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A combined Monte Carlo~MC! simulation-statistical mechanical treatment is proposed to calculate
the internal partition function and equilibrium constant. The method has been applied to a number
of one and multidimensional analytical functions. When sampling is incomplete, various
factorization approximations for estimating the partition function are discussed. The resulting errors
are smaller when the ratios of the partition functions are calculated~as in the determination of
equilibrium constants! as opposed to the partition function itself. ©1995 American Institute of
Physics.
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INTRODUCTION

In many chemical or biological systems,1–3 one desires
to calculate the equilibrium constants between differen
forms or aggregates of a given molecule. This could, o
course, be obtained from the experimentally determined co
centration dependence of the population of different mult
meric states. Here, we provide an alternative combined a
proach@Monte Carlo~MC!—statistical mechanical# that is,
in principle, exact for a given energy function. The underly
ing idea of this treatment is to use a computer simulation
provide the variables for the statistical treatment. In practic
the relationship to experiment depends upon the quality
the potential and exhaustiveness of the MC sampling proc
dure. In what follows, we describe the analytical treatmen
along with an application of this formalism to the computa
tion of the partition functions for a set of simple energy
functions presented in Table I. The implications of the re
sults, together with approximations that are used when com
putational resources limit the sampling, are also described

METHOD

For the sake of simplicity, let us suppose that we want t
calculate the equilibrium constant of an imaginary particl
which may be in two entirely distinct energy minimaA and
B, separated by large barriers

A↔B. ~1!

From a statistical mechanical point of view, the equilibrium
constant betweenA andB is described as4–6

K5ZA /ZB , ~2!

a!To whom correspondence should be addressed.
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whereZA , ZB are the partition functions for formsA andB,
respectively. Thus the problem of calculating the equilibrium
constant reduces to the calculation of the partition function
for both subsystems. Following Mayer and Mayer,4,5,7 a par-
tition function for the molecule can be written as the produc
of the configurational term and the integration over the mo
menta degrees of freedom. The integration over configura
tion space can be expressed as the product of the volum
available to the atoms in the molecule. In subsequent discu
sion, we will concentrate on the calculation of the configu-
rational partition function~configurational integral!. In the
calculation of the equilibrium constant, the integrals over
momenta degrees of freedom in the numerator and denom
nator will cancel.5,7

Exact treatment

For a system, where Boltzmann statistics applies, th
probability of seeing a particular conformation inside anN
dimensional, infinitesmal volume elementdVac, centered
aroundr05$xi

0, i51•••N% is proportional to the energy of
the stateE~r0! and is given by4,8–10

P~r0!5
exp@2E~r0!/kT#

Zint
dVac ~3!

dVac is the product of the volume elements accessible to
each of theN coordinates (xi) within a given tolerancedb.
P~r0! is the probability that each coordinatexi is in the re-
gion betweenxi

021/2 db and xi
011/2 db ~and thus each

coordinate has an infinitesmal volume elementdb accessible
to it!. dVac is connected to the definition of theP~r0! and the
discretizationdb in the following way:
61896189/5/$6.00 © 1995 American Institute of Physicsto¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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6190 Vieth, Kolinski, and Skolnick: Partition functions from Monte Carlo simulations
P~r 0!5PS x1
020.5 db,x1

0,x1
010.5 db

x2
020.5 db,x2

0,x2
010.5 db

....................................
xN
020.5 db,xN

0,xN
010.5 db

D ;

~4!
dVac5dbN.

In what follows, we approximatedb by Db, the finite differ-
ence approximation.

In the Monte Carlo11,12 method, the canonical distribu
tion of states is obtained by a Markovian sequence in wh
the probabilities between two conformational statesr andr 8
are given by

P~r 8!

P~r !
5
exp@2E~r 8!/kT#

exp@2E~r !/kT#
. ~5!

Thus by calculating the fraction of time a system spen
in a given state~r !, a dynamic Monte Carlo method provide
P~r !. From Eq.~3!, we get

Zint5exp@2E~r0!/kT#
dVac
P~r0!

,

r05~x1
0,x2

0,...,xN
0 !. ~6!

Note thatr0 can denote any conformational state. How
ever, in what follows, due to the better statistics, the m
probable state is used.

