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A combined Monte CarldMC) simulation-statistical mechanical treatment is proposed to calculate
the internal partition function and equilibrium constant. The method has been applied to a number
of one and multidimensional analytical functions. When sampling is incomplete, various
factorization approximations for estimating the partition function are discussed. The resulting errors
are smaller when the ratios of the partition functions are calcul@edn the determination of
equilibrium constanjsas opposed to the partition function itself. 8895 American Institute of
Physics.

INTRODUCTION whereZ,, Zg are the partition functions for form& andB,
) . . e ) respectively. Thus the problem of calculating the equilibrium
In many chemical or biological systems, one desires qnsiant reduces to the calculation of the partition functions
to calculate the equilibrium constants between differengg, poih subsystems. Following Mayer and Maffér.a par-
forms or aggregates of a given molecule. This could, ofjsion function for the molecule can be written as the product
course, be obtained from the experimentally determined COnst the configurational term and the integration over the mo-
centration dependence of the population of different multi-nents gegrees of freedom. The integration over configura-
meric states. Here, we prowde_an alternatlve_ combln_ed aRion space can be expressed as the product of the volumes
proach[Monte Carlo(MC)—statistical mechanicathat is,  yailable to the atoms in the molecule. In subsequent discus-
in principle, exact for a given energy function. The underly- o \e will concentrate on the calculation of the configu-
ing idea of this treatment is to use a computer simulation tQaional partition function(configurational integral In the
provide the variables for the statistical treatment. In practiceqclation of the equilibrium constant, the integrals over

the relationship to experiment depends upon the quality of,omenta degrees of freedom in the numerator and denomi-
the potential and exhaustiveness of the MC sampling proc&;5tor will cancef’

dure. In what follows, we describe the analytical treatment,
along with an application of this formalism to the computa-
tion of the partition functions for a set of simple energy
functions presented in Table I. The implications of the re-
sults, together with approximations that are used when comgy ot treatment

putational resources limit the sampling, are also described. o ]
For a system, where Boltzmann statistics applies, the

probability of seeing a particular conformation inside Nn
dimensional, infinitesmal volume elemedt/,., centered
METHOD aroundr,={x°, i=1---N} is proportional to the energy of

P 8-10
For the sake of simplicity, let us suppose that we want tothe stateE(ro) and is given b

calculate the equilibrium constant of an imaginary particle
which may be in two entirely distinct energy minirdaand P(ro) = exd —E(rg)/kT] 3
B, separated by large barriers 0 Zint ac
A<B. (1) . .
dV,. is the product of the volume elements accessible to
From a statistical mechanical point of view, the equilibrium each of theN coordinates X;) within a given tolerancelb.

constant betweeA andB is described &5° P(ry) is the probability that each coordinateis in the re-
gion betweenx’—1/2 db and x?+1/2 db (and thus each
K=ZxlZg, () coordinate has an infinitesmal volume elemehhtaccessible
to it). dV,.is connected to the definition of th&(r,) and the
3To whom correspondence should be addressed. discretizationdb in the following way:
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x9—0.5 db<x?<x%+0.5 db matrix*3~*>for the system, and then diagonalize it. We define
x0—0.5 db<x3<x%+0.5 db the covariance matrix, With respect to the most probable

P(ro)=P ; structure(ry), rather than with respect to the average struc-
.................................... wre

xp— 0.5 db<x{<x3+0.5 db
dV,=dbV. @

In what follows, we approximatdb by Ab, the finite differ-

Uij:<(xi_x?)(xj_xjo)>- (8a)

