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Abstract 

Various existing derivations of the effective potentials of mean force for the two-body interactions between amino 
acid side chains in proteins are reviewed and compared to each other. The differences between different param- 
eter sets can be traced to  the reference state used to define  the zero of energy. Depending on  the reference state, 
the transfer  free energy or other pseudo-one-body  contributions  can be present to various extents in two-body 
parameter sets. It is, however, possible to compare  various  derivations directly by concentrating on  the “excess” 
energy-a  term that describes the difference between a real protein and an ideal solution of amino acids. Further- 
more,  the  number of protein  structures available for analysis allows one  to check the consistency of the deriva- 
tion and  the errors by comparing parameters derived from various subsets of the whole database. It is shown that 
pair  interaction preferences are very consistent throughout  the  database. Independently derived parameter sets 
have correlation coefficients on  the order of 0.8, with the mean difference between equivalent entries of 0.lkT. 
Also, the low-quality (low resolution, little or no refinement) structures show similar regularities. There are, how- 
ever, large differences between interaction parameters derived on  the basis of crystallographic structures and struc- 
tures  obtained by the NMR refinement.  The origin of the latter difference is not yet understood. 
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Every known protein, under the  appropriate environmental con- 
ditions,  folds to its native structure, which, according to the 
“thermodynamic  hypothesis,” is at  the global minimum of its 
free energy surface  (Anfinsen, 1973). In principle, it should be 
possible to build a model of a  protein, develop a formula  for 
its total energy, and search for a global free energy minimum 
using the computational  tools of statistical mechanics. At pres- 
ent, however, this approach is not able to solve the protein fold- 
ing problem in general, i.e., to predict a previously unknown 
structure of a  protein with a known sequence. There are a  num- 
ber  of reasons for this, the most important being the inadequacy 
of the energy function  (Novotny et al., 1984). This last prob- 
lem can become even more severe, when the protein model is 
simplified to reduce the computational time needed for  the cal- 
culations (Skolnick & Kolinski, 1989), and when  it  is  technically 
feasible to study  the whole folding pathway for a medium-sized 
protein.  In such a simplified description, the protein model is 
built from units equivalent to various collections of heavy at- 
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oms (such as side chains or functional  groups), and  the inter- 
action energy  between  these units should be treated as a potential 
of mean force  obtained by averaging over all omitted degrees 
of freedom,  rather than  as a  potential energy (Hill, 1956). It is 
only for simple motifs (Kolinski & Skolnick, 1994a) or proteins 
with exaggerated local patterns (Kolinski et al., 1995) that  the 
simplified models can successfully predict a  protein  structure. 

Known protein structures (Bernstein et al., 1977; PDB, 1994) 
contain  a wealth of information  about  the interaction  prefer- 
ences of amino acids. It has long been recognized that some 
amino acids have the tendency to be buried in the protein inte- 
rior (Kendrew et al., 1958). This fact was used in the derivation 
of many empirical hydrophobicity scales (Cornette et al., 1987). 
There are also pairs of residues that  are  often found  interact- 
ing with each other, ion pairs being the best known example 
(Barlow & Thornton, 1982; Bryant & Lawrence, 1991). Many 
such preferences were noticed throughout  the years and re- 
cently  exhaustive classifications were published (Sali & Blundell, 
1990; Singh & Thornton, 1990). Efforts  to analyze and under- 
stand these preferences led to  the derivation of the side-chain- 
side-chain  effective potentials (Levitt, 1976; Tanaka & Scheraga, 
1976; Warme & Morgan, 1978; Narayama & Argos, 1984;  Miya- 
zawa & Jernigan, 1985; Wilson & Doniach, 1989; Hendlich 
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et  al., 1990; Godzik et al., 1992; Jones et al., 1992; Bryant & 
Lawrence, 1993; Bauer & Beyer,  1994; Kolinski & Skolnick, 
1994b;  Wallqvist & Ullner, 1994). The very fact  that  there  are 
so many  independent  derivations, resulting  in dramatically  dif- 
ferent  parameter  sets, suggests that this problem is far  from be- 
ing understood. Various derivations were  never  systematically 
compared  to  each  other,  neither on the level of parameter  sets, 
nor  on  the level of  derivation  protocols. We intend  to fill this 
gap with the  present  publication. 

I f  there were no specific amino  acid  interactions in proteins, 
then  the  distribution of amino acids between the interior and ex- 
terior  of  the  protein  and  the  distribution  of  interacting  pairs, 
triplets,  etc.,  would  depend only  upon  the system’s geometry and 
on  the  relative  concentrations  of  residues  of a given type.  This 
statement, in fact, requires clarification,  as will be discussed be- 
low, because there  are several different systems fitting  this  de- 
scription.  The existence  of  several different  “random” systems 
is the  origin of  a great  deal  of  misunderstanding  and  consid- 
erable  confusion,  as  far  as  derivations of parameter  sets  are 
concerned. 

It is usually assumed  that a nonrandom  distribution  results 
from  the existence  of an  energetical  term  that  favors a particu- 
lar side-chain arrangement  over  others.  In a  simplified  descrip- 
tion,  where  some  degrees of freedom  have been averaged  out, 
such terms  can be conveniently  described as a potential of mean 
force  (Hill, 1956). In  principle, it is possible to  calculate  such 
potentials by performing  long  simulations at the atomic level and 
then  averaging over the  fast degrees of  freedom we are  not in- 
terested in (Clementi, 1980). In  reality,  this is not  practical be- 
cause of the  number of computations involved and  also because 
our  understanding  of  protein  behavior  on  the  atomic level is in- 
sufficient. However, if  we make  the crucial assumption  that res- 
idues in an ensemble  of proteins follow a  Boltzmann  distribution 
describing their location,  mutual  interaction,  etc.,  then we can 
estimate  the  potential  of  mean  force by analyzing  the  distribu- 
tion of their  occurrence. For instance, it has been shown  that 
the distribution of ion  pairs is quantitatively related to  Coulombs 
law, albeit the  apparent  temperature is too high (Bryant & Law- 
rence, 1991). 

It must be noted, however, that  the existence of a Boltzmann- 
like distribution of residue-residue interactions in proteins is far 
from being obvious.  The  original  derivation  of  the  Boltzmann 
distribution is done  for a system  in thermodynamic  equilibrium 
(Hill, 1956). On  the  other  hand, a database of protein  structures 
is a  collection of different  systems,  each in  its own respective 
global  free energy minimum  (one  has a  biological ensemble 
rather  than a statistical-mechanical  ensemble). It is not  at all 
clear what  type of distribution would be followed by such an en- 
semble.  It is only  for a random energy model of proteins  (Der- 
rida, 1981) and  under several other  strong  assumptions  that 
it is possible to  prove  that  indeed  the  distribution of residue- 
residue  interactions in proteins is Boltzmann-like with  respect 
to  the energy of  that  interaction  (Cutin  et  al., 1992). 

