24,73+0,33 2,17 0,813 +O,OO4 32,25 +0,44 10,92*0,08 

1198 0,152b) 579+12 (0,96) 0,744+0,003 663k20 182+8 

799a) O,lgb) 650+16 (1,251 O,696iO,OO2 1 006k20 192+3 
0,095 ') 

0,23 ') 

This row displays data concerning the properties of the matrix of linear chains of length 799 
segments. 
Upper bound (see text for details). 
Lower bound (see text for details). 
Values after ? are standard deviations of the regression lines in log-log scale. 

The tracer diffusion constant of star branched polymers D, can be calculated from 
the function g,, according to Einstein's formula2v4): g,, = 6Dt + const. In order to 
omit the initial regime t a  where the motion of the chain is faster, we calculate D, in the 
region 2(S2) < g,, < 10(S2) analogous to the case of a linear polymer melt4). 
Unfortunately, in the case of the longest stars (n, = 1 198) a relatively short trajectory 
does not enable us to extract stable results for g,, in this region. Thus, in this case we 
calculated the lower bound approximation of D, assuming that the t a  regime extends 
to 2(S2).  The upper bound approximation was calculated as gC,/(6t) over the 
appropriate time range (see ref. 2, for more details). Values of the diffusion coefficients 
are collected in Thb. 3. 

Fig. 2 shows a log-log plot of the diffusion coefficients D, versus the total number 
of segments n, - 1 .  Values of diffusion coefficients obtained by the same Monte 
Carlo method for a melt of linear chains z), isolated star-branched polymerszz) and 
probe linear chains in linear matricesM) are shown in Fig. 2 for comparison. The least- 
square fit leads to the following scaling formula: 

This exponent was calculated for the first three chain lengths. The tracer diffusion 
coefficient for the longest chain (n, = 1 198) is shown in Fig. 2 (and in Tab. 3) as lower 
and upper values (see discussion above). Using the mean value of D, for n, = 1198 
and diffusion coefficients for n, = 148 and 298 were obtain the scaling relation 

The exponents in Eqs. (2) and (3) are close to that for a melt of linear chains4). The 
corresponding values for linear chains are 1,53 and 2,04 suggesting the onset of the 
crossover to the entangled regime with scaling D - N-2 .  The ratio of the diffusion 
coefficients of star polymers to those of linear chains (linear: between 64 and 216 beads, 
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Fig. 2. Log-log plot of the diffusion co- 
efficients for star-branched polymers in a 
matrix of linear chains (open circles), iso- 
lated star-branched polymers (solid circ- 
les), melt of linear polymer (solid squares) 
and probe linear chain in a matrix of 
linear chains (open squares) versus the 
total number of segments. For the longest 
chains, lower and upper bound of the 
diffusion coefficient are given. Note: the 
least-squares fit for the linear melt (dotted 
line) and for the star-branched polymers 
in a matrix of linear chains (solid line) are 

10'' 
a 

'0 
0 

104 
very close 10-5- 

10' 102 lo3 
n-1 

star: between 95 and 299 beads) DJD,  is equal to 0,98. This ratio is different from that 
for dilute polymer  solution^^^,^^). In the latter case DJD,  > 1; this is caused by the 
smaller dimension (smaller RH) of star-branched polymers. The ratio obtained in this 
work DJD, < 1 suggests some entanglement effect on the chain dynamics and is in 
accordance with experimental evidence 3, 21,279 28). 

Needs and Edwards simulations of a star-branched polymer 19) (withf = 3 arms) on 
a simple cubic lattice in the presence of obstacles lead to the conclusion that the 
diffusion coefficient of a star-branched polymer through fixed obstacles scales as of 
the following form 

D, - ns-X.exp(-an,) (4) 

This scaling is obvious for the star polymer motion through fixed obstacles. Experi- 
mental results for the diffusion of star-branched deuterated polybutadiene in the 
matrix of highly entangled linear polyethylene were i n t e r ~ r e t e d ~ * ~ ~ * ~ ~ )  to fulfill Eq. (4). 
On the other hand one can see in Fig. 1 of ref. that for the degree of polymerization 
N < lo3 the scaling of the diffusion coefficient can be also considered as consistent 
with N-2 behavior. That is due to the limited accuracy of the experimental data. Some 
other experimental evidence suggest that in the pure star polymer melt the dependence 
of the diffusion constant on the chain length is more complex"). 

It is possible that the exponential dependence of the diffusion coefficients on the 
molecular weight would manifest itself for larger chain lengths2). It was suggested that 
this ratio has to exceed 10 to fulfill Eq. (4). In the case of our simulation the ratio is 
lower than 10 in all cases (see below). Unfortunately, we could not fit our data to these 
exponential formulas having results for only four chain lengths. 