For a harmonic energy landscape, this definition is identical
V=, W to the one based on the average structure, but use of the most
ence approximation. " _ o probable state has the advantage that it places the reference
~ In the Monte CE‘,”E’L method, the canonical distribu- gtate in an energy minimum rather than in a maximum for
tion of states is obtained by a Markovian sequence in ‘f"h'c@ymmetric, bimodal distributions. The diagonal elements are
the probabilities between two conformational statesdr the variances for each coordinate, and the off-diagonal ele-

are given by ments are the covariances. The square root of the determi-
P(r') exg —E(r')/kT] nant of the covariance matrix, multiplied by 2" and
P~ exg—E(r)/KT] (5 exg—E(ry)], gives the partition function if the energy land-

scape is harmoni@nd is obtained by combining E¢p) and
Thus by calculating the fraction of time a system spendssq. (8) in Ref. 14, that is,

in a given statdr), a dynamic Monte Carlo method provides

P(r) From EC](3), we get Zint,ZE[de(U)]llz(zw)le eXF[_ E(rO)/kT] (8b)
d The final approximation simply uses the normal coordi-
Zin=exfd —E(rg)/kT] S =, nate transformation to calculate the product of the indepen-
(fo) dent possibilities. To obtain the normal coordingé we
ro=(x2,x5,... x%). (6)  proceed as follows: The matrix of the energy second deriva-

] tives F is constructed from the covariance matrix
Note thatr, can denote any conformational state. How-

ever, in what follows, due to the better statistics, the most  Fij=KT[o™ ;. (80

probable state is used. After diagonalizingF or o, we get a set oN eigenvectors.
The resulting eigenvector matrix is the desired transforma-

Approximate treatments in the poor sampling case tion matrix. After transformation of the initial coordinate set

The extraction ofP(ry), the probability that allN de- {xo} onto a normal coordinate s& then the independent
grees of freedom are simultaneously in the statés crucial ~ ProbabilitiesP; x(&) are calculated in normal mode space.

to the evaluation of Eq(6). As the number of degrees of The resulting partitiqn functio_n in terms of coordinates in
freedom increases, the longer the simulation time is require§°mal mode space is approximated by

for P(rp) to converge. In the case of a macromolecular sys- ac

tem dissolved in a solvent, where the number of degrees of ~ Zin,3=€Xf — E(ro)/kT] e (2 (8d)
freedom can be very largen the order of 1%, the conver- 1=1 T maxsl

gence of the corresponding probabilities becomes prohibi: :

; ; . . ; Monte Carlo sampling

tively time consuming. Furthermore, the time required to

complete one Monte Carlo cycle is proportional to the num-  The Monte Carlo sampling procedure consists in the first
ber of degrees of freedom. Thus for such systems, one needtage of a random walk with a stepAb equal to the dis-

a method to estimat®(ry). In what follows, we propose cretization. In a random walk, the new value of a coordinate
three factorization approximations. The first estimd®és,)  is generated from the old value by addition or subtraction of
as the product oN independent probabilitieB; (%) that ~ “Ab.” The values ofZ obtained by the random walk sam-
each coordinate is in its most probable state. This factorizapling are reported in the top rows of Table Il. Random walk

tion approximation reduces E¢f) to runs can be considered as a prescreening of the accessibility
of the conformational space by each degree of freedom and
dVye : . .
Zinp1=exd —E(ro)/KT] —xam ) (7)  provide an estimate of boundary values for the coordinates
20 P ma Xi) (the boundary values depend on the steepness of the energy

Equation(7) rigorously holds for functions where all prob- function under considerationin the next step, the sampling

abilities in each dimension are independent. Good example§ uniform (new values of the coordinates are generated in-

are the functiond, andf, (see Tables | and Ill belowIn  dependently of old valugsn between the boundaries for _

general, however, this is not the case. each coordinate. In both cases, the standard Metropolis
Two other ways of estimatin@®(r,) are based on the criterion™! was used to determine the transition probability.

approximation that the energy landscape is locally quasihar-

monic. One then constructs a transformation matrix thaRESULTS

transforms the initial coordinate set into a set of normal CO_Exact treatment

ordinates. For small oscillationtharmoni¢ around the equi-

librium positions, the normal modes can be treated indepen- MC simulations were performed on a set of test func-

dently. First, one needs to construct the covariancgions summarized in Table I. In Table Il, a comparison of the
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TABLE I. Description of the test energy functions used in the simulations.