In this  contribution, we describe  in detail  various  derivations 
of  interaction energy parameter sets and  compare  them  to  each 
other,  both  on  the level of derivation  details,  as well as  on  the 
level of  final  parameter  sets.  In  addition, a derivation  of a par- 
ticular parameter  set, used  in the  topology  fingerprint-based in- 
verse folding  program  (Godzik et al., 1992, 1993) is described 
in detail in the  Appendix. To make  the  comparison possible,  all 
parameter sets are  decomposed  into  “ideal”  and “excess” parts. 

Finally, the  derivation consistency is checked by comparing sets 
derived from  various  subsets of the  structural  database. 

Results 

Folding stages 

For the  purpose  of  the  following  analysis,  the  process  of  pro- 
tein folding, which starts  from  the  completely  unfolded  chain 
(U) and  ends with the  final, native structure (N), is divided into 
conceptual  steps.  These  may or may  not  have  anything  to d o  
with  the  actual  protein  folding process. 

In the first step,  a  protein  changes from a completely unfolded 
chain  to a compact  globule,  roughly  the size of the  final  pro- 
tein. We can view this  structure  as  resulting  from  the existence 
of a generic  “compacting”  potential.  The  entire  protein is uni- 
formly packed and  can  be well described as a randomly  packed 
droplet. We shall call this  state Ur.o,npat.,. 

In  the next step,  interactions between amino  acid side chains 
and  water  are switched on.  The  protein  separates  into a hydro- 
phobic  core  and a hydrophilic  surface  layer,  each with  a com- 
position  different  from  the  protein as a whole. As  yet,  there  are 
no  interactions between  side chains.  Therefore,  the  distribution 
of side chain  contacts  both inside the  protein  and in the  surface 
layer can be described by a random mixing approximation. We 
shall call this  state I/phi/.phoh. 

In the  third  step,  interactions  between  side  chains  are 
“switched on.” But only  interactions between pairs  of  two  iden- 
tical side chains  assume their correct value. Interactions between 
two  different side chains  are  approximated by the  arithmetic 
mean of the  pair  interaction between identical  side  chains, ac- 
cording  to  the  formula 

The  distribution of side chain  contact is now similar to  that in 
an  ideal  liquid.  This  state will be called Ufdeul. 

In the  final  step,  the  correct  distribution of pairs is formed 
by “switching  on”  an excess energy of  interacting  pairs, i.e., 

This  state is the  native  state N. 
We do  not know much  about  an  unfolded  state U. Therefore, 

most derivations have used one of the states uco,,,pacr/uphi/-phob/ 

Uideol as their points of origin.  It is important  to  note  that  both 
in going  from  the  state Ucompocl to up),i/-phoh and  from Uphil-phoh 

to  U,drul, the new interactions  that  are  being  introduced  are 
effectively one-body  interactions,  i.e.,  there  are  only 20 pa- 
rameters. For each  amino  acid, k,  there is the energy of trans- 
fer  from  water  to a mean  protein  environment Ek ( Ucompac, -+ 

Uphr/-phob) and a pair  interaction energy  between two  identical 
residues Eii (Uphi/.phob -+ u,drul). On  the  other  hand,  on  going 
from  the  state Uideal to  the  native  state,  the  interactions  are  two 
body  and  there  are 190 parameters needed to describe them. 

In  the discussion above,  secondary  structure was not  treated 
separately; instead, it was assumed that it will form in the native 
state.  Some  time  ago it  was  suggested that  compactness itself in- 
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Table 1. Parameter sets analyzed in detail, together with the description of specific interaction definitions 
and  other  derivations  detailsa _ _ _  

Warme  and  Morgan (1978) 

Narayama  and  Argos (1984) 

Tanaka  and  Scheraga (1976) 

Miyazawa  and  Jernigan (1985) 
Maiorov  and  Crippen (1992) 
Bryant  and  Lawrence (1991) 
Godzik et al. (1992) 

Hinds  and Levitt (1992) 

Kolinski and Skolnick (1992) 

Database  Interaction 
size  center  Interaction  definition 

_ _ _ _  - 
21 Heavy  atoms  Atom-atom  closer  than  threshold, 

residue-residue  recalculated 
44 Heavy atoms  Atom-atom  closer  than  threshold, 

residue-residue  recalculated 
25 Heavy  atoms  At least one  atom-atom  closer 

than  threshold 
42 Center of mass  Closer  than  threshold 

109 C p  Closer  than  threshold 
141 "Interaction  center" 1 A intervals 
56 Heavy atoms At  least  one  atom-atom  closer 

56 Lattice vertex At least one  atom-atom  closer 

56 Center of mass Atom-atom  closer  than  threshold, 

than  threshold 

than  threshold 

residue-residue  recalculated 
"" ~ - " ~~~ ~ 

~" - "" _ _ _ ~  

Threshold (A) r Dependence 

Sum of VdW + 1.0 No 

6 No 

6 No 

6.5 No 
9 No 
5 Yes 
4.5 No 

4.5 No 

4.5 No 

a Note  that in a  number of cases,  the  interaction  center used in the  energy  calculations  and  the  interaction  definition used in the  parameter 
derivation do not  coincide.  When  the  strength of an  interaction is the  same  despite  the  number  of  atoms  actually  interacting,  the  interaction  defi- 
nition is denoted  as  "at  least  one  atom-atom." 

duces  secondary  structure  (Chan & Dill, 1990). If so, second- 
ary  structure  could  spontaneously  appear in the  state 
This suggestion  was later  proved  incorrect  (Hunt et al., 1994), 
which is corroborated by results from our laboratory (Kolinski 
& Skolnick, 1992). 

Comparison of parameter  sets 

The single most important difference between various energy pa- 
rameter  sets,  such  as,  for  instance,  sets reviewed in Table l ,  is 
the  difference in the  calculation  of Nexwcled (see the  Materials 
and  methods  for  explanation  of  various  abbreviations),  and 
more specifically, the reference state defining the zero of  the  en- 
ergy function.  This  statement is corroborated by the  data in Ta- 
ble 2, which lists results of pairwise comparisons between various 

available  parameter  sets.  It is clear that  parameter  sets  can be 
divided  into  two  groups, with a correlation  coefficient  of  more 
than 0.5 within each  group  and  almost  no  correlation between 
sets  from  different  groups. 