To obtain a very approximate entanglement length for the model star we used a 
simple formula of Skolnick, Yaris and Kolinski2s4) to estimate the entanglement length 
n,: 

D = c/(n, + n:/n,) ( 5 )  

where c and n, are adjustable parameters. 
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102 

’03: 

10’ 

The least-square fit gives n, = 160. This value compared with the total number of 
segments suggests that only the shortest star-branched polymer (n, = 94) is too short 
to produce entanglements in melt and the second one (n, = 148) is in the crossover 
regime. The matrix of linear chains is more entangled (for n, = 800 the entanglement 
length could be estimated4) as n, = 125). 

The autocorrelation function for the single bead 

Fig. 3. Log-log plot of the mean- 
square displacement of the single bead, 
g ( t ) ,  versus time t for various chain 
lengths (n, = 94, 148, 298 and 1198 

// 
I reading from top to bottom) 

was also calculated. Fig. 3 shows in a log-log scale the dependence of g ( t )  on time t 
for all the chain lengths under consideration. The function g ( t )  scales as t ’  for the 
displacements greater than (S’). The time distance between snapshots on the trajec- 
tory is in all cases too large to show the expected2v4) initial scaling g ( t )  - t (for short- 
time, Rouse-like relaxation of the subchains, b is close to 0,5). 

/ I 

I 

Studying the motion of a single bead as a function of the distance from the branching 
point one can try to answer the question about the possible mechanism of motion of 
star-branched polymers. Thus, we calculated the mean-square single bead displace- 
ment g i  ( t )  for beads number 1 (the branching point), m/4, m/2,3 m/4, m (the end of 
an arm). This function was averaged over the trajectories and the number of arms. In 
Fig. 4 we present the functions gi  ( t )  versus time t in  log-log scale for the longest star 
chain under consideration. For comparison we also plot gi  ( t )  for the linear chain with 
n, = 800 beads. Properties of that chain can be easily compared with the star- 
branched chain consisting of n, = 1 198 beads: one can treat the linear chain as a star 
withf = 2 arms of the same length. One can see that the displacement of a single bead 
is the same for linear and star chains with the exception of the vicinity of the branching 
point which moves considerably slower. The slowing down of the mobility of the 
branching point in comparison to the center of the linear chain is large but it becomes 
almost negligible for the end portion of the chains. The exponents change from 0,26 
(the branching point) through 0,32 (m/4, m/2 and 3 m/4) to 0,37 (m). The exponent 
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- lo3 - - 
6 

Fig. 4. Log-log plot of the autocorre- 
lation function of the single bead, g, ( t ) ,  
depending on the distance from the 
branching point for the chain ns = 1 198. 
Reading from bottom to top are the dis- 
placements of bead number: 1, m/4, m/2 ,  
3 m/4 and m. The dotted lines concern the 
appropriate g, ( t )  of the linear chain n, = 
800 (see text for details). Note that there 
are five dotted lines in the figure: two lines 
corresponding to the middle part of the 

102 

chain are very close 10’ 
10‘ lo5 106 

f 

0,26 for the branching point is computed for the time window where the data are the 
most accurate. However, there is some evidence that for longer times t > lo5 the value 
of the exponent might be considerably smaller. The existence of a t1’4 regime is 
sometimes considered as an evidence for the onset of the reptation rnechani~m~*~) .  But 
this slope of single bead mean-square displacements is found also in systems that 
cannot reptate9). 

Coming back to the discussion of possibility of exponential scaling (as given in Eq. 
(4)) in these model systems, we want to point out that since chain ends relax their 
conformation much faster than the central core of the model star polymers (as it is 
illustrated in Fig. 4) it is possible that the weak scaling emerging from the comparison 
of the data given in Fig. 3 can to a large extent be caused by averaging of the 
autocorrelation function over the entire molecule. Therefore, the mobility of the outer 
part of the star polymers might cover the stronger chain lengths dependence governing 
the motion of the central core. The plots of the branch-point autocorrelation function 
for various lengths of the arm as shown in Fig. 5 could be helpful. It is clear that there 
is an increasing width of the “plateau” region with increasing arm length. For the 
largest stars, it is unclear how wide the plateau is because of the uncertain scaling of 
g, ( t )  versus t for longer times (the exponent may be smaller than 1/4). Consequently, 
one can not exclude that the model systems are just in the range of the chain lengths 
(and/or polymer density) prior to the onset of exponential scaling of the dynqmic 
properties 3,27,28). 