Abbreviation Equation Description
f h One N=1), two (N=2) or three N=3)
1 f1=2 0.5¢ dimensional harmonic oscillator

N
One N=1), two (N=2) or three N=3)
f2 f= 2, 0.56¢ ) dimensionalcamel backunction
i=1
; ‘ —e i eIt 4’ Sum of two Gaussians in onédlE&1) or two
R - - : .
¥ |+ for x<—3 or x>6.5 (N=2) dimensions
; ‘ — 2 S 1025¢ One wide Gaussian in on&E 1) dimension or
4 = . _ . .
Tlie  for x<—3 or x>3 in two (N=2) dimensions
¢ ‘ —4e 8¢ One narrow Gaussian in on&l& 1) dimension
5 - X TN :
54w for x<—1.5 or x>1.5 or in two (N=2) dimensions
fe fe=x2+y%+xy Two dimensional function with cross terms
¢ ; — 4SS One narrow Gaussian in on&l&1) dimension
7 = ) - ; ;
5|4 for x<—3 or x>3 or in two (N=2) dimensions

MC simulation results is made with the direct numerical in- Factorization approximations
tegration of the partition functions. This will be referred to as
the “exact” values(except in the case of the harmonic oscil- . : . _ .
lator function where the analytical solution is well kngwn Partiion functions with those obtained using the three ap-
KT is set to 1. For all of the test functions, the partition proximate methods. As expected, for factorizable functions
functions and average energies at most differ by 1% from théf1 and f,), the factorization in the initial coordinate set is
exact values. The inaccuracies come from the discretizatiogxact for any number of degrees of freedom. The factoriza-
of the conformational spad¢he choice of finiteAb). For the  tion in the normal mode space is exact for the harmonic
harmonic oscillator(whose force constant ia=0.5), the  functionsf, andfg for any number of degrees of freedom, as
coordinate probability distribution is Gaussian with a maxi-js the approach based on the determinant of the covariance
mum atx=0. The values of the partition functions and the matrix. Surprisingly, for the functiof,, the results based on

average energies for one-, two-, and three-dimensional hafrg geterminant of the covariance matrix are very close to the

monic oscillators obtamed from the MC s!mulatlons agre€ayact valuegwith less than 7% errgr Generally, if we have
within a small error with the exact analytical values. The

next test functionf,, is the so-called ¢tamel backand has an energy Iandsgape With. one or multiple minima with not
two minima in one dimension, four minima in two dimen- toq m:?lny flat reg.lons_func.tmnsfl_, _f_2’ fa, f5'_f6)' the fac-
sions, etc. For the one-dimensional case the coordingte (t0r|zat|0n approximation in the initial coordinate set works
probability distribution is shown in Fig. 1. In the one- reasonably wellthe errors are 20% or lesdJnfortunately, if
dimensional case, there are two energy minima and two moghe function is anharmonic with many flat regiorf; (f;),
probable stategcorresponding to the two lowest energy this approximation introduces large errdrp to 86%, and
stateg. The third casef(z) is a sum of two Gaussiarsith  the best approximation seems to be factorization in normal
hard wall3 in one and two dimensions. For the one- mode spacéwith errors of 50% or le9s However, for func-
dimensional case, the coordinate probability distribution istions such ag,, the factorization in normal mode space can
presented in Fig. 2, and the two most probable conformap,ye jarge errorgup to 60%. The results based on the de-
tional states lie at the centers of Gaussians and correspondttéprminant of the covariance matrix are exact only in the case

two energy minima. The last case is particularly interesting .
) f the harmonic energy landscape. In cases where the energy
because it shows that our approach can be used to calculgte . , i .
andscape is flat with one or more well defined minima, the

the partition function even for a rather complicated energ ) , )
landscape. errors can be quite substantial, e.g., 800% in the cade.of
For the remaining test function§,, fs, fs, and f,  In most cases, the factorization approximations overestimate

(meant to be test cases for the different approximatiche  the internal partition functions, but both the factorization in

simulation based values of the partition functions agree witithe initial coordinate space and in normal mode space are
the exact values within 1.5%. reasonable approximations to the partition function.

Table Il presents a comparison of the exact values of the
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TABLE Il. For the test energy functions comparison of the analytical
numerica) integration values with the MC simulation results for the parti-

tion functions®?