It is interesting  to  note  that,  on  occasion,  parameter  sets  de- 
rived by using apparently very different  approaches  can, in fact, 
be very similar,  sometimes  despite  the  authors'  intentions. For 
instance,  the  parameters  by  Warme  (Warme & Morgan, 1978) 
with  a reference  state Ucompac, have a correlation  of 0.74  with 
the set derived by Godzik et al. (1992) with the  reference  state 
I/ph,/.pho(,. Even  more  spectacular is the  similarity between po- 
tentials derived from  statistical analysis of  protein  structures 
from  the first group (see Table 2) and a  set  derived by Maiorov 
and Crippen (1992). As discussed earlier,  this set was not derived 
from a statistical analysis of  the protein database but instead was 

Table 2. Results of pairwise comparisons between several publicly available parameter sets 
~ ~ - -~ ~ "" - "_ "" __" ~~ ~ ~ - 

MJLI  TS  HL  MC BL  KS GC MJ-I1  GKS I/Ea Idealh Excess' Buriald 
- -~ "" 

Miyazawa  and  Jernigan I (1985) 
Tanaka  and  Scheraga (1976) 
Hinds  and  Levitt (1992) 
Maiorov  and  Crippen (1992) 
Bryant  and  Lawrence (1991) 
Kolinski and  Skolnick (1992) 
Gregoret  and  Cohen (1990) 
Miyazawa  and  Jernigan I1  (1985) 
Godzik et al. (1992) 
Warme  and  Morgan (1978) 

- 
0.89 - 
0.82  0.85 - 
0.75 0.60 0.63 - 

0.71 0.60 0.66 0.66 
0.57 0.48 0.73 0.54 
0.19 0.10 0.29 0.36 
0.29 0.02 0.31 0.25 
0.05 0.08 0.23 0.07 
0.09 0.06 0.28 0.22 

__ ___ 
8.2 0.96 0.16 0.96 

13.2 0.97 0.06 0.88 
1.6 0.81 0.13 0.89 
1.4 0.70 0.19 0.86 

- 1.3  0.66  0.30  0.79 
0.69 - 1.0 0.42  0.28 0.74 
0.40  0.56 - 0.7 0.02 0.78  0.66 
0.29  0.57 0.66 - 0.6 0.00 0.82 0.61 
0.15 0.53 0.50 0.77 - 0.7  0.09  0.79 0.06 
0.31 0.58  0.55  0.74 0.63 0.6 0.04  0.79  0.46 

~ 

~ ~ ~ "" 

a I/E, ratio  between  the  ideal  and excess part  of  the  parameter  set. 
- 

Ideal,  correlation  between  and Eu. 
Excess,  correlation  between E~xcess and E,, . 
Burial,  correlation  between  the  "ideal"  part of the  pair  interaction  parameter set and  the  hydrophobic  energy, 
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optimized  for  recognition  of  native  structures  from  the  group 
of  misfolded  structures. 

The  difference between two  groups,  as  identified in Table  2, 
can be traced to  a  single important decision regarding  the  ref- 
erence state. If the  state Ucompac, is explicitly or implicitly used, 
then  the  interaction energy  between buried residues includes 
the  transfer energy from  the  surface of the  protein  to  the  pro- 
tein  interior.  In  other  words,  the  apparent  attraction between 
two residues may result from  the  fact  that they are  pushed  to- 
gether  into  the  protein  interior.  On  the  other  hand,  pairs  that 
are  often  exposed  to  solvent  and  thus  are  underrepresented  in 
the  core,  end  up being neutral  or weakly interactive, even if in 
the protein  interior they attract or repel each other. Accordingly, 
in parameter  sets  from  the  first  group,  the  most  attractive  in- 
teractions  are typically interactions between two  hydrophobic 
residues. For  instance,  Phe-Phe  interactions  at -6.85 are  the 
strongest in the  MJLI set. In  the  same  set,  the  Glu-Glu  inter- 
action energy (- 1.18) is almost  the  same  as Lys-Glu (- 1.60) or 
Arg-Arg (- 1.39). On  the  other  hand, in parameter sets from 
the  second  group,  both  trends  are reversed. Hydrophobic resi- 
dues in the  core  are  often  neutral  to  each  other,  and  the  stron- 
gest attraction is typically  between oppositely  charged  groups, 
whereas  groups with the  same  charge repel each  other.  For  in- 
stance, in the MJLII  potential  set, Lys-Glu is the  strongest in- 
teraction  at -0.96. It  could never be  mistaken  for  the  Asp-Asp 
interaction (+0.04). In  another set from  this  group,  GKS  (God- 
zik et al., 1992), Asp-Arg is the  strongest  attraction  at -1.0, 
with  Phe-Phe being  mildly attractive  at  -0.3  and  the  strongest 
repulsion occurring between charged and  hydrophobic residues. 

Another  difference between the  two  groups is seen  when pa- 
rameters  are split into  the  “ideal”  and  the “excess” part  accord- 
ing  to  Equations  5A  and 5B. After  such a decomposition is 
made, it is possible to  ask  the  question,  what is the  correlation 
coefficient  of  the  original  parameter set to  each of  its parts? 
These  coefficients  are  presented  as  the  last  two  columns in Ta- 
ble  2. The  difference between the  two  groups of parameter  sets 
is again clearly visible, as in the  first  group  the  “ideal”  part  con- 
stitutes the  dominant  part of the  total interaction  energy. In con- 
trast,  the  parameters  from  the second group  are  almost entirely 
composed  from  the “excess” term. 

The  earlier  suggestion,  that by using Ucompacr as a reference 
state,  the  transfer  energy between  solvent and  protein  environ- 
ment is “mixed in”  to  the pairwise interaction set is further  cor- 
roborated by analyzing the  20-parameter  “ideal”  component of 
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interaction  energy.  As seen by the  correlation  coefficient listed 
in  the  last  column  of  Table  2,  the  “ideal”  component is almost 
identical  to a “hydrophobic” scale  derived on  the basis of anal- 
ysis of composition  change between  a protein  core  and a pro- 
tein surface (Godzik  et al., 1992), which in turn is closely related 
to “transfer”  hydrophobic scales (Cornette  et  al., 1987). This ex- 
plains  the  strong similarity  between various  parameter sets. In 
particular, it helps to explain the results of the  Crippen  (Maiorov 
& Crippen, 1992) experiment in  recognizing misfolded  struc- 
tures. It was  proved repeatedly that  the  hydrophobic energy is 
very effective  in  recognizing correct (Godzik & Skolnick, 1992) 
or  similar (Bowie et  al., 1990) protein  folds. 

A very different  picture is seen  when various  parameter  sets 
are  compared  on  the level of E T ,  recalculated from  various 
sets according  to  the  Equation 5 .  Now almost all parameter sets 
are  correlated with each  other  at  the level of  50-70%,  includ- 
ing parameters  that previously belonged to different groups (see 
Table 3). This  probably reflect differences in the interaction  def- 
initions  and  data sets. 

Analysis of the consistency of the derivation 

The  derivation of the  empirical  energy  parameter set was car- 
ried out  according  to  the  procedure  described in Appendix  1, 
using the  database  of  high-quality  crystallographic  structures. 
The resulting parameter set is presented in Table  4.  This  set, 
together  with all parameter sets  discussed here,  can  also  be 
downloaded via anonymous  ftp  from  pub/adam  directory  at 
ftp.scripps.edu. Because the energy was obtained  from  the  anal- 
ysis of a  statistical distribution  according  to  Equation 1, the  nat- 
ural  unit is kT. To test how  much  the results depend on the 
actual  protein  list,  the  current results  were compared  to  the 
results of the same analysis performed  on a preliminary list com- 
piled for  the  PDB release 56, which contained 59  proteins (God- 
zik et al., 1992). The  correlation between the  two sets is shown 
in  Figure  1, where each energy term is shown  as a point [x, y ] ,  
where x is the value  derived from  the small and y from  the large 
database.  The correlation between the  two sets is very good, with 
a correlation  coefficient  equal  to  0.84  for  the  two-body  terms 
and  the  mean  difference between equivalent  terms  equal  to 
0.15kT.  However,  the  differences between  individual contribu- 
tions  can be quite  large,  and,  in  some cases,  they exceed 0.5kT. 
Errors  are largest for  interactions between rare  amino  acids, 
where the  number of cases in the small protein  database was ap- 