Approximate treatments in the poor sampling case

The extraction ofP~r0!, the probability that allN de-
grees of freedom are simultaneously in the stater0, is crucial
to the evaluation of Eq.~6!. As the number of degrees o
freedom increases, the longer the simulation time is requi
for P~r0! to converge. In the case of a macromolecular s
tem dissolved in a solvent, where the number of degrees
freedom can be very large~on the order of 104!, the conver-
gence of the corresponding probabilities becomes proh
tively time consuming. Furthermore, the time required
complete one Monte Carlo cycle is proportional to the nu
ber of degrees of freedom. Thus for such systems, one ne
a method to estimateP~r0!. In what follows, we propose
three factorization approximations. The first estimatesP~r0!
as the product ofN independent probabilitiesPi ,max(xi) that
each coordinate is in its most probable state. This factori
tion approximation reduces Eq.~6! to

Zint,1>exp@2E~r0!/kT#
dVac

P i51
NdimPi ,max~xi

0!
. ~7!

Equation~7! rigorously holds for functions where all prob
abilities in each dimension are independent. Good examp
are the functionsf 1 and f 2 ~see Tables I and III below!. In
general, however, this is not the case.

Two other ways of estimatingP~r0! are based on the
approximation that the energy landscape is locally quasih
monic. One then constructs a transformation matrix th
transforms the initial coordinate set into a set of normal c
ordinates. For small oscillations~harmonic! around the equi-
librium positions, the normal modes can be treated indep
dently. First, one needs to construct the covarian
J. Chem. Phys., Vol. 102Downloaded¬07¬Apr¬2004¬to¬128.205.53.57.¬Redistribution¬subject
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matrix13–15for the system, and then diagonalize it. We define
the covariance matrix, with respect to the most probabl
structure~r0!, rather than with respect to the average struc
ture

s i j5^~xi2xi
0!~xj2xj

0!&. ~8a!

For a harmonic energy landscape, this definition is identica
to the one based on the average structure, but use of the m
probable state has the advantage that it places the refere
state in an energy minimum rather than in a maximum fo
symmetric, bimodal distributions. The diagonal elements ar
the variances for each coordinate, and the off-diagonal el
ments are the covariances. The square root of the determ
nant of the covariance matrix, multiplied by (2p)N/2 and
exp@2E~r0!#, gives the partition function if the energy land-
scape is harmonic@and is obtained by combining Eq.~6! and
Eq. ~8! in Ref. 14#, that is,

Zint,2>@det~s!#1/2~2p!N/2 exp@2E~r0!/kT#. ~8b!

The final approximation simply uses the normal coordi
nate transformation to calculate the product of the indepen
dent possibilities. To obtain the normal coordinate$j%, we
proceed as follows: The matrix of the energy second deriva
tivesF is constructed from the covariance matrix

Fi j5kT@s21# i j . ~8c!

After diagonalizingF or s, we get a set ofN eigenvectors.
The resulting eigenvector matrix is the desired transforma
tion matrix. After transformation of the initial coordinate set
$x0

i % onto a normal coordinate setj, then the independent
probabilitiesPi ,max(ji) are calculated in normal mode space
The resulting partition function in terms of coordinates in
normal mode space is approximated by

Zint,3>exp@2E~r0!/kT#
dVac

P i51
NdimPi ,max~j i !

. ~8d!

Monte Carlo sampling

The Monte Carlo sampling procedure consists in the firs
stage of a random walk12 with a stepDb equal to the dis-
cretization. In a random walk, the new value of a coordinat
is generated from the old value by addition or subtraction o
‘‘ Db.’’ The values ofZ obtained by the random walk sam-
pling are reported in the top rows of Table II. Random walk
runs can be considered as a prescreening of the accessibi
of the conformational space by each degree of freedom an
provide an estimate of boundary values for the coordinate
~the boundary values depend on the steepness of the ene
function under consideration!. In the next step, the sampling
is uniform ~new values of the coordinates are generated in
dependently of old values! in between the boundaries for
each coordinate. In both cases, the standard Metropo
criterion11 was used to determine the transition probability.

RESULTS

Exact treatment

MC simulations were performed on a set of test func
tions summarized in Table I. In Table II, a comparison of the
, No. 15, 15 April 1995¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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TABLE I. Description of the test energy functions used in the simulations.

