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ABSTRACT: A method that employs a transfer matrix treatment combined with Monte Carlo sampling has
been used to calculate the configurational free energies of folded and unfolded states of lattice models of
proteins. The method is successfully applied to study the monomer-dimer equilibria in various coiled
coils. For the short coiled coils, GCN4 leucine zipper, and its fragments, Fos and Jun, very good agreement
is found with experiment. Experimentally, some subdomains of the GCN4 leucine zipper form stable
dimeric structures, suggesting the regions of differential stability in the parent structure. Our calculations
suggest that the stabilities of the subdomains are in general different from the values expected simply
from the stability of the corresponding fragment in the wild type molecule. Furthermore, parts of the
fragments structurally rearrange in some regions with respect to their corresponding wild type positions.
Our results suggest for an Asn in the dimerization interface at least a pair of hydrophobic interacting
helical turns at each side is required to stabilize the stable coiled coil. Finally, the specificity of heterodimer
formation in the Fos-Jun system comes from the relative instability of Fos homodimers, resulting from
unfavorable intra- and interhelical interactions in the interfacial coiled coil region.

Since the coiled coil motif was first proposed by Crick
(to explain the keratin diffraction pattern) (Crick, 1953,
1952), coiled coils have been the subject of increasing
attention (Cohen & Parry, 1986; Cohen & Parry, 1990;
Harrison, 1991; O’Sheaet al., 1991). Coiled coils consist
of two or more helices wound around one another and can
be found in the muscle protein tropomyosin (Johnson, 1975;
Phillips, 1986), in blood clots as fibrin, and in hair as keratin
(Fraser & MacRae, 1971; Cohen & Parry, 1986; Cohen &
Parry, 1990). Furthermore, coiled coils play an important
role in transcriptional activators (Landshultzet al., 1988;
Harrison, 1991) regulating cell growth, differentiation, and
oncogenesis and therefore are important medically (Perutz,
1992). In these proteins, coiled coils, named leucine zippers
because they possess a Leu in every seventh position, have
been proposed to form dimerization domains (Landshultzet
al., 1988; Harrison, 1991). The biological importance and
relative simplicity of leucine zippers have made them the
subject of extensive experimental (Hodgeset al., 1981;
O’Sheaet al., 1989, 1991, 1993; Smealet al., 1989; Harbury
et al., 1993; Lovejoyet al., 1993; Lumbet al., 1994) and
theoretical studies. They have been used as models for
studying various interactions responsible for driving protein
folding (Harburyet al., 1993; O’Sheaet al., 1993), for testing
hypotheses about the specificity and stability of protein
structures (Harburyet al., 1993; O’Sheaet al., 1993), and
for understanding factors influencing oligomeric assembly
and protein design principles (Harburyet al., 1993; Lovejoy
et al., 1993; O’Sheaet al., 1993). Because of the abundance

of interesting experimental data and their small size and
relative simplicity, leucine zippers are ideal model systems
for various theoretical approaches to the protein folding
problem (Krysteket al., 1991; Nilges & Brunger, 1993;
Zhang & Hermans, 1993; DeLano & Brunger, 1994; Vieth
et al., 1994a). Taking advantage once again of the simplicity
of leucine zippers, the present work focuses on developing
a theoretical approach to understanding the factors respon-
sible for the stability of dimeric coiled coils relative to the
monomeric structures.

The sequences of coiled coils have a characteristic heptad
repeat (abcdefg)n (McLachlan & Stewart, 1975). Residues
at positions a and d are in general occupied by hydrophobic
residues and form an interface between two or more helices
(in leucine zippers, position d is occupied by Leu residues).
The e and g positions are occupied mostly by charged
residues, and the methyl groups of those residues form the
edges of hydrophobic core. The b, c, and f positions are
mostly hydrophilic. In addition to having Leu in most d
positions, leucine zipper fragments of DNA binding proteins
are short (23-45 residues long) (Landshultzet al., 1988),
and some of them, when excised from their parent proteins,
have a tendency to dimerize (O’Sheaet al., 1989, 1991). A
number of transcription factors form heterodimers, e.g., c-Fos
and c-Jun (Haiet al., 1989; Smealet al., 1989), with leucine
zipper interfaces. The isolated leucine zipper domains of
c-Fos and c-Jun also have a tendency for heterodimerization
(O’Sheaet al., 1989), similar to the intact proteins.

The experimental observation that attracted our attention
was the phenomenon of subdomain folding in the GCN4
leucine zipper system (Lumbet al., 1994). The various
subdomains (fragments) of the wild type GCN4 leucine
zipper were synthesized, and their thermal stability was
assessed. The fragment corresponding to residues 8-30 of
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the wild type GCN4 leucine zipper was found to have
substantial stability. In contrast, the closely related fragment
corresponding to residues 11-33 in the wild type GCN4 was
predominantly unfolded. In order to investigate this problem,
we need to develop a methodology to extract from simula-
tions the equilibrium constants for formation of coiled coils
from unfolded monomeric chains. Previously, the prediction
of the folding pathways and structure of the GCN4 leucine
zipper has been reported by our group (Viethet al., 1994a).
Subsequently, the calculation of the oligomerization equi-
libria of GCN4 leucine zipper and some of its mutants was
then described (Viethet al., 1995). However, unfolded
monomeric chains cannot be treated by this method. There-
fore, in this paper, a new more general approach is proposed
to calculate free energies of the unfolded as well as folded
chains.