Table 3 .  Results of pairwise comparisons between “excess” part of several publicly available parameter sets 
”””” ~ _ ”  

~ ~~ ~ ~ ~ ~~ - ” ~ ~ ~ ~~ - ”~ - ” - ~ _ _ ~ ~ ~  ””” ~~~ ”””_ ~ ~~~ ~ ~ ~ ”” ~~- .~ 

MJ-1 TS HL MC BL KS GC MJ-I1 GKS 

Miyazawa and Jernigan 1 (1985) 
Tanaka  and Scheraga (1976) 0.67 
Hinds and Levitt (1992) 0.81  0.67 
Maiorov and Crippen (1992) 0.60 0.33 0.51 
Bryant and Lawrence (1991) 0.52  0.47 0.62 0.32 - 
Kolinski and Skolnick (1992) 0.78  0.74  0.86  0.41 0.61 
Gregoret and Cohen (1990) 
Miyazawa and Jernigan 11 (1985) 1.00 0.67 0.81 0.60 0.52 0.78 0.68 
Godzik et al. (1992) 0.77 0.54  0.75 0.42 0.46  0.61 0.61 0.77 
Warme and Morgan (1978) 0.77 0.62 0.69  0.45 0.45 0.46 0.46 0.77  0.59 

-~~~ ””” ~ .~ 

- 

- 

- 
- 

- 
0.68 0.44 0.60 0.51  0.39  0.66 - 

- 
- 

~~~ ””_ 

~~~ ””” ~ 
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Table 4. The parameter set derived in this paper 
~ ~- " 
"" "~ ~ " _ _  "" 

Ala  Ser  Cys  Val Thr Ile Pro Met Asp  Asn Leu Lys Glu Gln Arg His Phe  Tyr Trp 
,"._ "" ~ "" 

Ala 
Ser 
CYS 
Val 
Thr 
Ile 
Pro 
Met 

Asn 
Leu 
LYS 
Glu 
Gln 
Arg 
His 
Phe 
TYr 
Trp 

ASP 

0.1 0.1 0.1 -0.1 0.0 -0.1 0.0 0.0 0.2 
0.1 -0.4 0.1 0.3 -0.2 0.4 -0.3 0.3 -0.5 
0.1 0.1 -0.9 0.0 0.0 0.2 -0.1 0.1 0.3 

-0.1 0.3 0.0 -0.2 0.2 -0.1 0.1 0.1 0.6 
0.0 -0.2 0.0 0.2 0.0 0.1 -0.2 0.1 -0.3 

-0.1 0.4 0.2 -0.1 0.1 -0.1 0.2 0.0 0.5 
0.0 -0.3 -0.1 0.1 -0.2 0.2 -0.3 0.0 0.0 
0.0 0.3 0.1 0.1 0.1 0.0 0.0 -0.2 0.5 
0.2 -0.5 0.3 0.6 -0.3 0.5 0.0 0.5 -0.3 
0.1 -0.4 -0.1 0.3 -0.3 0.4 -0.3 0.1 -0.6 

-0.1 0.4 0.1 -0.1 0.2 -0.1 0.1 0.0 0.6 
0.3 -0.3 0.4 0.4 -0.1 0.2 0.1 0.2 -0.9 
0.3 -0.5 0.4 0.4 -0.2 0.5 -0.1 0.3 -0.3 
0.0 -0.3 0.1 0.2 -0.2 0.2 -0.4 0.1 -0.3 
0.3 -0.3 0.4 0.4 -0.1 0.3 -0.3 0.3 -1.0 
0.2 -0.3 0.0 0.5 -0.1 0.4 -0.1 0.2 -0.7 

-0.1 0.1 0.1 0.0 0.1 0.0 -0.1 -0.1 0.3 
-0.1 -0.1 0.1 0.1 0.0 0.1 -0.4 -0.1 -0.2 

0.0 0.2 0.2 0.1 0.2 0.1 -0.4 -0.1 0.0 

parently  too  small. All values for  more  common  amino  acids, 
such  as  alanine or serine,  differ by less than O.lkT. 

As explained in the  previous  paragraph, in the  current  deri- 
vation,  care was taken  to  separate  the  effects  of  the  one-body 
hydrophobic  interactions  from  the  two-body  interactions.  This 
separation  can be tested by looking  at  the  dependence  of  the 
pair  interaction energy on  the  hydrophobicity  of  both residues, 
using the  statistical  hydrophobicity scale (Godzik et al., 1992). 
As seen  in  Figure 2A, there is actually  an  anticorrelation (equal 
to -0.22). In contrast,  as discussed earlier, these two  effects 
were often  not  separated  as  illustrated in Figure 2b for  the 
Miyazawa-Jernigan  interaction energy parameter set (Miyazawa 
& Jernigan, 1985). In  fact,  this  effect is so strong  (correlation 
is equal  to 0.91) that, in such cases, the pairwise interaction  en- 
ergy can actually be  decomposed  into a sum  of  one-body terms. 

In the  present  derivation,  the  residue size was accounted  for 
by introducing  the "contact ratio." As before, it can be seen that 
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Fig. 1. Comparison between parameter sets derived on  the basis of 
protein structure databases having 59 and 381 members. 
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in the  current  parameter  set,  there is no  correlation ( r  = -0.06) 
between the value  of the  interaction  parameter between pairs  of 
residues and their sizes (Fig. 3A). This is not  the case for  param- 
eter  sets  that lack this  correction  (Fig. 3B, r = 0.89). 

The  current  database  of  structures is large  enough  that  the 
consistency  of  the  derivation  can  be  checked by rederiving the 
parameter set for  various  subsets of the full database.  The  stan- 
dard  jackknife test is difficult  to  apply, because there  are  many 
related  structures in the  database. As discussed in the  Materi- 
als  and  methods, a 50% sequence  identity  cutoff was  used to 
build  the  current  database, which  left many  homologous  pro- 
teins. Also, there  are  many  examples  of  significant  structural 
similarity  despite  any  sequence  similarity. In the  current  data- 
base,  there  are  more  than 30 topologies with more  than  one ex- 
ample.  Some of them, such as globins or TIMs, have more  than 
I O  members. Therefore,  two tests were performed  that extended 
the  idea  of  the  jackknife  test. 

In the first test,  the  database was randomly divided into  two 
subsets in  such a way that  all  members  of a  given topological 
family  are in one  subset.  The  second test was to check how  far 
the  correction  for  the  protein size  really eliminates size effects. 
The whole database was divided into a set of  large proteins with 
more  than 210 residues and small  proteins with less than 200 res- 
idues. The reason for this division was that  no topological group 
was split into  two subsets. In both cases, the agreement between 
the  two  independently  derived  parameter  sets was very good, 
with  a correlation  coefficient  better  than 0.9 ( r  = 0.91 and r = 
0.92, respectively). 