Abbreviation Equation Description

f 1 f15(
i51

N

0.5xi
2

One (N51), two (N52) or three (N53)
dimensional harmonic oscillator

f 2 f25(
i51

N

0.5~xi
42xi

2!
One (N51), two (N52) or three (N53)

dimensionalcamel backfunction

f 3 f35H 2e2(i51
N xi

2
2e2(i51

N
~xi24!2

1` for x,23 or x.6.5

Sum of two Gaussians in one (N51) or two
(N52) dimensions

f 4 f45H22e2(i51
N 0.25xi

2

1` for x,23 or x.3

One wide Gaussian in one (N51) dimension or
in two (N52) dimensions

f 5 f55H24e2(i51
N 1.5xi

2

1` for x,21.5 or x.1.5

One narrow Gaussian in one (N51) dimension
or in two (N52) dimensions

f 6 f 65x21y21xy Two dimensional function with cross terms

f 7 f55H24e2(i51
N 1.5xi

2

1` for x,23 or x.3

One narrow Gaussian in one (N51) dimension
or in two (N52) dimensions
n
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MC simulation results is made with the direct numerical i
tegration of the partition functions. This will be referred to a
the ‘‘exact’’ values~except in the case of the harmonic osc
lator function where the analytical solution is well known!.
kT is set to 1. For all of the test functions, the partitio
functions and average energies at most differ by 1% from
exact values. The inaccuracies come from the discretiza
of the conformational space~the choice of finiteDb!. For the
harmonic oscillator~whose force constant isa50.5!, the
coordinate probability distribution is Gaussian with a max
mum atx50. The values of the partition functions and th
average energies for one-, two-, and three-dimensional
monic oscillators obtained from the MC simulations agr
within a small error with the exact analytical values. Th
next test function,f 2 , is the so-called ‘‘camel back’’ and has
two minima in one dimension, four minima in two dimen
sions, etc. For the one-dimensional case the coordinatex)
probability distribution is shown in Fig. 1. In the one
dimensional case, there are two energy minima and two m
probable states~corresponding to the two lowest energ
states!. The third case (f 3) is a sum of two Gaussians~with
hard walls! in one and two dimensions. For the one
dimensional case, the coordinate probability distribution
presented in Fig. 2, and the two most probable conform
tional states lie at the centers of Gaussians and correspon
two energy minima. The last case is particularly interestin
because it shows that our approach can be used to calcu
the partition function even for a rather complicated ener
landscape.

For the remaining test functionsf 4 , f 5 , f 6 , and f 7
~meant to be test cases for the different approximations!, the
simulation based values of the partition functions agree w
the exact values within 1.5%.
J. Chem. Phys., Vol. 102Downloaded¬07¬Apr¬2004¬to¬128.205.53.57.¬Redistribution¬subject
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Factorization approximations

Table III presents a comparison of the exact values of t
partition functions with those obtained using the three a
proximate methods. As expected, for factorizable functio
~f 1 and f 2!, the factorization in the initial coordinate set is
exact for any number of degrees of freedom. The factoriz
tion in the normal mode space is exact for the harmon
functionsf 1 and f 6 for any number of degrees of freedom, a
is the approach based on the determinant of the covaria
matrix. Surprisingly, for the functionf 2 , the results based on
the determinant of the covariance matrix are very close to t
exact values~with less than 7% error!. Generally, if we have
an energy landscape with one or multiple minima with n
too many flat regions~functions f 1 , f 2 , f 4 , f 5 , f 6!, the fac-
torization approximation in the initial coordinate set work
reasonably well~the errors are 20% or less!. Unfortunately, if
the function is anharmonic with many flat regions (f 3 , f 7),
this approximation introduces large errors~up to 86%!, and
the best approximation seems to be factorization in norm
mode space~with errors of 50% or less!. However, for func-
tions such asf 2 , the factorization in normal mode space ca
have large errors~up to 60%!. The results based on the de
terminant of the covariance matrix are exact only in the ca
of the harmonic energy landscape. In cases where the ene
landscape is flat with one or more well defined minima, th
errors can be quite substantial, e.g., 800% in the case off 7 .
In most cases, the factorization approximations overestim
the internal partition functions, but both the factorization i
the initial coordinate space and in normal mode space
reasonable approximations to the partition function.
, No. 15, 15 April 1995¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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FIG. 1. Coordinate probability distribution for the one-dimensionalcamel-
back function f 2 . See the text for additional details.