The outline of the paper is as follows. In the Method
section, the general expression for the equilibrium constant
of monomer-dimer equilibria is presented. The treatment
of the equilibria between monomers and dimers presented
in this paper is in principle general and not limited to the
lattice models of proteins. However, calculation of different
contributions to the free energy is presented in the context
of a lattice model of proteins (Kolinski & Skolnick, 1994;
Vieth et al., 1995a). Thus, the lattice model of proteins is
briefly introduced and the calculation of different contribu-
tions to the dimerization free energy is described. In
particular, a transfer matrix treatment is presented to evaluate
the internal contributions to the free energy of dimerization.
In the appendices, we present the detailed description of the
treatment as well as our efforts to validate the methodology.
The Results section focuses on the calculation of the
dimerization free energy for the GCN4 leucine zipper and
its fragments, the monomer-dimer equilibrium in Fos, and
the heterodimer-homodimer equilibria in the Fos-Jun sys-
tem. In the Discussion section, the implications of our results
are presented, together with elaboration of the necessary
condition for stabilization of single hydrophilic residues in
the helical interface of coiled coils.

METHOD

In what follows, we present an overview of the calculation
of the monomer-dimer equilibria for a pair of chains. We
first present the general statistical mechanical formalism.
Then, the lattice model of proteins is introduced and the
calculation of different components of free energy of
dimerization are described.

Formalism for Monomer-Dimer Equilibria

Consider the equilibrium constant for dimerization (Mc-
Quarrie, 1976):

with [M] and [D] being the equilibrium concentrations of
monomers and dimers, respectively. The total concentration
of individual chainsC0 (assuming that the only species in
the system are monomers and dimers) is expressed as:

whereas the fraction of individual chains in monomers and
dimers is given by:

Obviously,xM + xD ) 1. SubstitutingxM andxD into eq 2:

and:

Thus, the calculation ofxM andxD require values for bothK
andC0. In order to relate the equilibrium constantK to the
microscopic variables, it is useful to rewrite eq 5 in the form
of mole fraction equilibrium constantKx (McQuarrie, 1976):

Substituting the total number of chains for the mole fractions:

whereN is the total number of individual chains in a box of
volumeV, andNM andND are numbers of monomers and
dimers, respectively.ND/NM

2 is simply the ratio of the total
partition function for dimersZD divided by the square of
the total monomer partition functionZM. Thus,Kx can be
written in the following form (McQuarrie, 1976; Skolnick,
1980):

Zconf,M(D) are the configurational partition functions for the
monomers, M (dimers, D), that include the rotational and
internal contribution.V0 is the volume accessible to a first
atom in the second chain in the dimer, given that the first
atom in the first chain of the dimers is fixed,σD is the
symmetry number (d2! for homodimers and 1 for het-
erodimers). Since we choose an internal coordinate system
(fixed at the first bead of chain one) to calculate the partition
function, the factorV comes from the integration over the
degrees of freedom of the first bead in the first chain. As
noted in a series of papers, the contributions from the
momenta degrees of freedom cancel in the numerator and
denominator (Herschbach, 1959; Mayer & Mayer, 1963;
Holtzer, 1995) (for this internal coordinate system), leaving
the ratio of configurational partition functions to determine
the equilibrium constant. Rearranging eq 7a, we get

Let us note thatVM ) N/V is the average volume accessible
per chain and is equal to 1/C0.
Equations 6 and 7b provide the basic equations for

evaluation of the fraction of monomers and dimers in the
system at a given concentrationC0. In order to dissect the

2M T 1D (1)

K ) [D]/[M] 2 (2)

C0 ) 2[D] + [M] (3)

xM )
[M]
C0

xD )
2[D]
C0
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K )
xD

2C0xM
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2xM
2

(6a)

Kx )
2ND/N

2(NM/N)
2

) N
ND

NM
2

(6b)
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total contribution to the free energy change for the reaction
in equation 1, let us define the standard molar free energy
change for the monomer-dimer equilibrium (McQuarrie,
1976):

Combining 8a with eq 7b:

The total free energy of dimerization can be written as a
sum of a translational and a configurational part:

with ∆Str ) k ln (V0/VM) and∆Aconf ) ∆Aint - T∆Srot. The
total free energy change from eq 8a-c can be viewed as
three subprocesses corresponding to three different energy
contributions (translational, rotational, and internal). Figure
1a-d shows a schematic thought experiment that can be done
to understand the meaning of different contributing terms to
the free energy of dimerization. The first subprocess (Figure
1b) can be viewed as the loss of translational degrees of
freedom upon bringing the two first chains together. The
methodology for calculating the translational entropy is
shown in Figure 2. Next, an end is oriented, and rotational
entropy is lost (Figure 1c). Finally, the native interactions
are formed (Figure 1d). In the following, a method to
calculate each contribution to the free energy for the lattice
model of proteins is described.