The longest internal relaxation time T,, describing the relaxation process of an arm 
of the star macromolecule1~4~z2~z9) can be extracted from the center-to-end vector R 
autocorrelation function g, = (R ( t )  * R (t = O))/(Rz) .  (R is the vector from the 
branching point to the end of an arm.) In Fig. 6, representative functions g, versus 
time tare plotted in semilogarithmic scale. The behavior of these functions is similar 
to that in the case of a single star polymerzz) and a melt of linear chains4): after a short 
period of very fast relaxation, g R  fits the equation g, - exp(-t/r,). The results of 
the least-squares fits to this equation are shown in lhb. 3. 

In order to determine the mechanism of the motion of star-branched polymers 
in the melt we studied other autocorrelation functions, viz. the function g, = 
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1 

Fig. 5 .  

I- 

0.1 ' 
0 5 10 

~ 1 0 ~  
Fig. 6 .  

15 

Fig. 5.  Log-log plot of the autocorrelation function of the branching point g, versus time t for 
various chain lengths (n, = 94, 148, 298 and 1198 reading from left to right) 

Fig. 6. Representative semilogarithmic plot of the autocorrelation functions: gR (open circles), 
g, (solid circles) and g, (open triangles) versus time f for chain ns = 148 

lo7 

106 

lo5 

104 
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102 

I.? 

10' 102 lo3 106 
n-1 

Fig. 7. 

T 100 

&- 
- 

lo-' 

10-2 

I I 1 
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Fig. 8. 

Fig. 7. Log-log plot of the longest relaxation times T, for star-branched polymers in a matrix 
of linear chains (open circles), isolated star-branched polymers (solid circles), melt of linear 
polymer (solid squares) and probe linear chain in a matrix of linear chains (open squares) versus 
the total number of segments 

Fig. 8. Representative semilogarithmic plot of the autocorrelation function g, versus time for 
chain ns = 148. Reading from top to bottom are the gR, for the subchains between beads: 1 and 
m/4 (open circles), m/4 and m/2 (solid circles), m/2 and 3 m/4 (open triangles), 3 m/4 and m 
(solid triangles) 
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[(a ( t )  * a ( t  = 0)) - ( a ) 2 ] / [  ( a 2 )  - (a)2]  where a is the angle between a pair of 
arms in one star polymer chain. This angle is defined as (R, * R j ) /  I Ri I I Rj 1 where 
Ri means the center-to-end vector of the ith arm. Angle a is a scalar and thus we have 
to apply a different way of calculating the appropriate autocorrelation function. Fig. 6 
shows the representative plot of g, versus time t .  One can notice that in the window 
0,7 < In [g,] < 0,3 there is a linear behavior of the function, and thus we can extract 
the relaxation time of the angle between arms T, in the same way as for rR (see above). 
The results of fitting are collected in Tab. 3. The third parameter concerning relaxation 
we calculated was T~ - the relaxation time of the end-to-end vector (from the end of 
an arm to the end of another arm). An example of the appropriate autocorrelation 
function g, is presented in Fig. 6 and the results of the least-square fit in Tab. 3. 

All the above relaxation times rR, T, and T~ exhibit a similar scaling behavior. Fig. 7 
shows in log-log scale relaxation times TR versus the total number of segments n,. The 
least-square fit leads to the following scaling formulas: 

The tR exponent can be compared with the Monte Carlo results concerning a melt 
of linear chains where rR - (n, - 1)2,63 (up to n, = 216). Fig. 7 shows also the 
relaxation times of isolated stars and of melts of linear chains. 

The relaxation of the angle between arms is 2,4 + 3 times faster than the relaxation 
of the center-to-end vector. The ratio of the relaxation time rR to the relaxation time 
of the end-to-end vector (from the end of an arm to the end of another arm) is 
approximately constant and close to 1,s. In the case of an isolated star-branched 
polymer these ratios are 2,7 t 3,s and 1 ,  re~pectively~~). 

This behavior suggests a strong bimodal distribution between “entangled” and “non 
entangled” arms some of them moving faster, others moving rather slowly. This way 
the relaxation of the vector R is controlled by the slowly moving arm. At the same time 
the angle relaxation is controlled by fast relaxing motions. This may be in accordance 
with the mechanism of arm retraction. 

We also studied the relaxation of subchains of a star’s arm. Every arm was divided 
into subchains of equal length. The autocorrelation function of the i-th subchain’s end- 
to-end vector R, was calculated. Fig. 8 shows the representative plot of gR, versus time 
t for n, = 148 segments. In this case every subchain consisted of m/4 = 16 segments. 
As one can expect the longest relaxation time of a subchain i, T ~ , ,  increase going from 
the free end toward the branching point. For the chain n, = 148 these times are: 410 
(estimation), 1294, 2365 and 2830. The relaxation time of subchains forming the 
central core (the closest to the branching point) T ~ ,  = 2830 is close to T~ of the entire 
arm (4500). Consequently (on average) the majority of the dynamic long-living 
entanglements appears near the branching point. 

