A reduced model of short range interactions in polypeptide chains
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A simple model of short range interactions is proposed for a reduced lattice representation of
polypeptide conformation. The potential is derived on the basis of statistical regularities seen in the
known crystal structures of globular proteins. This potential accounts for the generic stiffness of
polypeptides, the correlation between peptide bond plates, and the sequence dependent correlations
between consecutive segments of @etrace. This model is used for simulation of the equilibrium

and dynamic properties of polypeptides in the denatured state. It is shown that the proposed
factorization of the local conformational propensities reproduces secondary structure tendencies
encoded in the protein sequence. Possible applications for modeling of protein folding are briefly
discussed. ©1995 American Institute of Physics.

I. INTRODUCTION siders only two classes of amino acid residueshitiropho-

Under proper conditions, a globular protein adopts abic) and P(hydrophilic, and a simple lattice representation

unique three-dimensional structure that is encoded in tQf the conformational space. The study of the HP model and
amino acid sequende The theoretical prediction of this CloSely related models provided some very general insights
structure, and the pathwésy followed during the folding INto the protein folding dynamics and thermodynan’rﬂ:%o.
process make up one of the most challenging, and still un©n the other hand, the very low resolution of such a repre-
solved, problems of structural molecular biolggy.Due to sentation does not allow questions related to specific se-
the present state of the art of computing techniques, and tHfgJences and to finer structural detail to be addressed.

time scale of the protein folding procegsf the order of A different class of reduced models attempts to repro-
milliseconds to secondisthe standard molecular dynamics duce additional details of protein structirg!*31521-24
tools cannot be used for simulations of the folding dynamicdHigh coordination lattices can reproduce t@e: backbone

of protein systems. This is one of the major reasons for studwith a level of accuracy close to contemporary experimental
ies of reduced models of protein structure and simplifiedneasurementé. Using full sequence information and the
models of polypeptide chain dynamics. Reduced models usigomplex set of potential functions of statistical origin, some
ally exploit the concept of a united atom representation osimple folds of small globular proteins can be
the protein chaifi=** This reduces the number of degrees of predicted:>?>~?6The accuracy of this prediction varies from
freedom and may make the problem computationally traca level which allows almost exact full atom reconstruction
table. In the majority of previous applications, the reducedas was demonstrated for the coiled coil motif of the leucine
models employ a single united atom as a representation aipper of the GCN4 fragmeff, to low resolution folds of
the amino acid unft'* or two united atoms per residi®®  2-5 A root mean square deviatiérms) from the nativeCa
(one for the main chain unit, and the second for the sidarace in several other casEs?*?> Unfortunately, the meth-
group of amino acig Interactions of the united atoms are odology fails for more complex folds and/or for longer se-
usually deduced from regularities seen in a database Qjuencegthe longest protein for which the model reproduc-
solved three-dimensional structures of globular proteins. Furiply predicts a plausible folded conformation is 120 residues
ther simplifications of the models are frequently achieved byand is a redesigned ROP monomer, which putatively forms a
grouping the 20 amino acids into classes according to theifoyr helix bundlg. It appears that a much longer simulation
properties in protein$>*’ Additional reduction of the num-  time for a system of this complexity was required, and/or the
ber of accessible states and the subsequent increase in ®gecificity of the force field was too low. The above calls for
speed of computations may be achieved by a lattice discretyy more detailed examination of various interactions that con-
zation of the conformational space. An example of extremgro| protein behavior. This could be achieved by dissection of
simplification of the protein representation is the so-calleqne problem in a manner that would allow for a more precise
HP modet® studied in great detail recentlyrhe model con- study of the effects of the various interactions. In addition,
such studies may provide insights into the factors controlling
3To whom correspondence should be addressed. protein folding. Such factors may include hydrophobic inter-
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actions, hydrogen bonding, intrinsic local conformationalpendent of the angle of rotation of the particular PDB struc-
preferences, and pair and higher order packing preferencesure with respect to the lattice. Only very short fragments
In this work, we examine short range interactions andexhibit slight orientational dependence. This is in contrast to
their effect on the static and dynamic properties of a higHow coordination lattice models where the quality of the fit
coordination lattice model of protein conformation. Our aimdepends dramatically on the rotation antfleExcluding
is to construct an interaction scheme which reproduces segparse values of the planar angles that may result from some
ondary structure propensities encoded in the sequence gkometrical errors in database, and neglecting the cases of
amino acids. In this study, we neglect all the long rangecis-proline, the lattice fits can be regularized, with no ex-
interactions; thus the possibility of collapse to a unique stat@ense in fitting accuracy. This way, the obtained lattice struc-
is precluded. Based on tliene dimensionalsequence infor-  tures have the same distribution of the pla(@#—Ca—Ca)
mation alone, it is possible to predict the secondary structurangles and dihedral rotation angles as in the original PDB
of a protein with an accuracy in the range of 55%-70%,structures. In other words, only “proteinlike” sequences of
when the three secondary structuteslix, s-strand, loop  three consecutive reduced backbone vectors are allowed.
classes are taken into accodnt*® This limitation of accu- Consequently, about 30 vectoiisstead of 9D are allowed
racy may have a physical origin, and may result from thefor the third vector when the two preceding vectors are speci-
interplay between the short and the long range interactions ified. This reflects the short range excluded volume and other
the folded proteins. The long range interactions, due to morghteractions that result in the occurrence of prohibited re-
favorable packing, electrostatics, etc., may override the segions of the Ramachandran m&pThus, the effect of the
ondary tendencies of particular fragments. Indeed, one magide chains on the short range interactions is implicitly ac-
find short sequences of residues that adopt completely diffecounted for. Short range interactions between atoms, or
ent secondary structures in different proteins. Therefore, it igroups of atoms, are understood here are those between units
very important to design reduced models of protein chains inwhich are close to each other in sequence. It has recently
such a way that the above secondary structure features coutgen shown that the conformational energy maps generated
be reproduced in the absence of tertiflgng range inter-  on the basis o€« traces ara@o less specific than those based
actions. Having such a model, the more difficult design ofon the phi—psi mafl® The secondary structure conforma-
the tertiary interaction scher®p can be controlled and tested tional propensities can be described both w&yBor com-
in a more rigorous way. In other words, it is our aim to putational expediency, th@x based description is employed
develop a force field for reduced models with a local enerin the Monte Carlo dynamiés*? scheme.