Lattice Model of Proteins

Since the details of the lattice model have been presented
elsewhere (Kolinski & Skolnick, 1994; Viethet al., 1995a),
we present here only a brief description of the methodology.
Additional, salient details are provided in Appendix A. The
protein is modeled by anR-carbon representation of the
backbone and by single sphere, multiple rotamer side chains.
TheR-carbons are connected by a set of vectors of the type
1.22*{(2, 2, 0), (2, 2, 1), (3, 0, 0), (3, 1, 0), (3, 1, 1)}
(Kolinski & Skolnick, 1994; Viethet al., 1995a). The entire
statistical interaction scheme, derived from high resolution
structures (see the sample derivation in the recent paper by
Godziket al. (1995)) from the Protein Data Bank (Bernstein
et al., 1977), is subdivided into short and long range
interactions. Among the short range interactions, there are
local conformational preferences of neighboring residues
along the sequence together with a rotamer energy. By the
term long range interactions, we mean all interactions
between residues that are at least 4 residues apart in sequence.
All long range interactions are sequence dependent. They
consist of a side chain pair potential, a cooperative pair
potential (which facilitates interactions between secondary
structural elements, i.e., helices andâ-sheets), and a contact
based on body term (similar to a solvation energy). The
model hydrogen bonds (derived in the spirit of Levitt and
Greer (1977)) can be local (helical) or long range (in
â-sheets) and operate only betweenR-carbons. The con-
formations are sampled using a Monte Carlo procedure
(Metropolis, 1953).
Configurational Partition Function for the Denatured

State. In the unfolded state, both chains are noninteracting

and, thus, can be treated independently. For short chains
(containing less than 6 bonds), it is possible to do an exact
enumeration of all possible states to obtain the total internal
partition function for the unfolded state. Unfortunately, for
the longer chains, the exact enumeration is computationally
intractable. However, if one assumes that the total energy
of a chain in a particular conformation can be written as a
sum of energies of small overlapping segments (i.e., 4 bond
segments), then the partition function can be calculated using
a transfer matrix treatment (Zimm & Bragg, 1959; Lifson
& Roig, 1961; Flory, 1969; Poland & Scheraga, 1970)
described in detail in Appendix B. This type of treatment
was extensively used in helix-coil transition theory (Zimm

FIGURE 1: A thought experiment that dissects the different
contributions to the free energy of dimerization. The shaded circle
represents the first bead of the reference chain (the first chain).
The open circle represents the first bead of the second chain. The
first chain has freedom to translate and rotate in both the unfolded
and folded state. (A) The entire dimerization process under
consideration. On the left-hand side are the reactantsstwo inde-
pendent chainssand on the right-hand side are the productssa two
chain, parallel coiled coil with specific interactions. (B) Reduction
in translational entropy associated with bringing the first bead of
the second chain (open circle) close to the first bead of the first
chain (shaded circle). On the left-hand side, both beads have an
average accessible volumeVM (VM is the average volume per
molecule, 1/C0). After they are brought together, the first bead has
a volumeVM accessible to it, whereas the second bead has only a
small vibrational volumeV0 in the dimer. (C) The change in
rotational part of configurational free energy. The left-hand side
shows free rotation of both chains, whereas on the right-hand side
the two chains can rotate only as a unit. The relative rotation of
the second chain with respect to the first one is restricted. (D) The
change in the internal free energy. On the left-hand side, the two
chains have a fixed relative orientation (determined by the first
two vectors in both chains) but do not interact and can assume any
conformation. On the right-hand side, a two chain, coiled coil with
specific interchain interactions is formed.

∆AMfD
θ ) -kT ln Kx (8a)

∆AMfD
θ ) -kT ln (V0/VM) - kT ln Zconf,D+

2kT ln Zconf,M + kT ln σD (8b)

∆AMfD
θ ) -T∆Str(VM) + ∆Aconf

θ (8c)
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& Bragg, 1959; Lifson & Roig, 1961; Poland & Scheraga,
1970) as well as in polymer physics (Flory, 1969).
The approach we use in this paper is a generalization of

the treatment proposed by Skolnick and Kolinski (1992). The
entire polypeptide chain is divided into N-4 four bond (five
residue) overlapping segments. Each segment is treated as
being in one of several discrete rotational states (Flory, 1969).
Only interactions within each segment are considered. For
each of the overlapping four bond segments, we calculate
the statistical weights of all possible conformations and use
these weights to build N-4 transfer matrices. Multiplication
of these matrices and summation of the resulting elements
give the partition function for the system.
This treatment neglects the long distance excluded volume