Protein  structures  can  also  be divided according  to  the  type 
of  dominant  secondary  structure.  In our database, we have 46 
all-a  proteins, where a-helices  constitute  more  than 40% of the 
total  length  of  the  proteins  and  the  extended  structure is not 
present.  Similarly,  there  are 42 a1l-P proteins.  Comparing  pa- 
rameter  sets derived from sets of all-cy and all-@ proteins (see 
Fig. 4), we see that  there is little correlation between the  two- 
body  interaction  parameters in the  two  sets ( r  = 0.34). A closer 
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Fig. 2. A: Comparison  between  the  two-body  interaction  parameter set developed  here  and  the  sum  of  one-body  hydropho 
bicities  of both  interacting  residues. B: The  same  plot  for  the  Miyazawa-Jernigan  parameters. 

analysis of Figure 4 reveals that  there  are a few side chains  that 
are  responsible  for  most of the  discrepancy.  In  general,  hydro- 
phobic residues behave in the  same way in  both  types  of  pro- 
teins;  for  instance,  Phe-Phe or Phe-Leu interaction having the 
same energy. On  the  other  hand,  polar residues  in different sec- 
ondary  structure  types  for  all  practical  purposes  behave  as  two 
different side chains.  In a proteins,  the  Glu-Glu,  interaction is 
repulsive with an energy equal to  +0.6kT, whereas  in @ proteins 
it is attractive  with  the  energy value equal  to -0.8kT. Other 
examples  of  such  dramatic  changes involve pairs  such  as  Arg- 
Cys (-0.3 versus + 1 .O), Lys-Cys (0.0 versus + 1.6), or Ala-Arg 
(+ 1.5 versus  -0.2). It is very tempting  to  rederive a parameter 
interaction set to  account  for this  difference by introducing sep- 
arate  types of residues for  different  secondary  structure  types, 
such  as  Glu-in-the-a-helix  and  Glu-in-the-0-strand. 

As  described  in the  Materials  and  methods, in addition  to  the 
database of low-resolution, highly refined  protein  structures 
(HIGH),  two  other  databases were constructed:  one  containing 
structures  obtained by refinement  of NMR  data  (NMR)  and  the 
other  has  low-quality  structures  (LOW).  It is interesting to  test 
if there  are  any significant  differences between these databases. 

This  question is answered by Figure 5, where  interaction  en- 
ergy parameter sets developed  for  various  databases  are  com- 

45o.m , . , .  I . I . I . I . I . l . l  

pared. As illustrated in Figure 5, the set derived for  the  HIGH 
database is markedly  different  from  the  one derived for  the 
NMR  database with the correlation coefficient between both sets 
equal  to 0.46. This finding could  not be explained by differences 
in protein sizes (NMR-solved structures  are usually smaller) nor 
by secondary  structure  type  (there is a  slight predominance of 
helical proteins in the  NMR  database).  The  correlation  coeffi- 
cient is even lower  between NMR  databases  and a subset of 
HIGH,  containing  only  small, helical proteins.  In  contrast  to 
this  result,  the  parameter  sets derived from  HIGH  and  LOW 
databases  are  surprisingly  similar, with r = 0.91.  Because both 
databases  are  independent, this is an  additional  confirmation of 
the  robustness of our  parameter set. Still, it is surprising  that 
the  increase in protein  model  accuracy in the  HIGH  database 
exerts such a small difference  on  the  interaction  parameter sets. 
This  may  be  related  to  the  on/off  definition of interaction. 

Discussion 

In this paper, we have compared  various existing derivations of 
energy parameter sets  used for energy calculations  for simpli- 
fied models of protein  structures. We have  shown  that,  depend- 
ing on  the  state used as a reference  point, existing sets  can 
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Tanaka-Scheraga  parameter set 
Fig. 3. A: Comparison  between  the  two-body  interaction  parameter  set  developed  here  and  the  sum of side  chain  surface  areas 
of  both  interacting  residues. B: The  same  plot  for  the  Tanaka-Scheraga  parameters. 
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Fig. 4. Comparison  between  the  two-body  interaction  parameter  set 
derived  for  the  subset of all-a  and  all-0  proteins. 

emphasize  different  contributions  to  the  total energy  of the 
system.  For  this  reason, it  was virtually  impossible  to  compare 
different  derivations  and  study  how  other  choices,  such  as in- 
teraction  definition  and  database used for  derivation  influence 
the  results.  Introduction of E F ,  which measures  the  dif- 
ference between an  actual  protein  and  an  “ideal”  amino  acid 
liquid and  thus uses a well-defined reference point, makes it pos- 
sible to  compare  at least one  component  of  the  different energy 
sets.  At  the  same  time,  analysis of the  remaining  part  of  the in- 
teraction energy parameters is helpful in establishing  what ref- 
erence point was actually used in the  derivation. Decomposition 
of  the  total  two-body energy into  the  “ideal”  and “excess” parts 
is important  for  understanding  the  derivation  process  and  the 
physical meaning  of  parameters  obtained in derivation  but is 
not likely to  influence  how  the  parameters  are used in actual 
calculations. 

For all  parameter  sets,  the  “ideal”  and “excess” part was cal- 
culated  according  to  Equations  5A  and 5B. It was shown  that 
the  “ideal”  part  in  all cases is closely related  to  the  amino  acid 
transfer energy from  water  to  the  protein  interior. By studying 
the “excess” part, it  was shown  that,  indeed,  apparently  differ- 
ent  parameter  sets  are clearly related  and  display very similar 
trends.  It is  possible to  compare  the  relative  strength of both 
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Fig. 5. Comparison  between  the  two-body  interaction  parameter set 
derived for  the  subset  of  protein  structures  solved  by  x-ray  crystallog- 
raphy  and  by NMR refinement. 

contributions by calculating  the  mean  value  of E T  and 
,, . Such  comparison is presented in the I/E column  of  Ta- 

ble 2. With  the  exception  of  two  derivations, which are  almost 
entirely  composed  of  transfer  energy,  these  two  contributions 
are  of  equal size. Thus,  it is possible  to  answer  the  question 
posed in the  title.  In  all  derivations,  both  ideal  and excess parts 
of  the  pair  interaction  are  almost  equal in strength,  and  there- 
fore, as  might be expected, proteins  are definitely not ideal mix- 
tures  of  amino  acids. 

At  this  point, it is difficult  to assess which derivation or pa- 
rameter set is better.  Indeed, it is possible that  some  parameter 
sets are well suited for  some  applications  and  not  for  others. For 
instance, in folding  simulations,  parameters  that were derived 
using a completely unfolded state ( I / )  as a reference state should 
be used. But, if a  generic compacting  force is introduced (Kolin- 
ski & Skolnick, 1992), the  parameters  obtained with as 
a  reference state might be more  appropriate.  On the other  hand, 
for  threading  calculations,  parameters using I/,),;/.,h& might be 
the  best. 