getic frustration(local contradictions of secondary with re- The sampling procedure works as follows:
spect to tertiary interactiohson the same level as might be (1) The input data, containing the sequence and a ran-
expected for real proteins. dom conformation, is generated subject to the short range

The model proposed here employs a Monte Carlo dyrestrictions discussed above.
namics scheme, which solves a stochastic equation of motion (2) A micromodification of the chain conformation is
in a discrete, conformational space. The problem of ergodicattempted. The following modifications are considered:
ity of such models must always be addressed. While it is (a) A two bond modification, where two vectors are

typically very difficult to show that a model is ergodic in the replaced by two new vectors and do not alter the
context of a rather complex potential, the best way to dem- conformation of the rest of the chain.

onstrate ergodicity is to compare its behavior to that of sim-  (b) A three bond modification, where up to 168 new
pler models which are known to be ergodic. Actually, the three bond fragments can replace the old fragment.
practical requirements for successful protein folding are This number depends on the old conformation.
somewhat stronger. One needs a model that is not only er- (c) Chain ends modifications For each end, two new
godic, but that is also “practically ergodic,” which means vectors are randomly selected. Each sequence of
that the sampling is fast and that the model explores impor- residues is represented as a chain#f2 vertices, or
tant regions of “proteinlike” conformational space in a rea- n+ 1 vectors(the two end vertices serve as terminal
sonable amount of simulation time. C- and N-caps

The set of local moves employed here consists of a sub-
. METHOD set of moves used previoudgee Figs. B)-2(C) and Fig.
A. Lattice representation and Monte Carlo scheme 3(A) of Ref. 25.

The conformation of the polypeptide chain is repre- (3) The local geometry is tested, i.e., all the triplets of
sented by a high coordination lattice approximationCaf-  vectors have to be “proteinlike.” If not, a new micromodifi-
trace. The lattice chain is built from a sequence of vectorgation is attempted.
belonging to the following s€{3,1,1],.../3,1,0,.../3,0,0,,..., (4) The new trial conformation is subject to the Metropo-
[2,2,1],...]2,2,0,..}. There are 90 vectors in this set. Fitting lis criterion?® according to the assumed interaction scheme
such a lattice to high resolution, protein structures of thewith an acceptance probability equal t&(new/old
Brookhaven Protein Data Baiik’® (PDB), the best fit is ob-  =eXd —(Epew—Eo)/ksT]. The energy is expressed kT
tained when the spacing of the underlying simple cubic lat-units, and the temperature is dimensionless.
tice is equal to 1.22 A(This lattice spacing provides the (5) Steps 2—4 are repeated. The arbitrary time unit is
length of aCa—Ca segment equal to 3:80.3 A) The aver- defined as a time required for—2 attempts at two bond
age accuracy of the fit is 0.6—0.7 A rms, and is almost indemodifications,n—3 attempts at three bond modification, and
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2 attempts at a two-bond, chain end modification. The locagiven bin is occupied averaged over the identity of all amino
tion in the chain for each kind of move is selected by aacid pairs. Table | contains only the entries which are neces-

pseudorandom algorithm. sary for the definition of the secondary structure interactions
in the 56 residue chain of B1 domain of Streptococcus pro-
B. Interaction scheme tein G The entire data set is available by anonymoug ftp.