effects, as well as the statistical weight of interacting clusters
of residues, which would be created if the chain folded onto
itself (Flory, 1969). Local elements of secondary structure
(turns and helical states) are accounted for in this treatment.
For short chains, long range, repulsive excluded volume
effects and the attractive contributions from hydrophobic
clusters on average cancel and yield free energies which are
close to those obtained by the exhaustive enumeration. The
exact enumeration was compared to the transfer matrix
treatment for six (-Gly-Ala4-Gly-) and seven residue (-Gly-
Ala5-Gly-) chains. For the six residue chain, both treatments
give identical results with free energies-14.2kT. For the

seven residue chain (-Gly-Ala5-Gly-), the exact enumeration
gives a slightly lower free energy (-17.1kT) than the transfer
matrix treatment (-16.3kT) does, but both values are close
enough to be considered similar. For longer chains, it is
unclear whether the cancellation in the free energy calculation
persists, but we use this method as a first approximation to
the free energy of the unfolded state. The contribution of
the long range interactions to the unfolded state free energies
for longer chains (up to 11 residues) is being evaluated;
however, any speculation on this issue is beyond the scope
of this paper.
Configurational Partition Function for Dimeric Molecules.

The folded state is considered to be a subset of conformations
that have a specific overall topology, hydrogen bond pattern,
and specific side chain contact map (Ptitsyn, 1987). The
entire configurational partition function for the folded state
can be written as a product of the rotational and internal
parts (McQuarrie, 1976):

ND1 is the number of distinct conformational states for the
first two vectors in the first chain (assumed to be equal 4704,
as determined by statistics), whereasND2 is the number of
distinct states for the first two residues in the second chain.
n(Ei) is the degeneracy of energy levelEi, nlevels is the number
of energy levels, andâ ) 1/kT. The probability of being in
any energy level (for convenience, we choose the average
energy levelE0) is given by (McQuarrie, 1976):

P(E0) is the probability of the system being inE0. If we
could get an estimate for the degeneracy of one energy level
(sayn(E0) for convenience), then we would be able to obtain
the configurational partition function for the system:

We can now write the expression for the configurational free
energy of the folded state:

where k ln(ND1ND2) is the rotational entropy term, and
k ln(n(E0)) - k ln(P(E0)) is the internal entropy of the system
arising from the degeneracy of the average energy level
(k ln(n(E0)) and the fluctuation terms (-k ln(P(E0))).
The average energy of the system together with the energy

probability distribution (Figure 8) can be obtained from
Monte Carlo simulations of the folded state (see Appendix
C). First, we generate a starting structure for each sequence
in a parallel coiled coil arrangement. Then, production runs
are carried out to calculate the average energy of the system
together with the energy probability distribution. The degen-
eracy of the energy levelE0 n(E0) is calculated from the
ensemble of structures within 4kT of the average energy
using a similar transfer matrix treatment as for the unfolded
state.

FIGURE 2: Schematic representation of calculation of loss of
translational entropy for the first (white) bead of the second chain.
In the folded state, the white bead has an accessible vibrational
volumeV0. The bottom picture shows a method of calculating this
volume. The coordinates of the first bead of the second chain are
first expressed in the coordinate system centered at the first bead
of the first chain. Note that the entire space is discretized and
divided into small cubic boxes of a side of 2.6 Å. Then, the
simulation of folded state is run, and the number of occurrences of
the white bead is counted in each box every 100 MC cycles. The
maximally occupied box is selected, and the frequency of the white
bead being in this box is calculated. For example, in this case we
have 5 snapshots, and the number of times the maximally occupied
box is visited is 3. The vibrational volumeV0 is computed as the
ratio of the volume of the elementary box (2.6 Å3) to the probability
of a white bead being in the maximally occupied box (Px ) 3/5).

Zconf,D) ZrotZint,D ) ND1ND2 ∑
i)1

nlevels

n(Ei)e
-âEi (9)

P(E0) )
n(E0) exp(-âE0)

Zint
(10)

Zconf,D) ND1ND2

n(E0)

P(E0)
exp(-E0/kT) (11)

Aconf,D) -kT ln Zconf,D)
-kT ln ND1ND2 + E0 - kT ln n(E0) + kT ln P(E0) (12)
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RESULTS

Using the procedure described in the Method section, the
free energies of the unfolded states and the free energies of
folded sequences in the structure of double stranded, parallel
coiled coils have been calculated. In all cases studied here,
we eliminated the possibility of formation of antiparallel
species by energetic considerations (see fitness function in
Figure 7). A number of sequences have been investigated.
First, there is the GCN4 leucine zipper wild type, shown
experimentally to be a dimeric coiled coil (O’Sheaet al.,
1991). Next, there are various 23 residue fragments (sub-
domains) of the GCN4 leucine zipper studied by Lumbet
al. (1994) indicated schematically in Figure 3. Each
subdomain starts from the residue adjacent to the hydropho-
bic core (at the g and c positions) and ends at the position
that was in the hydrophobic core in the wild type. We expect
that, at both ends, the residues that initiate or terminate the
hydrophobic core will be destabilized with respect to the
identical residues in the wild type. The reason for that is
loss of interactions with the preceding or subsequent residues
(present in the wild type but absent in the fragment) and
partial exposure of those residues to solvent.
The fragment corresponding to residues 8-30 of the wild