In the  second  part  of  the  paper,  the  internal consistency of 
the  protocol used in the  topology  fingerprint inverse folding 
method was tested. It was shown that this parameter set achieves 
a good  separation  of  one-  and  two-body  terms  and is properly 
corrected for  the residue size and surface area. It was also shown 
that, in contrast  to  some  estimates  (Rooman & Wodak, 1988), 
the size of the  database used to  derive  parameters  does  not sig- 
nificantly change  the general trends  but  does  change individual 
contributions. 

It is not clear at this  point  what the reason is for the  difference 
between parameters derived for  NMR  and  crystal  structures. 
Possible  explanations  include  different  protein  environments 
(solution versus crystal)  sampled by NMR  or  X-ray  structures, 
as well as lack of clear quality assessment  of NMR  structures. 
This is an  open  question,  requiring  additional  investigation. 

E {deal 

Materials and methods 

Database preparation 

The latest edition of PDB  includes  more  than  2,600  entries 
(PDB, 1994). There  are,  however,  two  serious  problems  that 
prohibit  the direct use of PDB files for statistical  analysis. First, 
there  are many closely related or identical proteins in PDB, with, 
for  instance  more  than 200 T4 lysozyme mutants  and  more  than 
100 closely related hemoglobin  structures.  The second problem 
is that  the  structure  quality varies greatly  among  structural  en- 
tries,  from  unrefined,  initial  models with serious  errors in con- 
nectivity, packing,  and even global  topology,  to  high-quality 
final  structures.  The  obvious  solution is to  create a PDB  sub- 
set that  would be as  large  as  possible, but that would contain 
only  unrelated  protein  structures  of  reasonable  quality. Several 
such  PDB  subsets were  built  in the  past  (Hobohm et al., 1992; 
Hobohm  &Sander, 1994), but they have usually neglected model 
quality ( R  factor)  (Hobohm et al., 1992). Furthermore,  the  pro- 
cess of elimination of similar proteins was always performed be- 
fore  other  factors  (resolution,  the presence of  prosthetic  groups, 
technique used) were taken  into  account.  The  database prepared 
here  contains 381 high-resolution (resolution  better  than 2.5 A, 
residual  factor  better  than  20%)  proteins with a homology 
threshold  of 50% (i.e., every two  proteins  from  the  database 
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have homology lower than 50% identical residues). In  addition, 
two  other  databases were prepared;  one  contains  only  NMR- 
refined  proteins  and  the  other  contains  low-quality  structures 
(high resolution,  high R factors).  The  NMR-derived  structures 
were grouped  separately  because, a t  present,  there  are  no  estab- 
lished methods  to assess their  quality. 

Parameter  derivation 

As  mentioned  earlier,  there  have been many  attempts  to  calcu- 
late empirical interaction  parameters  from a database of known 
protein  structures  (Levitt, 1976; Tanaka & Scheraga, 1976; 
Warme & Morgan, 1978; Narayama & Argos, 1984; Miyazawa 
& Jernigan, 1985; Wilson & Doniach, 1989; Hendlich et al., 
1990; Godzik et al., 1992; Jones et al., 1992; Bryant & Lawrence, 
1993; Bauer & Beyer,  1994;  Kolinski & Skolnick, 1994b; Wall- 
qvist & Ullner, 1994). All basically followed  the line  of reason- 
ing presented  below. 

We are  interested in estimating  the  interaction energy E be- 
tween  a  side chain  of  type i and a side  chain  of  typej. In a  real 
system, we can see Nfbserved such  interactions.  In a system 
where  the  actual  interaction energy equals  zero,  this  number 
would be equal  to N&ec,e,. If we assume  a  Boltzmann-like  dis- 
tribution of interacting  pairs,  then  the  magnitude  of this  energy 
can be estimated  from: 

N:;,,3erued depends  on  the  definition of the  event. For instance, 
for a yes/no  contact  interaction  definition,  one simply counts 
the  number of residue  pairs  that  are closer than a threshold 
value.  A  much more difficult  problem is how to  obtain  the value 
of N:iPected. We do  not  have  any  data  about  protein systems 
where interaction energies are  equal  to zero. Therefore, we have 
to  estimate  this  number by creating a model  of  such a  system 
and calculating the  number of interacting  pairs in such  a  system, 
Unfortunately,  any of the  states Ucompacr/Uphrl-phob/Ujd~~l fit 
this description.  At  this  juncture,  various  derivations  make  dif- 
ferent choices,  which are mostly  responsible for  differences be- 
tween parameter  sets.  The  usual  choice is to  assume  that in  a 
“noninteracting”  system,  the  number  of  interactions between i 
a n d j  is proportional  to a product of two variables (e.g., a mole 
fraction),  one of which is a function  of i ,  and  one of;. There- 
fore,  the  expected  number  of  AB  interactions is equal  to 

where q is a residue  coordination  number  and NT is a total 
number of residues; x, and x, could  describe the mol fraction of 
a residue i or j ,  respectively. Here, we assume  that  there  are 
NT* x, residues of the  typej  and  that each of them has q neigh- 
bors.  Therefore,  there  are q * NT * xJ residues  (of any  type) 
interacting with residues  of the  type j ,  and x, of which are of 
type i. This  derivation closely follows  the  spirit of the  Flory- 
Huggins  mean field theory of polymer  solutions  (Flory, 1953), 
which analyzed interactions between a polymer solute  and a sol- 
vent.  In  this classic derivation, several assumptions were made, 
a number  of which d o  not  hold  for  protein systems. For  in- 

stance,  the system  was assumed  to be infinite  and  no  boundary 
effects were considered. 

The necessity of  averaging  over a large  number of small sys- 
tems  of  different sizes complicates  the  intuitive  derivation de- 
scribed  above.  For  instance,  boundary  effects, which force 
certain residues away  from  the  proteidwater  interface,  intro- 
duce  an effective attraction between such  residues.  But the mag- 
nitude of this  effect  changes with the system size, being strongest 
for very small systems. When  averaging  over systems  of  vari- 
ous sizes, such  effects  must  be  treated  separately-otherwise, 
extraction  of  true pairwise interaction  parameters  would be 
impossible. 

There  are  other  considerations  that  potentially  can  make  sta- 
tistical  analysis of  proteins  difficult.  Proteins  are  not  uniformly 
packed;  there  are  sizable  cavities  inside  them,  and  densely 
packed  regions  are  intermingled  with  more sparsely packed 
areas.  Each of the 20 amino  acids  has a different size and  dif- 
ferent  connectivity  (some  are  branched,  some have rings,  etc.). 
Some,  but  not all of  these  effects  can  be  accounted  for by in- 
troducing  the  “contact  fraction”  instead of the  mole  fraction 
used in Equation 2. This, in  principle, should be calculated  sep- 
arately  for every protein  to  account  for  the size and density dif- 
ferences  between proteins.  The  contact  fraction  reduces  to a 
mole fraction  for residues that have the  same  coordination  num- 
ber,  and it  is a  variable  intermediate between a surface and a vol- 
ume fraction, which were suggested in various  extensions  of FH 
theory  (Ben-Naim & Mazo, 1993; Holtzer, 1994). 