The strength of the statisti¢the number of occurrencem

The set of triplets of the chain vectors is restricted to A
u o . the database of nonhomologous proteins is given for reader
proteinlike” states. For example, since tl&x trace of real convenience

roteins always exhibit a zig—zag geometry, three consecu- . . .
P Y 9-za0 9 Y There are also three generic short range interactions

tive identical vectors are not allowed. There are two kinds of . : . :
L : g . terms. We discuss their effect on behavior of the model in the
contributions to the short range interactions; those which are : : .
) . - next section. Here, let us just note that the generic terms
generic, and those which are sequence specific. The sequencgé

i . : - provide for a “proteinlike” stiffness of the model chain, and
specific potential of mean foré&is based on the statistics of . . - . .
the occurrence of particular triplets 6—Ca vectors in the penalize against nonproteinlike conformations. The first term

database of known protein 3D structures. The conformatiof " the following form:

of the three V|rtgva backbone bonds is strictly defined by Eg=Seg(Vi 1,V ,Vi+1), 3

two pairs of phi—psi angles for the two centr@carbons.

Thus, the identity of the two corresponding central aminoE g is defined and implemented in the same spirit as the short
acids enters into the sequence specific potential. Of courseange sequence specific contribution. Here, the exact number
there is perhaps a moderating influence of the neighboringf occurrences of particular triplets of vectors in the lattice fit
residues. However, this effect cannot be taken directly int@f the database structures is used and projected onto six bins
account because of the too weak statistics for sequential tripsda the computation of the chiral end-to-end distance for a
lets (not to mention quartetsof residues in the available particular conformation. The zero of energy corresponds to
structural database. On the other hand, successive pairs afté average frequency of vector triplets seen in the database.
associated pairwise potentials overlap along the sequencgince the full data set for this contribution is too long, we
and therefore, there is a direct influence of the identity of thepresent in Table Il only those values after projection onto the
neighboring residues on the conformational propensity of thgix bins of r?*; ;. ,. The full data seti.e., the numerical
fragment under consideration. values of the potential of mean force as a functiom;of;,v;

An implicit assumption is that the nature of the shortandv;_,) used for derivation of this potential are also avail-
range conformational restrictions seen in the native state argble via anonymous ftfY. Note that the straightforward us-
similar to that in the denatured st&feThe major difference age of the Eq(3) takes into account the underlying degen-
is in the long range interactioristronger in the native state eracy of particular structural bins. This generic part of the
and in the entropy of the surrounding solvelarger for the  potential is meant to suppress the conformational entropy of
native statg The sequence specific part of the short rangehe lattice chains, which is somewhat higher than the corre-
interactions can be expressed as follows: sponding entropy of real polypeptide chains. Moreover, the

_ A . o\ statistics for some pairs of amino acids is rather weak. In

Es=2 (AL AL Vi-1 Vi Vi a): @ such cases, the genefisequence independertontribution
To further reduce the numerical desorption of the local consplines the underlying conformational propensities encoded
formational propensities, the three vector descriptor isn the sequence specific contribution.
mapped onto the “chiral” distance between the ends of cor-  Geometrical correlations generated by the three-vector
responding fragments, potentials decay too quickly down the model polypeptide

E.=3e(A ’Ai+1:ri2f1,i+2) , 2) chains. They are nqt suffici_e(mt any temperatu)do repro-

duce the conformational stiffnegthe relatively large corre-
whereA,; is the identity of residue at positidnandv; is the  |ation length for the orientation of main chain bohds real
Ca trace vector fronith toi+1th Ca’s. r?*; ;,, is the “chi-  proteins, which results from interactions of side groups, elec-
ral” square of distance between the corresponding chain vetrostatic and/or hydrogen bond interactions between peptide
tices. “Chiral” means there is a negative sign for the left- honds, and other short range interactions. This fact must be
handed conformations and a positive sign for the righttaken into account. First, we consider the database distribu-
handed ones, respectivgly. The potential is used in the sgcorﬂi@n of the distances betweed,  andC, . This distri-
formulation. The numerical values of the energy of variousytion strongly peaks at distances corresponding to helical or
cgnformatlons, grouped into six coarse grained bins Ofpjike (compact conformations. Another diffuse peak with
ri*; i+, that correspond to qualitatively different structural very similar weight(the area under the distribution cujye

classes, are given in Table I. The numerical value(th is . responds to expanded conformati¢isstrands and open
of the order of the largest absolute values of the statlstlcallyoopg_ In contrast, the athermal lattice chain distribution is

significant entries was arbitrarily assigned to those stateSpeayed at intermediate distances. Thus, a generic correction
which do not occur in the database and to those cases Whegyy, of very simple form is introduced

their frequency was below the level of statistical signifi-

cance. The reference state for each pair is the expected num- E,=3% ni(ri{z i), (4
ber of pairs and equals the total number of occurrences of the '

pair of amino acids of interest times the probability that thewhere
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TABLE I. Sequence specific short range interactions.