type GCN4 was found to be stable as a coiled coil dimer,
whereas the closely related fragment corresponding to
residues 11-33 of GCN4 wild type appeared to be predomi-
nantly unfolded (Lumbet al., 1994). Lumbet al. (1994)
concluded that specific packing interactions can be energeti-
cally more important than local secondary structure propensi-
ties. Lumbet al.also suggested that the protein folding can

be understood in terms of formation of cooperatively folded
domains. In addition to these two peptides, we also test
another 23 residue fragment corresponding to the residues
4-26 of the wild type GCN4, which has not yet been studied
experimentally. However, based on the energetic profile of
the wild type (Viethet al., 1995a), we would expect the
4-26 fragment to form the most stable 23 residue dimeric
coiled coil.
Monomer-Dimer Equilibria in the GCN4 Leucine Zipper.

Over the experimental concentration range, the predicted
fraction of chains in the dimeric structure is shown in Table
1 for the GCN4 leucine zipper. Because of the limited
accuracy of our free energy estimates, we restrict ourselves
to the assignment of the dominant species. Our results are
in agreement with experiment and indicate that the wild type
of GCN4 leucine zipper should populate dimeric chains.
Table 1 also shows the calculated conformational (rotational
parts included) free energies of the GCN4 leucine zipper in
the unfolded state as well as in the coiled coil structure. The
free energy changes upon folding are also presented. The
translational entropy loss upon dimer formation is shown in
the second last column for three different concentrations (2
µM, 43 µM, 1 mM) (Lumbet al., 1994). In addition, Table
1 presents the average RMS fluctuations from the average
structure in the coiled coil state together with the volume
occupied by the first bead of the second chain.
In order to evaluate the energetic and entropic contribu-

tions to the free energy of the unfolded state, unrestrained
Monte Carlo simulations of GCN4 leucine zipper wild type
monomer (inT) 1.85 with no long range interactions) have
been performed. The difference between the free energy
computed by the transfer matrix approach (see Appendix B)
and the average energy computed from the Monte Carlo
simulation was considered to be the entropy of the unfolded
state. Table 1 presents the dissection of the free energy of
folded and unfolded state of the wild type GCN4 leucine
zipper. As would be expected, the dominant contribution
to the unfolded state configurational free energy comes from
the entropy. The average energetic contribution is small,
and by our assumption, there is no energetic contribution
from the long range interactions. Upon folding, this situation
changes dramatically. The dominant contribution to the free
energy of the folded state comes from the energy (-96.6kT
per monomer), and the entropy drops down by roughly 50%
in comparison to the unfolded state. The major energetic
contribution to the folded state comes from hydrogen bonds,
local side chain orientational preferences, pairwise interac-
tions, and cooperative side chain packing interactions.
From the values of the internal entropy presented in Table

1, we can calculate the average number of states per residue
for the unfolded and the folded state. For the unfolded state,
the average number of states per residue is close to 45. For
the folded state, this number decreases to 7. Thus, our model
provides almost a 7-fold reduction in the number of states
upon folding. This reduction is slightly lower than the 8-fold
reduction estimated by Privalov (1992). This relatively
minor difference in entropy change can be due to the fact
that coiled coils have larger exposed surface area than
globular proteins as well as to approximations of our
approach. It is noteworthy that if the sequence of the GCN4
leucine zippers were in the tetrameric state, then the
calculated reduction in the average number of states per
residue upon folding would be roughly 7.7; this is very close
to the number estimated by Privalov. This may not be

FIGURE 3: Schematic depiction of the fragments. The top layer
shows a diagram of a helical wheel with the heptad residue repeat
indicated. The rectangles at the bottom show the sequences of the
GCN4 wild type and all peptide fragments investigated in this study
together with assignment to the hydrophobic heptad positions a and
d. Note that each peptide fragment starts with a residue adjacent to
the hydrophobic core and ends with a residue that would be in the
core if the helices were longer.
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surprising, since coiled coil tetramers closely resemble the
four helix bundle topology observed in globular proteins.
What is surprising, however, is that the number of states
per residue in the folded state is so large. Most of the
variation that we observe comes from the mobility of the
side chains in the exposed parts of the molecule as well as
in the exaggerated backbone mobility on the lattice. The
idea of many conformational substates (distinguished by
small changes in the protein structure) in the folded state
was widely elaborated on by Frauenfelderet al. (1988).
Nevertheless, we feel that our model overestimates the
number of these states; it also overestimates the range of
conformational fluctuations in the folded state. As a
reminder, let us note that the inherent resolution of our lattice
imposed by its geometry and wide interaction basins is
estimated to be around 2.6 Å (Kolinski & Skolnick, 1994).
Also the average RMS of CR atoms with respect to the
average structure for the folded state is around 2 Å, with
fluctuations ranging from 0.8 to 3.5 Å (see Tables 1, 4,
and 9). Thus, the lattice model has a folded state defined
as a tube with a 1.3 Å radius; this is probably why such a
large number of states per residue in the native conformation
is seen.
Equilibria for GCN4 Leucine Zipper Subdomains.Tables