TABLE II. For the test energy functions comparison of the analytical~or
numerical! integration values with the MC simulation results for the par
tion functions.a,b

MC simulation Analytical orParameters
results numerical

# of Z values
Function N Db cycles Eq.~6! Z

f 1 1 0.1 1.108 2.5063 2.5066
2.108 2.5052

f 1 2 0.1 1.108 6.2626 6.283
1.109 6.2853

f 1 3 0.1 2.108 15.478 15.749
2109 15.733

f 2 1 0.1 2.108 2.8460 2.8467
2.108 2.8453

f 2 2 0.1 2.108 8.0709 8.1038
2.108 8.0855

f 2 3 0.1 8.108 22.787 23.059
2.109 22.950

f 3 1 0.1 2.108 14.776 14.729
2.108 14.817

f 3 2 0.05 2.108 99.984 98.529
2.108 98.997

f 4 1 0.05 2.108 22.397 22.354
2.108 22.468

f 4 2 0.05 2.108 80.019 80.548
2.108 81.879

f 5 1 0.05 2.108 45.634 45.591
2.108 45.625

f 5 2 0.05 2.108 45.932 45.842
2.108 46.142

f 6 2 0.1 2.108 3.593 3.627
2.108 3.642

f 7 2 0.05 2.108 48.687 48.647
2.108 48.799

f 7 1 0.05 2.108 73.604 73.002
2.108 73.194

aTop lines in the fourth and fifth columns show random walk results.
bBottom lines in the fourth and fifth columns show uniform sampling r
sults.
J. Chem. Phys., Vol. 102Downloaded¬07¬Apr¬2004¬to¬128.205.53.57.¬Redistribution¬subject
The effect of the factorization approximations on the
equilibrium constant between an imaginary
particle in two energy minima

The results for the equilibrium constant@Eq. ~2!# be-
tween an imaginary particle experiencing the potential de
scribed by functionsf 4 and f 5 in two different regions of the
phase space are presented in Table IV. These functions ha
similar functional form, but differ by the width and the depth
of their energy minima. For the one-dimensional case o
functionsf 4 and f 5 , the equilibrium constant calculated from
the simulation is within 0.5% of the exact value. In two
dimensions, the factorization approximation in the initial co-
ordinate space@Eq. ~7!# is within 3% of the exact value, and
differs from the exact result in three dimensions by only
14%. The factorization approximation in normal mode space
@Eq. ~8d!# gives results differing by roughly 25% from the
exact values for the two-dimensional case, and by about 23%
for the three-dimensional case. The results for the equilib
rium constant based on the calculation of the determinant o
the covariance matrix@see Eq.~8b!# have very large errors
~up to 500%!. Based on the above description, both coordi-
nate factorization approximations work satisfactory, but it is
difficult to tell which one is better.

FIG. 2. Coordinate probability distribution for the one-dimensional version
of f 3 . See the text for additional details.

-

-

TABLE III. Comparison of the numerical integration values for the partition
functions with various factorization approximations.

Analytical
or

MC simulation results

numerical
based on factorization Parameters

values Z1 Z2 Z3 # of
Function Z Eq. ~7! Eq. ~8b! Eq. ~8d! N~a! Db cycles

f 1 6.283 6.2987 6.2903 6.2885 2~0.5! 0.1 2.108

f 1 15.479 15.737 15.731 15.764 3 0.1 2.108

f 2 8.1038 8.075 8.258 5.519 2~0.5! 0.1 2.108

f 2 23.059 23.010 21.468 14.50 3~0.5! 0.1 2.108

f 3 98.529 182.611 169.356 108.911 2 0.1 2.108

f 4 80.5475 97.603 96.951 90.981 2 0.05 2.108

f 5 45.8420 55.65 95.67 53.89 2 0.05 2.108

f 6 3.627 4.194 3.6302 3.631 2 0.1 2.108

f 7 73.0024 125.369 552.008 108.116 2 0.1 2.108
, No. 15, 15 April 1995¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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TABLE IV. Equilibrium constant for imaginary particle in two different energy minima corresponding to
functions f 4 and f 5 .

Number of
degrees of
freedom

~dimensions!

Analytical
or

numerical
values

MC simulation results

Exact
MC

treatment
Eq. ~6!

Factorization
in the initial
coordinate
space
Eq. ~7!

Factorization
in normal
mode space
Eq. ~8d!

Determinant
of the

covariance
matrix
Eq. ~8b!

2 1.757 1.742 1.754 1.688 1.01
3 5.548 5.216 4.522 3.568 1.645
o

o
e

a

r

i

SUMMARY

A straightforward approach to the calculation of partiti
functions has been presented. When the simultaneous p
ability of finding all degrees of freedom in the most probab
stateP~r0! can be obtained, partition functions within 1%
the exact values can be calculated. For those cases wher
is not possible, the most reasonable approximations are
factorization in the original coordinate space to estim
P~r0!, as well as the factorization approximation in norm
mode space. The method is general and can be used fo
bound system.16
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