Ai Ai+1 a r 2 3 4 5 6
MET THR 72 —-0.2421 0.4126 1.0000 -0.0725 0.0561 0.0021
THR TYR 164  —0.3931 0.2886 1.0000 0.2434 0.0070 —0.1174
TYR LYS 136 —0.2989 0.1303 —0.0552 0.1385 0.1375 -0.0178
LYS LEU 371 -0.1273 0.6031 0.1203 -0.1669 —0.1015 0.2468
LEU ILE 281 —0.2831 0.5752 1.0000 —0.0441 0.0785 —0.0955
ILE LEU 274 —0.4996 0.5310 0.1148 -0.0574 0.6080 0.0733
LEU ASN 284  —0.0054 0.3017 0.0933 —0.1590 0.1397 —0.0252
ASN GLY 296 0.8735 —0.7332  —1.1461 0.6547 0.1680 0.0666
GLY LYS 394 0.5893 0.0384 —0.0725 0.7241  —1.0363 0.1661
LYS THR 250  —0.3145 0.6405 0.0105 0.0459 —0.0991 0.0006
THR LEU 367 -0.2717 0.0485 0.1647 0.0070 0.1663 0.2655
LEU LYS 413 0.0682 0.3418 1.0000 —0.3496 0.4268 0.1106
LYS GLY 290 0.6347 —0.4070 —0.4695 0.0972 0.0486 —0.1389
GLY GLU 324 0.3683 —0.0434  —0.3689 0.4477 —0.7568 0.3000
GLU THR 219  -0.1226 0.4359 1.0000 —0.2408 0.1759 0.1520
THR THR 227  —0.2941 0.0536 1.0000 0.2581 -0.1607 0.1105
THR GLU 200 0.2994  —0.4804 0.0732  —0.0355 0.1207 0.3871
GLU ALA 346 0.7078 0.5067 1.0000 —0.6166 0.5055 0.3102
ALA VAL 369 —0.2447 0.7457 1.0000 —0.2496 0.4216 0.0006
ASP ALA 386 0.8168  —0.3449 0.1747 -0.1849  —0.0478 0.1534
ALA ALA 596 0.7287 0.5001 0.2781 —0.6178 0.5744 0.4435
ALA THR 334 -0.1217 0.3391 0.1008 —0.0810 0.0826 —0.0973
THR ALA 349 -0.0681  —0.0527 1.0000 0.0031 0.0103 0.1147
ALA GLU 356 0.4586 0.3675 0.1590 —0.5546 0.4587 0.5434
GLU LYS 296 0.5252 0.2523 0.0359 —0.5112 0.3957 0.3702
LYS VAL 304 —-0.3015 0.3703 0.0847 0.0457 0.1149 —0.1127
VAL PHE 189  —0.4833 0.4310 1.0000 0.1005 0.4375 —0.1807
PHE LYS 187  —-0.1795 0.2835 0.0657 0.0094 -0.0059  —0.0617
LYS GLN 145 0.2709 0.2491 -0.0054 —0.2792 —0.0811 0.1759
GLN TYR 109  —0.0571 0.1653 0.0195 -0.0780 0.0043 0.0408
TYR ALA 191 -0.1918 0.2204 0.0215 —0.0401 0.0490 0.1195
ALA ASN 248 0.5174 0.0935 0.0539 -0.3249 —0.0720 0.2760
ASN ASP 163 0.4784 —0.3339  —0.1996 0.1193  —0.2897 0.2596
ASP ASN 193 0.6803 —0.1706  —0.2875 0.0454 —0.3789 0.1241
GLY VAL 431 —0.1405 0.2535 0.0642 0.5903 -0.6581  —0.0975
VAL ASP 331  —-0.1834 0.0687 —0.1771 0.0949 0.2097 —0.1396
ASP GLY 381 1.1010 —0.9586  —0.8265 0.5769 0.1781 0.2384
GLU TRP 56 0.1863 0.1934 1.0000 —0.2662 0.0107 0.0291
TRP THR 60 —0.3193 0.1355 1.0000 0.1562 0.0678 0.0018
TYR ASP 197  —0.3507 0.1027 —0.0195 0.1085 0.2070 0.1026
ASP ASP 222 0.9116 -0.3026 —0.1278  —0.0874  —0.3219 0.3228
THR LYS 213  —-0.1293 —-0.1414  —0.0103 0.1946 —0.0643 0.1089
THR PHE 189  —0.3455 0.0563 1.0000 0.3053 0.1826 —0.2696
PHE THR 185 —0.5174 0.4181 1.0000 0.2018 0.3626 —0.2131
THR VAL 330 —0.6289 0.3303 1.0000 0.4862 0.3011 —0.2772
VAL THR 330 —-0.6117 0.4940 0.1452 0.4303 0.3827 —0.4107

8Number of occurrences in the database.

PRanges ofiszi+2 1(—86,—57) extended beta, ¢-56,—26) loops(left-handed, 3 (—25,0 left-handed helix,
4 (1,25 right-handed helix, 526,56 loops (right-handeg 6 (56,91 extended beta.

n=—1 for ri272’i+2<35 All the numbers are given in lattice units and can be easily
translated into corresponding distances in real protéins
lattice units is equivalent to 1.22)A

7=0 otherwise. The last contribution to the short range interactions is
designed to propagate secondary structure and to further con-
tribute to the peptidelike stiffness of the model chain. First,
let us note that the three consecuti®@e vectors define the
orientation of the central polypeptide bond with levels of
1 2 3 4 5 6 high accuracy. In other words, ti&x trace can be used for
full atom reconstruction of the main chain conformatfén®’

The most straightforward approach is to store the positions

mi=—1 forr? ,; ,>75

TABLE Il. Generic three bond potential.