2-6 summarize the results for the fragments of the GCN4
leucine zipper. The predicted monomer/dimer ratio for
different sequences is shown in Table 2. For all of the
experimentally tested peptide fragments, the predicted domi-
nant species are in agreement with experiment; i.e., fragment
8-30 is predicted to form a stable dimer, and 11-33 is
predicted to be predominantly unfolded. For the fragment
corresponding to residues 4-26 of the wild type, we predict
the preferential formation of dimers.
Table 3 shows the free energies of the unfolded and folded

states for the fragments. From these data one can infer which
subdomain of the wild type GCN4 contributes mostly to the
stability of the parent structure. Focusing on the configu-

rational free energy contribution, the largest stability per
residue is exhibited by the 8-30 fragment of the wild type
(∼-1kTper residue). Another feature of the data from Table
3 is that the unfolded state free energies for the fragments
are very close to one another and that the differences in
stability reside in the folded state. Except for the 11-33
fragment (whose first 10 residues are disordered), the values
of the translational entropy loss on dimerization are also
similar for most tested sequences. Table 4 shows the average
RMS fluctuations of a single structure from the average
structure. The fluctuations of the 11-33 fragment are
noticeably larger than in either the 4-26 or 8-30 fragments.
As noted above, the different stabilities of the fragments

arise mostly from the differences in folded state free energies.
Table 5 shows the dissection of the folded state free energies
into the average energy and entropy. For the 4-26 and
8-30 fragments, which by our prediction appear as stable
dimers, the entropic contributions are similar within the error
of our calculations. For the 11-33 fragment that is predicted
to be unfolded, the entropic contribution is larger. This
relatively large entropic contribution of the folded state

Table 1: Thermodynamical and Structural Parameters for the GCN4 Leucine Zipper

dominant speciesa translational entropy lossh

43µM 1 mM
free

energies
monomer free

energy dissection
dimer free

energy dissection 2µM 43 µM 1 mM
RMS
in Å i

2 2 -149.1b -14.8 (0)e -96.6 (41)e 1.7
-336.3c 125.8f 64.3f 16.3 13.3 10.1 (1.3)

-38.1d 45g 7g

a The predicted dominant species for concentrations 43µM and 1 mM (“2” indicates that dimers only are present) are shown. Experimentally,
only dimers are present at these concentrations.b The configurational free energy of the unfolded state monomers inkT. c The configurational free
energy of the folded state (coiled coil dimer) inkT. d The configurational free energy change upon folding (the free energy of dimer minus twice
the monomer free energy) inkT units. eThe average energy per chain inkT (percentage (%) of long range interactions is shown in parentheses).
f The configurational entropy per chain multiplied by the reduced temperature (inkT). g The average number of states per residue.h The translational
entropy loss upon formation of the dimer multiplied by the reduced temperature for different concentrations (2µM, 43 µM, 1 mM) in kT. The
average volume occupied by the first bead of the second chainV0 is 67.6 Å2. i The average CR RMS deviation of a single structure from the average
structure (standard deviation is shown in parentheses).

Table 2: Comparison with Experiment of the Predicted Dominant
Species for GCN4 Leucine Zipper Fragments

concn dependence of
monomer/dimer ratio dominant speciesa

protein 43µM 1 mM theory expt

GCN4 8-30 0:100 0:100 2 2
GCN4 11-33 100:0 99:1 1 1
GCN4 4-26 9:91 2:98 2 NA
a “2” (“1”) indicates the presence of dimers (monomers) only, “NA”

indicates that experimental data are not available.

Table 3: Free Energy of the Unfolded State and the Folded State
(Coiled Coil Parallel Dimer) for Different Fragments of the GCN4
Leucine Zipper

translational
entropy lossb

protein
free energy of
unfolded chain

free energy of
folded chain ∆Aconf

θa 2 µM 43 µM 1 mM

8-30 -101.1 -228.6 -26.4 17.0 13.9 10.8
11-33 -103.1 -209.8 -3.6 14.0 10.9 7.8
4-26 -101.9 -222.0 -18.2 16.5 13.4 10.3

a ∆Aconf
θ is the configurational free energy change upon folding

including loss of rotational entropy∼kT ln(ND1/ND2). b Translational
entropy loss,-k ln(V/V0) multiplied by temperature.