Parameter set derivations 

As mentioned  earlier,  there  have been many  independent  deri- 
vations of residue-residue interaction  parameter  sets.  Almost 
all utilize Equation 1, or a  close equivalent, to  estimate  param- 
eters  from  the  analysis of the set of  known  protein  structures. 
The  only  derivation  that used a different  approach was that  of 
Crippen  (Maiorov & Crippen, 1992). In his approach,  the  pa- 
rameter set was optimized  for a particular  task:  recognition of 
native  structures  from a group of misfolded  structures.  For a 
selected group of 37 proteins,  more  than 10,000 alternative 
conformations were created by taking  the  combination  of a 
structure of one  protein with the  sequence of another.  The re- 
quirement  that  all  the  native  sequence/structure  combinations 
are lowest  in  energy  results  in  a set of  inequalities  that  can be 
solved by iteration.  The resulting parameter set will be compared 
below to those  obtained by statistical  analysis of interactions in 
proteins. All of the  other derivations still differ in several respects. 

The set of protein structures used 
fo r  parameter  derivation 
Older  derivations used smaller sets and usually did  not  con- 

sider  structure  quality.  It is only recently that  the  number of 
structures  available  for analysis has  increased  to  the  point  that 
the  derivation  can  be  repeated  independently  for  various  sub- 
sets  of  the  whole  database.  Such  subsets  may  include  small, 
large,  all-@, or all-a  proteins. 

Definition of the interactions 
Possibilities include  the  following. 
1. The use of various  definitions  of  the  interaction sites and 

various  threshold  distances  for  defining  the  interaction: C a s  
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(Wilson & Doniach, 1989); Cps (Sippl & Weitckus, 1992); spe- 
cially introduced  “interaction  centers”  (Bryant & Lawrence, 
1993); centers of mass of  the side  chains  (Miyazawa & Jernigan, 
1985); side  chain  heavy  atoms  (Tanaka & Scheraga, 1976; 
Warme & Morgan, 1978; Godzik  et  al., 1992; Hinds & Levitt, 
1 992). 

2. The use of the distance-dependent potential of  mean force, 
which is: a continuous  function  of r (Wilson & Doniach, 1989; 
Sippl & Weitckus, 1992); defined in several  discrete  “bins” 
(Bryant & Lawrence, 1993); on/off  information  (Tanaka & 
Scheraga, 1976; Warme & Morgan, 1978; Miyazawa & Jernigan, 
1985; Godzik et al., 1992; Hinds & Levitt, 1992; Maiorov & 
Crippen, 1992). 

Level of interaction in formation 
Some  methods used statistics  for  heavy-atom  interactions  to 

derive  atom-atom  interaction  parameters.  These were later re- 
calculated to  obtain  the residue-residue interactions  (Kolinski 
& Skolnick, 1994b). Others  calculate  the residue-residue inter- 
action  parameters  directly  (Tanaka & Scheraga, 1976; Godzik 
et al., 1992). 

Calculation of NL$pecled 
As we will attempt  to  show below, the  most  important  dif- 

ferences  involve  using  different  states ( Ucompacr, Uph,l.phob, 
Widpa/) as a reference  point. 

Detailed  information  about  the  particular choices made in 
different  derivations  are  summarized in Table 1. All  publicly 
available  parameter sets were recovered from  the  literature  and 
compared to each  other. A compilation of the  interaction  pa- 
rameter  sets discussed  in this  paper is available via anonymous 
ftp (file adam.potentials  on  the  pub/adam  directory of ftp. 
scripps.edu) or can  be  obtained  from  the  authors. 

The  first  observation  that  can be made is that  there  are huge 
differences between various parameters sets (see Table 2 and  the 
discussion  in the next section). Therefore,  various  assumptions 
made  during  the  derivation  process  are clearly very important. 

It is particularly  interesting  to  compare  various  procedures 
used to calculate Niimcred. In almost all  cases, it was stated  that 
the  reference  point is  a protein  where  all specific interactions 
do  not exist,  but  this  could  mean  any  of  the  systems, Ucompacl, 
Uph,l-phob, Uideu/, or perhaps  something  entirely  different. Var- 
ious derivations used very different  theoretical backgrounds  and 
notations  for  their  derivations;  therefore,  direct  comparison is 
sometimes  difficult. Below, we suggest  a  simple way that  can 
be used to  compare various  energy sets. We examine the follow- 
ing ratio: 

Using Equation 1, Equation 3 can  be expressed as: 

N i k e r v e d  N&ecred 

JNobserved  Nobserved ‘lv&ecfed Nexpecred j j  
ii JJ 

- - 

As  long  as a functional  form  for  the N&pec,ed presented in 
Equation 2 holds,  then  the  terms in the  factorial  of  the  expo- 
nential  of  Equation 4 cancel  out exactly.  Using the  notation, 

we arrive  at  the  formula: 

The  variable E T  has a number of  interesting features.  First, 
it can be derived  directly from NiJ’bServed using Equation 6 with- 
out  making  any  assumptions  about  how  to  calculate NLpecced. 
Next, it can  be  calculated  from existing Eij’s, thereby  allowing 
us to  compare  various  derivations,  despite  the  fact  that  they all 
use different  protocols  to  estimate Niipxpecled. Unfortunately, 
E T  itself is not a very useful variable, because it describes 
the  difference between states q ’ d e a /  and N. One still  needs to  
know  transfer energies and  the  diagonal  values, E,, . 

w e  summarize  the  protocols used to  estimate NgPecfed for 
various  derivations below. 

The first derivation of  a statistical  parameter set using the 
database of  then  available proteins (25 proteins) was performed 
by Tanaka  and  Scheraga (1976), who used a relation: 

N(n) ,  and N(,,, are  global  numbers of noninteracting residues 
i and j ,  respectively, and,  as  before, NT is a total  number of res- 
idues in the  database.  This  derivation is based on  the  assump- 
tion  that  the  pair  interaction energy is related  to  an  equilibrium 
constant between an ij pair  and  separate,  noninteracting resi- 
dues i a n d j .  It is easy  to realize that  this way the  state Ucompucl 
is taken  as a  reference and  the  interactions  contain a large trans- 
fer  energy contribution. 

The next derivation was due  to  Warme  and  Morgan (1978), 
who  used a database  of  only 21 proteins.  They  employ a 
formula, 

where qi is the  mean  number  of  interactions  for a residue  type 
i (coordination  number  of  residue  type i ) ,  and x, is the  mole 
fraction  of  such residues. As  before, NT is the  total  number  of 
residues. It is easy  to see that  Equation 8 is closely related  to 
Equation 2, with the mean residue coordination  number of i and 
j residues calculated  as qiqj/q.  It is interesting  to  note  that  the 
coordination  number  for  the  residue  type i is calculated  here  as 
a mean  number  of  atom-atom  interactions  summed  over all 
heavy atoms  for a given residue.  In  other  words, if a residue i 
has five atoms  and a residuej six, this  interaction  might  count 
as 1 or 30, depending  on  their  mutual  position.  Thus, qi used 
here is different  from  the qi ,  coordination  number of the resi- 
due  type i, used later in the  Appendix.  The  interesting  point  of 
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this derivation is that,  despite  the  fact  the  stated reference state 
is Ucumpoc,, as  would  be  shown  later,  the  actual  reference  state 
is I/ph,/.phob. The  reason  for  this discrepancy is that  the  formula 
for qf used  in Equation 8 is strongly biased for  buried  residues 
that have more  interactions. 