—0.0520 0.1057 24738 —0.9866 0.0746 1.0431
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of the carbonyl oxygen atom of theh residue and the nitro- structure seen in the native state. Due to lack of tertiary
gen atom of thei + 1st residue(they belong to the same interactions, we do not require higher accurésse the com-
peptide bonglin the reference coordinate system defined byments in the IntroductionThe secondary structure definition
the three vectors;_,, v;, andv;,;. For all possible local in the model without the long range interactions has to be
backbone configurations, the width of the distribution doessomewhat modified. It is understood here as a conformation
not exceed 0.22 Aroot mean square deviatipfor the ni-  of the main chain which is consistent with the conformation
trogen atom position; about 0.25 A for the carbonyl carbonof the chain fragments in the secondary structure seen in the
positions, and about 0.45 A for the carbonyl oxydfeposi-  native state. For helical conformations, both definitions are
tion. Since there is a strong correspondence betwee@dhe iryally the sameone may introduce a geometrical criterion
trace and phi—psi description of a polypeptide conformationsq, detection of hydrogen bonglsFor beta structure, very
this is not surprising. Consequently, one may define the digypanged conformations are considered as fragments of a
rection of peptide platéwe use here the hydrogen-to-oxygen hypotheticalB-sheet. This differs from the Kabsch—Sarfer

vectors employing theCa-trace as a convenient reference assignmentwhich is more frequently usednevertheless,
frame(the numerical data are again available via anonymoug, present definition has also been previously déet
ftp).*” The angular error of such a reconstruction of the di- '

rection of the peptide bond plateve assume the typical A. Dynamic properties of the model
transco_nformation of the peptide bonddoes not exceed 15 The dynamics of the proposed model are examined in
3&?' T?}:S set;a ms to t;ﬁ rgor;e than atdeqtl_Jate 1;or °“tf dpu[)posdqfetail on the example of the B1 domain of Streptococcus
is a(:)r;)lieg 3) ?hvee an[)eB:Z r:dursggrft,rﬁ::%:?;sOaIFr):gslt a6II r?; Brotein G, which is a small protein consisting of 56 residues.
drogen bond<~89%) of the main chainshort range and In spite of its small size, the fold of protein G is exception-

long rangé could be identified. The Kabsch—Samfer zli);nrggmirh:gi ;ﬁ;yasgabﬁggs( \t\?riis(;otr(]fl(s)fz Ofcg?;:(;
method is used as a reference assignment. This will be us (5 B 9 pology

in the forthcoming work as a fast method of computing hy—ebe classified ag—1,+3x—1). In Table lll, the sequence and

drogen bond interactions in the framework of the reducec}he secondary structure assignment of B1 domain of protein

lattice model. Having the orientation of the peptide bonds,G are found. For the readers’ convenience, we present a sim-

one can introduce a bias towards regulaelix or B-strand plified notation based on the Kabsch—Sander method, which
conformations of the model polypeptides. For these struclS commonly used in various methods of prediction of sec-
tural elements, thith peptide bond plate is almost parallel to ©ndary structure from sequence of amino acids, where only
thei+2nd and to thé-+4th peptide plate. The corresponding three outcomes are considergelix (H), beta(E), and ev-

potential is of the following form: erything else(-)].
At high temperatures, the model should behave as a
Ep=2[cogh; ,hi)+coghi,hiy )], (®  Rouse chaif® Indeed, this is the case. In Fig. 1, the center of

where coéh; ,h)) denotes the cosine between fie andjth  gravity autocorrelation functidh*® (the time averaged
vectors defining the orientation of the peptide plattee  square of displacement of the center of gravity, computed for
vectors from hydrogen bonded to the carbonyl oxygen the Ca backbong is plotted vs time on a log—log scale. The

The total energy of the model chain is computed as  results for various temperatures show free diffusi@n

_ straight line with slope equal tg 1With decreasing tempera-

E=4EH+E,TE,TE,. ® ture, the diffusive motion of the model chain slows down. As
The scaling of the sequence specific interactions against thshown in Fig. 2, where the end-to-end vector autocorrelation
generic ones is, to some extent, arbitrary. This particulafunctions are plotted vs time in semilog plots, the relaxation
choice has been made by a trial and error method for variousf the chain orientation is exponential. In all cases, the initial
proteins belonging to different structural classes. Let us fiprientation decays exponentially with the longest relaxation
na”y note that instead of th€« vectors, one may use side dependent on temperature. For all temperatures, the pre-
group vectors as a basis for factorization of the sequencgented data are generated on the basis of a hundred times
specific conformational p.ropensitié‘rSHer.e, however, we try  |onger trajectory than the time range shown in the plots. The
to keep the models as simple as possible and open for €agyror bars are in range of the symbol siz&cept for a rather
implementation of various long range interactions. irrelevant part of the end-to-end autocorrelation function in

the limit of negligible memory of the initial stateand there-
Il RESULTS AND DISCUSSION fore, they are omitted in the pictures.