Table 4: Structural Parameters for the Dimers of the GCN4
Leucine Zipper Fragments Computed from Monte Carlo Simulations

av RMS values for structures

protein
for all

structuresa
for structures within

4kT from the av energyb
vol occupied by
the first beadV0c

8-30 1.0 (0.3) 1.0 (0.3) 35.08
11-33 3.4 (1.1) 3.2 (0.9) 680.2
4-26 1.1 (0.5) 1.1 (0.5) 57.1
a Average RMS (standard) deviations from the average structures

for all structures occurring in the simulation.bAverage RMS deviations
from the average structures computed from those structures within 4kT
of the average energy.c Volume occupied by the first beadV0 in Å3 of
the second chain (provided that the first bead of the first chain is pinned)
and averaged over all simulations.
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cannot compensate for a small energetic stabilization; thus,
unfolded monomers are preferred. In agreement with the
larger configurational entropy for the 11-33 fragment, the
RMS fluctuations obtained from the Monte Carlo simula-
tions, in Table 4, also show larger values. This is in
agreement with the larger configurational entropy values for
this fragment. Table 5 shows that the 8-30 fragment is
(consistent with overall free energy values) energetically the
most stable. The unstable fragment 11-33 shows a sub-
stantially lower energetic contribution than others. These
data suggest that analysis of the differential stability of these
fragments could be done based on the energetic consider-
ations in the folded state.
Another interesting analysis bears on questions of the

difference between the wild type and its constituent frag-
ments. Could the different stabilities of fragments be
rationalized from the plots of free energy of dimerization
(the free energy of a dimer minus the free energy of two
monomers) per residue using the wild type data? Are there
any regions that in the fragments (apart from the ends likely
to destabilize the molecules in comparison to the corre-
sponding residues in the wild type) are substantially different
in stability in comparison to the wild type? Table 6 shows
the estimated values of the total free energy of dimerization
assuming that all of the contributions for all of the residues
are as in the wild type. The estimated values predict that
fragment 11-33 be unstable, whereas 4-26 and 8-30
should exist as stable dimers, with the highest stability
assigned to the 4-26. The only fragment for which the
difference between the estimated and calculated values could
be assigned to the end effects is 4-26. For this fragment,
the calculated value is higher that the estimate. The
difference could be assigned to the expected destabilization
of the dimeric structure by partially unburied hydrophobic
residues at both ends. The explicit calculations show that
the 8-30 fragment is the most stable and is even more stable
than would be estimated from the wild type data. This
suggests possible additional stabilization of some residues
with respect to the wild type which may arise from slightly
different side chain packing. A similar but opposite effect
is present in the least stable 11-33 fragment.

Figure 4A,B shows the energy per residue plots for two
fragments 8-30 and 11-33 compared to the wild type. As
seen in Figure 4A, the 8-30 fragment is, as expected,
destabilized at both ends, probably because residues at the
edges of hydrophobic core lose interactions with partners
that used to be there in the wild type. However, substantial
additional stabilization is exhibited by two residues in the
helical interface, i.e., 5 Leu, which occupies the d position
(12 Leu in the wild type) and 9 Asn at an a position (16
Asn in the wild type). By examining the plots of the various
energy terms per residue, two types of interactions are found
to be responsible for their additional stabilization (see Table
7). The largest stabilization comes from the pair interaction

Table 5: Dissection of Folded State Free Energy for the Fragments
of GCN4 Leucine Zippera

protein energy -TSint
4-26 -129.0 -78.6
8-30 -137.5 -78.0
11-33 -92.3 -100.4

a All values shown are inkT. Rotational entropyTSrot is 14.4kT,
13.1kT, and 17.1kT, for 4-26, 8-30, and 11-33 fragments, respectively.

Table 6: Comparison of the Estimated Configurational Free
Energies of Dimer Formation (from the Wild Type per Residue
Plot) and Calculated for Fragments

protein estd∆Aconf
θ calcd∆Aconf

θ

4-26 -28.1 -18.2
8-30 -22.7 -26.4
11-33 +2.7 -3.6

a Indicates the configurational free energy of dimer minus twice the
free energy of monomers obtained from the wild type energy per residue
values.b Indicates the configurational free energy of dimer minus twice
the free energy of monomers calculated explicitly from the simulation
and transfer matrix treatment. All values inkT units.

FIGURE 4: Energies per residue per chain of parallel coiled coil
dimers for the 8-30 fragment (A) and 11-33 fragment (B) in
comparison to energy per residue for the wild type (solid line).
Fragment plots are shown as thin lines. The energy per residue
is calculated as the sum of all of the energetic terms for a given
residue, averaged over all of the simulations. Each energy term in
which two (or more) residues participate is divided by two (or
more), i.e., pair energy, hydrogen bond energy, and template energy.
The sum of energies over all residues gives the total average energy
of the system. (A) Plot showing the energy per residue in the 8-30
fragment (bold line with filled squares) in comparison to the wild
type (thin line with open circles). Note the relative destabilization
of the 8-30 fragment at the N- and C-terminus with respect to the
wild type. Also residues at “old” 12 and 16 positions of a fragment
experience additional stabilization relative to the wild type. (B) Plot
of the energy per residue for the 11-33 fragment (bold line with
filled squares) in comparison to the wild type (thin line with open
circles). For 12 last residues, the two curves are identical. However,
destabilization of the N-terminus in the fragment extends for the
first 11 residues.
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energy, and a slightly smaller contribution originates from
the local side chain orientational preferences. The pair
energy difference comes from the slight side chain rear-
rangement and loss of interactions between 5 Leu and 9 Asn
(this interaction is strongly repulsive in our statistical pair
potential (Viethet al., 1995a)).
The RMS differences between the average structures for