Parameters MC simulation Analytical or

results numerical

# of V4 values

Function N Ab cycles Eq.(6) z

f, 1 0.1 1.16 2.5063 2.5066
210 2.5052

f, 2 0.1 1.16 6.2626 6.283
1.10 6.2853

f, 3 0.1 2.16 15.478 15.749
210 15.733

f, 1 0.1 2.16 2.8460 2.8467
2.10 2.8453

f, 2 0.1 2.16 8.0709 8.1038
210 8.0855

f, 3 0.1 8.16 22.787 23.059
2.10 22.950

fa 1 0.1 2.16 14.776 14.729
210 14.817

fa 2 0.05 2.18 99.984 98.529
210 98.997

fa 1 0.05 2.18 22.397 22.354
210 22.468

fy 2 005 218 80.019 80.548
2.10 81.879

fs 1 0.05 2.18 45.634 45,591
2.10 45.625

fs 2 0.05 218 45.932 45.842
210 46.142

fe 2 0.1 2.16 3.593 3.627
210 3.642

f5 2 005 2.18 48.687 48.647
210 48.799

f5 1 0.05 2.18 73.604 73.002
210 73.194

&Top lines in the fourth and fifth columns show random walk results.

bBottom lines in the fourth and fifth columns show uniform sampling re-

sults.
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FIG. 1. Coordinate probability distribution for the one-dimensiocehel-

backfunction f,. See the text for additional details.
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FIG. 2. Coordinate probability distribution for the one-dimensional version
of f5. See the text for additional details.

The effect of the factorization approximations on the
equilibrium constant between an imaginary
particle in two energy minima

The results for the equilibrium constafEg. (2)] be-
tween an imaginary particle experiencing the potential de-
scribed by functiond$, andf s in two different regions of the
phase space are presented in Table IV. These functions have
similar functional form, but differ by the width and the depth
of their energy minima. For the one-dimensional case of
functionsf, andfs, the equilibrium constant calculated from
the simulation is within 0.5% of the exact value. In two
dimensions, the factorization approximation in the initial co-
ordinate spacgEq. (7)] is within 3% of the exact value, and
differs from the exact result in three dimensions by only
14%. The factorization approximation in normal mode space
[Eq. (8d)] gives results differing by roughly 25% from the
exact values for the two-dimensional case, and by about 23%
for the three-dimensional case. The results for the equilib-
rium constant based on the calculation of the determinant of
the covariance matriksee Eq.(8b)] have very large errors
(up to 500%. Based on the above description, both coordi-
nate factorization approximations work satisfactory, but it is
difficult to tell which one is better.

TABLE lIl. Comparison of the numerical integration values for the partition
functions with various factorization approximations.

Analytical MC simulation results
or based on factorization Parameters
numerical
values Z, Z, Z3 # of
Function z Eq.(7) Eq.(8b) EqQ.(8d) N(@ Ab cycles
fq 6.283 6.2987 6.2903 6.2885(®5 0.1 2.16
fq 15.479 15,737 15.731  15.764 3 01 210
s 8.1038 8.075 8.258 5519 (@5 0.1 2.16
fy, 23.059 23.010 21.468 1450 (85 0.1 2.16
fs 98.529 182.611 169.356 108.911 2 0.1 3.10
faq 80.5475 97.603 96.951  90.981 2 0.05 3.10
fs 45.8420 55.65 95.67 53.89 2 0.05 210
fe 3.627 4.194 3.6302 3.631 2 0.1 2410
s 73.0024 125.369 552.008 108.116 2 0.1 2.10
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TABLE V. Equilibrium constant for imaginary particle in two different energy minima corresponding to
functionsf, andfs.

MC simulation results

Factorization Determinant
Number of Analytical Exact in the initial Factorization of the
degrees of or MC coordinate in normal covariance
freedom numerical treatment space mode space matrix
(dimension$ values Eq. (6) Eq. (7) Eq. (8d) Eq. (8b)
2 1.757 1.742 1.754 1.688 1.01
3 5.548 5.216 4,522 3.568 1.645
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