The proposed model of the short range interactions and In conclusion, the model chain behaves as a Rouse
dynamics of the protein chain has been tested on severghain. Due to the well known ergodicity of the Rouse
proteins. Two major problems need to be addressed. The firshainé™*this suggests that the present model is also ergodic
is related to the dynamics of the model and its ergodicityOr at least it belongs to an acceptable ergodicity class. This is
The second is the problem of reproducing the secondarfot surprising, due to the high coordination number of the
structure encoded in the amino acid sequence. If the prdattice. The present model could be considered as a conve-
posed factorization of the secondary structure is correct thenient discretization of a continuou®ff-lattice) chain. At
the simulations at low temperatures should lead to resultgery low temperatures, the mobility of the model chain is
that coincide in 55%—-70% of the cases with the secondarguppressed; however, segmental free diffusion and the relax-
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TABLE lll. Comparison of accuracy of prediction of secondary structure for ten randomly selected proteins. The first line is the residue number. The second line gives the sequence. The third and the

fourth lines denote secondary structure obtained via the Kabsch—Sander method applied to the crystal structure and via the predicted conformational statistics described in this work. The threshold

values are the foIIowingtiZ_wz > 75 assignsE, riz_zvi+2 < 56 and the chirality is positive, assigns H. Everything else-i

56.1% correctly predicted
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FIG. 3. Average displacement of a sindler atom at two timegt=1000,
open circlest=500, solid circlesas a function of the position in the chain,
at temperaturd=1.1.

FIG. 1. Log—log plot of the center of mass autocorrelation functions for the
protein G chain at various temperatufepen circlesT=1.0; solid circles,
T=1.1; open triangles,T=1.25; solid triangles,T=1.5; open squares,
T=1.75; solid squares[=5.0).

ined more closely by the direct analysis of the orientational

ation of the initial internal coordinates is evident at very longautocorrelation function for various fragments of the chain.
times as is shown in Fig. 1. The relaxation of several selected fragments is illustrated in
Figure 3 shows two profiles at two different times of the Fig. 4 where the autocorrelation functiong,(t) for the
single residue autocorrelation functigsquare of displace- Ri-2,+2 vVectors are drawn in semilog plots for two tempera-
men'b at the re|ative|y low temperature af=1.1. At this tures. While the differences between the Speed of local relax-
temperature, the secondary structure preferences are anea@@pns of various structural elements are rather small at low
highly visible. For a Rouse chain, a parabolic shape of théemperature, the relaxation rate of the t@dragments next
prof"es is expected_ The overall Shape of the prof”es ShOWItp the central helix is the lowest. The fastest relaxation is
in Fig. 3 are close to parabolic; however, due to the different
flexibility of various fragments of the model polypeptide,
there are noticeable distortions. For example, residues 50 to
54 tend to move with the same velocity, regardless of their
different separation from a more mobile chain end. This is

1.0x10°

related to a strong preference of this fragment of the chain to/\ T=1.1
adopt very expandeg-strand like conformationtsee Table =
[II). The rotational motion of such a rigid fragment is some- S/B'

what hindered; however, the translation is even faster than
for more flexible fragments. Remarkably, the translational

motion of a portion of the helical part of the chain also seems
to be faster than expected for a homopolymeric Rouse chain.

4.0x10" L

The above features of the model polypeptide could be exam- 0 2 4 6 8 10x10°
@) t
1.0x10° ¢
eo B
8= §§;.:°_'_°—'—'-° i
8 8—3=3=g=9§ o
n U‘*@:g\ =9 © i T_S O
\l\ TP e—py A o =).
=
LNy \-é'- ] +
[ '\. 20 e} o
o -1 ~ \ ? °
e '\- Q
\'\l + 4
g8 L
Q * o © R
2 40x10” ! ‘ id R . ,
e_ | ] 0.00 0.02 0.04 0.06 0.08 0.10x10
(b) t

1000 2000 3000 4000 5000

1 FIG. 4. Semilog plot of the four-bond vector orientational autocorrelation
function for various fragments of the protein G chain. The set of curves in
FIG. 2. Semilog plot of the end-to-end vector autocorrelation function of the(a)[(b)] corresponds td=1.1; [T=5.0] (the crosses show the autocorrela-
protein G chain at various temperaturesymbols as in Fig. 1 (Solid tion function for residues 2—6, the stars for residues 14-18, triangles for
circles, T=1; open square§,=1.1; solid trianglesT=1.25; open triangles, residues 23-27, circles for residues 31-35, squares for residues 42—46, and
T=1.5; open circles, 1.75; solid squards; 15, diamonds for the fragments 51955
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FIG. 6. Profiles of various conformational statistics for the plastocyanin
100t [ 8 sequenceT=1.0 (for additional details, see the caption to Fig. 5
50 f responds to time average of , ;. ,, the middle curve is to
riz,lﬁz, and the lowest one reflects average handness of the
0 main chainCa trace computed aév;_;®V;)-v;,;. The re-
duced secondary structure assignmenimpare Table )l of
S —, the native protein is included for easy reference. The thresh-
_50 i I L i n n . - 2 . .
o o 20 80 20 350 old for the B-typical value ofri__, i, , can be chosen in such
(b) i a way that the location of all foug-strands(with the pos-

sible exception of the second grman be correctly identified,
FIG. 5. Profiles of various conformational characteristics of protein G. Theincluding the very likely locations of the turns. For all of the

upper curve(open circley shows the time average of the square of the data. we use the same threshold given in the caption to Table
distance between the-2nd andi+2nd Ca’s as a function of position along !