Using the real configuration of the star-branched polymer we can construct an 
equivalent primitive path2s4). Every bead of the original chain was replaced by a point 
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which corresponds to the center-of-mass of the neighboring (along the arm) nB beads. 
This way we can obtain a smooth path of blobs. Fig. 9 illustrates a representative 
mechanism of a star motion given in several snapshots of the smoothed chain with n, 
= 1198 (with nB = 101). For short times there are small fluctuations of the arm 
positions. No preference for lateral versus longitudal stretching of the arms is seen at 
this stage. For longer times (up to los Monte Carlo cycles) there is a clear unwinding 
of the 1st arm, which has some features of the arm retraction mechanism. However, 
again the lateral component of the arm motion is not suppressed. Arms 2 and 3 move 
at the same time quite a distance, without apparent preference for longitudal versus 
lateral motion. For long times, the range of the longest relaxation time, the arm number 
1 is already in completely different orientation with respect to the rest of the molecule 
while the two remaining arms to some extent “remember” the initial orientation. This 
kind of noncoherent relaxation is seen for most of the star (and in various time windows 
of the trajectory) molecules in the model systems. The picture is consistent with the 
previously analyzed correlation functions, describing arm relaxation. 
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t =  2 .  105 

Fig. 9. Snapshot of the primitive path (see the text for the description) of a star-branched chain 
with ns = 1198 beads. Circles indicate the position of the branching point. Open circles and 
dashed lines represent the conformation of the star at t = 0. The solid lines show the time 
evolution of the primitive path. For convenience the arms are numbered as 1, 2, 3 at t = 0 and 
l‘, 2’ and 3’ at the given time t 

Conclusions 

The present work describes simulations of star-branched polymers of various degrees 
of polymerization (up to relatively high values) dissolved in the matrix of long linear 
chains. However, even for the longest chains under consideration, n, = 1 198 and n, = 
800, the entanglement effect seems not to be very strong. The dynamic entanglement 
length, while larger, for the star-branched polymers is comparable with the entangle- 
ment length for linear chains at equivalent conditions4). The larger entanglement 
length of the star polymers can be perhaps explained by a somewhat larger concentra- 
tion of the segments of the macromolecule within the volume occupied by the star 
chain ‘1. Consequently, the density of other polymers, superimposing topological 
restrains, has to be smaller. This explanation corresponds very nicely with the much 
larger entanglement length estimated previously for the melt of long ring (non 
catenated)  polymer^^.^* 30). For ring polymers the entanglement length (at the same 
volume fraction) has been estimated to be about three times larger than the entangle- 
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ment length seen in the melt of linear polymers. Again, the most likely explanation 
invokes the fact that the ring polymers are more contracted (with ( R 2 )  - no*84 and 
( S 2 )  - n Ov8’, see ref. 2, for details), and consequently the density of other molecules 
has to be smaller in the volume occupied by the test molecule. 

The number of dynamic entanglements per one arm of the n, = 1198 star is in the 
range of 3. In agreement with theoretical  prediction^^,^^) this number is too small for 
an onset of the arm retraction mechanism of the chain relaxation. Moreover, the 
relaxation time for the angular correlations between branch (center-to-end) vectors is 
a few times shorter than the relaxation time of a single arm. This again indicates the 
absence of the arm retraction mechanism. Additionally, inspection of the motion of 
particular stars (using animation technique) does not indicate any correlation between 
the end-to-center distance of an arm and the rate of the motion. On the other hand the 
observed scaling of the tracer diffusion coefficient and the longest relaxation time for 
the star polymers is very similar to that observed for previously studied systems of linear 
polymers4) as well as for the matrix chains in the present simulations. This suggests a 
considerable effect of the topological (fluctuating) constraints on the dynamics of 
stars. 

In conclusion, the star polymers studied here are in the crossover regime where the 
entanglement effect is strong enough to slow down the dynamics and change the scaling 
of the dynamic properties from Rouse-like to entangled-like. However, the number of 
dynamic entanglements is too small to see the arm retraction mechanism and, conse- 
quently, the exponential dependence of the diffusion coefficient and the longest 
relaxation time on the molecular mass. Explicit simulations of the cage effect, as done 
by Needs and Edwards 19), show a behavior that is consistent with the arm retraction 
mechanism. Similarly, in the case of linear polymers4), the motion in the fixed matrix 
(where the reptation mechanism is easy to see in simulations) is different from the 
motion in the unconstrained systems. Perhaps much longer chains have to be simulated 
in order to see the arm-retraction mechanism in unconstrained systems. Advances in 
massively parallel computing and new efficient algorithms 14) may allow this in the 
future. 
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