Narayama  and  Argos (1984) “corrected”  this  formula  to: 

using the  total  number  of  residues N , ,  instead  of 4 ; .  This way 
the  interaction  parameters  are  no longer symmetric, i.e., the in- 
teraction energy  between  a pair [ i J ]  is not  equal  to  the energy 
of  the  pair [ j , i ] .  Because of  this  nonphysical  asymmetry,  this 
parameter set is not  included  in  the  subsequent  analysis.  At  the 
same  time, they have  used qf instead  of q,, thus switching  back 
the  reference  state  to LJcompUcr. 

The  two  approaches used  in the earliest  derivations were later 
repeated  in  many  different  variants by other  groups.  The  most 
comprehensive  derivation to  date was done by Miyazawa  and 
Jernigan (1985). They  have, in fact, derived two energy param- 
eter sets. The  first, referred to  as MJLI in the tables  below,  de- 
scribes the energy  of creating a contact between  residues of the 
types i and j by bringing  them  together  starting  from  the  un- 
folded  state.  Therefore,  for  this  parameter  set,  state U is used 
as  the  reference  state.  The  second set gives the  conditional  en- 
ergy of a formation of a contact between  residues i and;, given 
that  both  are already  in a dense state, interacting with the  “mean 
protein  environment,” which means  that  the  state uphj/.phob is 
used as a reference  state.  This  set,  denoted  here  as MJ-11, is 
very close in spirit  to  the  derivation described  in this  paper. 

Other derivations follow still different paths. Bryant and Law- 
rence  calculate  the expected number of contacts by permuting 
sequences  in target  structures.  The  permutation is done  without 
paying  attention  to  the  burial/exposed  status of the  position, 
thus  the  state Uc,,,,, is used as a reference. Kolinski and  Skol- 
nick (1992) build  their  parameter set by calculating  the  inter- 
action energy for  atom-atom  interactions  and later  rederive the 
residue-residue parameter set by averaging interaction energies 
over all residue  pair  geometries in the  database.  The  assump- 
tion  that  all [ i , ; ]  interactions in the  database  can  be  described 
by a  single interaction  energy,  made indirectly  in all  other  der- 
ivations,  can be checked  within  this  derivation by calculating 
histograms  of energies of residue-residue interactions. In this 
derivation,  the  stated  reference  state is UCornpuc,. However,  the 
strongly  interacting residues from  the  protein  interior  contrib- 
ute  more  to  the  final  parameter value, thus  the  actual reference 
state is to  some extent  moved  in the direction of Uphil.phob. This 
is a similar  but  now  much  weaker  effect,  as was observed 
previously for  the  Warme  derivation.  Finally,  Sippl  (Sippl & 
Weitckus, 1992) and his followers  (Jones et  al., 1992) built a 
distance-dependent  interaction  function.  In  their  derivation 
scheme,  a parameter  for a given distance for a given amino acid 
pair was  calculated relative to  parameters  for  other distances for 
the  same  pair.  This  way,  short-distance  interactions were  cal- 
culated  with  the uphj/.phob reference  state, because interactions 
in the  core  dominate  the statistics. On  the  other  hand,  long dis- 
tance  interactions were calculated using U,,,,,,, as a reference 
state. 

The  parameter set used before in the  topology  fingerprint  in- 
verse folding  algorithm  (Godzik  et  al., 1992), and  described in 

detail in the  Appendix, used the  state Uph;/-ph& as its reference 
point.  This is done by calculating N2bserrved only for  buried res- 
idues. Also,  care was taken to  correct the  derivation  for  the  pro- 
tein size and  composition  differences between proteins.  The 
original  derivation is repeated  here  for a larger set of proteins. 

Correlation coefficients 

Throughout  this  paper, we repeatedly  ask  the  question  of  how 
similar is one  parameter set to  another. To answer  this question, 
we test  the  hypothesis  that  the  two-parameter  sets in question 
are related by a  linear relation.  Thus,  parameters  from  the first 
sets  are  treated  as [x] values, parameters  from  the  second set as 
matching [ y ] ,  and  the linear  regression  analysis is performed  to 
fit  a  line to a data set [x, y ] .  The  correlation coefficient r (Crow 
et  al., 1960) is reported  as a measure of similarity between the 
two  sets  with: 
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Appendix 1 

We present  the  derivation of Nexprcrud for  pair  interactions  between 
residues  A and B in a  database  consisting of M proteins.  The  kth  pro- 
tein  has  a  length L (  k ) ,  the  number  of  residues  of  type A in  this  protein 
is equal to number,, and  the  number  of  interactions  in  this  protein is 
NLra,. A  residue  at  a  position n in a  protein k has nconf&,,, interactions 
and  the  residue  type is equal  to seqk(n).  In  this  derivation,  only  inter- 
actions between buried  side  chains  are  considered, to allow  for  the  sep- 
aration  of  one-  and  two-body  effects  (A.  Godzik, in prep.).  Capital 
letters A, B,  and C would  denote  a  particular  residue  type,  such  as  Gly, 
Ala, or Ser.  The  derivation  proceeds  as  follows. 

1. For  every  amino  acid  type A ,  the  total  number  of  interactions Sa 
for  this  residue  type in the  whole  database is calculated. 

k = I , M  n = I , L ( k )  
StYlh(")=A 

Here,  the first summations  run  over all proteins in the  database,  the sec- 
ond  over  all  positions in each  protein,  but  only  under  the  condition  that 
a  residue  occupying  this  position is of the  type A and is buried. SA, in 
turn, is used to  calculate  the  mean  number of interactions for every res- 
idue  type. 

The  assumption  made  here is that  the  mean  number of contacts  for  ev- 
ery residue is constant  throughout  the  database Pnd this is the only value 
not  calculated  separately  for  every  protein. 

2. A  "contact  fraction"  for  every  residue  type A is calculated  for ev- 
ery  protein k .  Again,  this  ratio  changes  from  protein  to  protein,  due  to 
variations in protein  composition  between  proteins. 

x, = 
qa number; 

q,number;' 
B=1.20 

3 .  The expected  number of interactions  between  residues of type A 
and B is calculated  as  a  product of contact  fractions  for  residue  types 
A and Bin a given protein  and  the  number of interactions in this protein. 

n j 8  = X i  X i  N,$,,,, . (A41 

Steps 1-3 are  repeated for every  protein  in  the  database. 
4 .  Nexpecred for the  whole  database is calculated by summing  all 

ncxpecrrd for  individual  proteins  over  all M proteins. Values of n& de- 
rived in steps 1-3 are used to  obtain  the  final  value  of N&&.red, 

I = I . M  

which is used  according  to  Equation 1 to yield the  interaction  param- 
eter  for  a  particular  pair. 