the chain. The middle curvolid diamondsshows the corresponding plot Il Even the IOVYer peaks_ at positions. 13 and_@ﬁbproxi-
for the square of the distance between thelth andi+2nd Ca's. The ~ mate have physical meaning. They coincide with very open

lowest curve(solid circles represents the handness of the three bond frag-gnd relatively long connections between the cendrdielix
ments(see the text for more detaif(a T=1.1; (b) T=1.0} and the neighboringg-strands. Qualitatively, the same pic-
ture can be deduced from the,?_lﬁz profiles, with, of
course, a different threshold value. In both cases, the
C-terminal 8-strand has the strongest prediction. The helix in
pwe native state runs from residue 22 to residue 35. The two
upper profiles show a well defined helix between residues 20

the helix still relaxes with the highest rate. . )
The global dynamics of the model chains, which resultsand 28(small distances between ti@ atoms, while the

from a long random sequence of very local conformationag'te_rm'tnhaI pfart ?f tt.he hilr']).(’ althto ufgtrk]‘wzlbllle,dl.s Iesls obv:c(t)us.
jumps, is virtually identical to the dynamics of an ideal poly- uring the simulations, this part of tne helix diSSolves after a

mer chain®® On a local level, the dynamics are somewhattime' contributing to a somewhat weaker prediction. The
moderated by the temperature dependent fluctuating seconlaémdneSS profile corre_:ctly |dent|f|es_ a long stretch of right
ary structure. However, even at very low temperatures Whenanded turns from residue 20 to residue 37 that corresponds
some fragments are structured during the entire time of simu-

lation, the diffusive motion is not prohibited. 150 F

exhibited by theC-terminus of the putative helix. At higher

B. Secondary structure of model polypeptides

To what extent is the secondary structure, seen in its
native state, reproduced by the present reduced model with-
out the long range interactions? We discuss in more detail the
case of protein G. It should be noted that protein G was not
included into the database of the structures used for deriva-
tion of the statistical potential of mean force given in Table I.

Moreover, there is no sequence or structure homology to any H H H H H H H H
protein from the database. The list of structures used to con- -50 L ~ » . » - i -
struct the potential is also available via anonymous'ftm 0 20 40 60 80 100 120 140

Fig. 5a), the three profiles that can be used to deduce the i
secondary structure are plotted based on the statistics froMG. 7. Profiles of various conformational statistics for the myoglobin se-
long runs at low temperatur@=1.1. The upper profile cor- quenceT=1.0 (for additional details, see the caption to Fig. 5
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FIG. 8. Comparison of the effect of sequence specific potential and the
generic potential on the average values'i%)J‘Li+2 as a function of residue
position in the sequence of the domain B1 of protein G. Solid line, the case
of sequence specific potential without the generic regularized terms; dashed
line, the case of the generic potential; the dotted line, the case of a phantom
athermal chain.

1SS
to the entire helical fragment. Thefragments can be right-
handed or left-handed, and the profile is consistent with the
native secondary structure. In summary, for this particular
sequence, the compilation of various local conformational
characteristics obtained from long Monte Carlo simulation
lead to an accurate prediction of secondary structure. The
errors of positioning of particular secondary structure ele- (b)
ments do not exceed two residues. The results are even

: FIG. 9. Comparison of average distribution of the local conformational
clearer when the system Is further cooled dowT#el.0, as statistics for the 56 residue lattice chagequence irrelevanwith and with-

shown i_n Fig. 8b). _ out generic potentials. In both cases the sequence specific part of the poten-
In Figs. 6 and 7, the analogous profiles are presented fatal is absent(a) The sample distributions af¥? ;,,, averaged over all

two larger proteins, the 99 residugsprotein plastocyanin f?;iduesl forf] thf SyStﬁmmWi:th ;htl? %e”efic POtsr‘i@yﬁ "2% ;ng ';C{L”t'_e
. . . athermal phantom chaifootte Ing compare (0] e Istrioution

(Ipcy, and the 146 residues, helical protein myoglotin (. e jing (b) The corresponding distributions fof . ..

mba. The same input datdemperature and scaling of spe-

cific vs generic interactionsre used in all cases. The result-

ing secondary structure is correct in most cases, however, . . .
: when the collective generic potential is in force. For com-
some errors are noticeable.

The tests on other sequences show that the preseﬁfmson’ Fig. 8 also contains the results for a chain with only

neric terms of the short range interacti¢the dashed lin
model reproduces secondary structure on the same level g]e 9 e

accuracy(that is, 55%—70% for three structural classes undeg?r?c;htierreesglrt: rff): :;hegzasje%iin;orgcﬁizag;ggg “l;]gt.h fo-
consideratiop as obtained by other methods of secondar y seq P ' P

structure predictioR®—2° y!‘iles are flat.. Interesti_ngly, the averages are almost the same,
' in spite of different distributions that are discussed below.
Further insight into the role of the sequence independent
regularizing potential comes from analysis of the distribution
of conformations(averaged over entire chaias measured
First, we note(again on example of protein G domain by the chiral three bond and four bond distances, respec-
that the accuracy of the secondary structure prediction dropsvely. In Fig. 9, the distribution for a completely athermal
significantly, by~5%, when the generic terms are removed.chain (infinite temperature, dotted lineand for the chain
The lower average accuracy and more scattered assignmentith only the generic potentigkolid line) are compared to
of secondary structure comes from the absence of “propagdhe distributions from the structural data bddashed ling
tion” due to the generic contributions that simulate confor-The distributions for the second case are proteinlike in the
mational stiffness and some local cooperativity of polypep-sense that there are well defined peaks corresponding to
tide chains. This is demonstrated in Fig. 8, where the valuegght-handed compachelica) and expande(3-type) states.
of ri2_2’i+2 are plotted along the sequence of the protein GThe population of compact left-handed states is negligible.
domain. The time average values for particular residues ar€hus, the generic background potential introduces protein
much more scattered than those shown in Fig. 5. For inlike conformational bias. The sequence specific potential
stance, there is a very expanded fragment at positions 29—3figgers formation of fluctuating secondary structure. Thus,
occupied bys-forming Val and Phe. This locg@-tendency is amino acid pair specific propensities are “interpolated” by
balanced by the neighboring amino acids which prefer helixhe generic potential. As a result, the observed secondary

C. Interplay between specific and nonspecific short
range interactions
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structure (time averagedis partially (as it should due to present work is available upon requegtt lower tempera-
absence of the interplay between the short and long rang®ires, the observedime averagedsecondary structurée-
interaction$ consistent with the secondary structure seen irduced from the observed short range conformational correla-

the native state. tions) is close to that seen in the native state. The accuracy of
this method of secondary structure prediction is of the same
IV. SUMMARY AND CONCLUSIONS level as obtained by standard methdds., 55%—70% of

residues are correctly assigne8ince the sequence specific
part of the short range interactions directly encodes the sec-
ndary structure propensities, this is not surprising. The un-
ﬂerlying generic contributions to the potential of mean force
0.7applied in the reported simulations regularize and propagate

approximation to PDB structures is on the level of 0.6— o
A. What is important is that the quality of the fit does not the secondary structure. Consequently, the pairwise sequence
specific potentials are to some extent “interpolated” over

depend on the angle of rotation with respect to the lattice:

Thus, no artificial entropy effects are encountered. The |at[elatively long fragments of the model chains, providing con-

tice Ca trace provides a convenient reference frame for reSENSUS secondar_y p_ropensities. The generic poten.tia_l plays a
construction of the coordinates of all backbone atoms. ThéImllar role as *filtering” procedures in more sophisticated
plications of computational models of neural networks for

reconstruction requires just a few references to the prefabrP L o
. J P condary structure predictidi.>® In principle, we could

cated data set and can, therefore, be performed frequent o -
se a deterministic procedure that generates the prediction of

during very long simulations. The model of dynamics is . o
based on a long random sequence of local conformationzﬁecondary structure according to the proposed factorization

transitions that preserve “proteinlike” backbone geometry.Of the secondary structure propensities. There is, however, an

In this work, only the short range interactions and their eﬁedmportant advantage of the proposed lattice Monte Carlo

on the behavior of the model are considered. In order t(5110del; it carries along its entire geometrical context. Thus,
achieve a “proteinlike” distribution of conformations, it is there are straightforward possibilities for considerable im-

necessary to employ a genefaequence independeitiack- provement of secondary structure prediction and, conse-

ground potential, which introduces a correction to the underg.uem.ly’ for p_rediction.of tertiary structure. For example, ter-
lying lattice distribution of states. This generic potential iSUary interactions, which moderate secondary propensities,

designed on the basis of general regularities seen in all proc-ould be introduced. This method was actually employed in

tein structures. It enforces a “proteinlike” distribution of dis- our earlier work in the context of a sor.newhat' d'ﬁerémhd.
tances between th€a atoms up to the fourth neighbors less accurajescheme for short range interactions, allowing

down the chain. There is also a bias towards the correlate@redi(_:tisgg_z%f several very simple folds of small globular
mutual orientations of the polypeptide bonds, which is typi-pmt?"lh' forth . K th . wibuti o th

cal for all regular secondary structure motifs. The sequence i n Ie or com!n? wort_, € vzrltcr)]us (;fontrl utlr?ns ot €
specific interactions trigger the specific local secondar)}er lary (long rangg interactions and the effect on the protein

structure preferences. The sequence specific part of the pBQId'ngtprO%esiS ;th b? exam|_netd mtlthe cor&textl of tT.z
tential is derived from the configurational statistics of thePresent model of short range interactions and polypeptide

high resolution PDB structures. It should be noted that acham dynamics.

somewhat similar factorization of the secondary structure
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