the fragments and the corresponding region in the wild type
are 1.1, 1.5, and 2.1 Å for the 4-26, 8-30, and 11-33
fragments, respectively. These values are on the order of
the RMS fluctuations for Monte Carlo simulations and do
not preclude the possibility of side chain repacking.
In Figure 4B, the first 10 residues of fragment 11-33 show

substantial energetic destabilization with respect to the wild
type (Figure 4B) for the first 10 residues. Visual inspection
of the Monte Carlo trajectories leads to the conclusion that
first 10 residues are highly disordered. This is in agreement
with quite large RMS fluctuations for the entire 11-33
fragment shown in Table 4. The residue that is responsible
for this series of observations is Asn 16. A possible
explanation is that the hydrophilic Asn in the wild type is
forced to be in the hydrophobic core of the coiled coil
structure by the stabilizing interactions, namely, cooperative
hydrogen bonding and favorable hydrophobic interactions
elsewhere in the molecule. The lack of an internal disordered
region preceded and followed by interacting helices arises
from the loop entropy effect (Skolnick, 1983) (the configu-
rational entropy loss associated with constraining two ends
of a random coil). In the case of coiled coils, loop entropy
eliminates random coiled residues in between interacting
helical stretches (Skolnick, 1983). Thus, coiled coils form
a single interacting helical stretch, that can be preceded or
followed by random coil residues. The later condition occurs
for the 11-33 fragment where the short helical stretch prior
to hydrophilic Asn is not strong enough to hold Asn in a
helical conformation. On the contrary, the entire stretch of
10 residues prefers (due to the entropic reasons) to be
disordered rather than to form an interacting helical stretch,
followed by an internal random coil bubble. This situation
is in contrast to that in the wild type and in fragment 8-30
where the stabilization of coiled coil structure starts (and
ends) at the second (second to last) residue in the helical
interface. This indicates that, in order to stabilize a unfavor-
able Asn residue in the helical interface, at least two
consecutive hydrophobic residues are required (as in the case
8-30 fragment) to the left and to the right side of this
residue.
Specificity of Coiled Coils. Equilibria in Fos-Jun system.

In order to investigate a coiled coil system having the
possibility of forming more than one structure, we chose the
Fos-Jun transcriptional activator system. The experimental
system itself consists of a unimolar mixture of Fos and Jun
peptides at different concentrations (O’Sheaet al., 1989),
where there is a possibility of formation of homodimers of

both Fos and Jun as well as heterodimers of Fos with Jun.
Jun homodimers are relatively stable, whereas Fos ho-
modimers are of lower stability (O’Sheaet al., 1989) (see
below). Experimentally, in the system containing a unimolar
mixture of Jun and Fos, only heterodimers Jun-Fos are
observed (O’Sheaet al., 1989).
First, we performed the investigation of the stability of

dimeric Fos-41 species reported to be minimally stable
(O’Sheaet al., 1989) and used our method to estimate the
stability of Fos coiled coils. The Fos-41 sequence corre-
sponds to 41 residues, 160-200, from c-Fos oncoprotein with
an additional H200Y mutation (O’Sheaet al., 1989; Schuer-
mann et al., 1991). Table 8 presents the fraction of
monomeric and dimeric chains at various concentrations for
Fos species without the CGG linker. Experimentally, these
shorter Fos leucine zippers form dimers only at high
concentration (O’Sheaet al., 1989), and their formation is
concentration dependent. In Table 8, the free energies of
unfolded monomers and dimeric coiled coils are given. Our
prediction is too coarse to quantitate the concentration
dependence of species; however, we do see a noticeable
increase in the dimer population upon increasing the
concentration.
We next present the results of our calculations for an

equimolar mixture of leucine zippers from Fos and Jun
oncoproteins. Because the experiment was done under strong
renaturating conditions (O’Sheaet al., 1989) and the dimers
were cross-linked (we assume that the only effect of cross-
linking is to constrain chains), the only species present in
the system are dimers, and the reaction under consideration
is:

All of the peptides have CGG linkers at their N-terminal
ends, as described in the experimental study (O’Sheaet al.,
1989). In our statistical potential, the Cys-Cys interaction
is the strongest. Even with no additional potential for cross-
link formation, this interaction is sufficient to keep the two
Cys residues interacting at all times (see the low values of
accessible volumeV0 in Table 9). We use the approach
described in the Method section to obtain the relevant
configurational free energies of homodimeric Fos and Jun
and heterodimeric Jun-Fos (note that heterodimer is preferred
by symmetryssee eq 7a).

Table 7: Dissection of the Extra Energetic Stabilization of the
8-30 Fragment by Residues 5 Leu and 9 Asn (d and a Positions)a

residue
estd pair
energy

calcd pair
energy

estd
local Eâ

calcd
local Eâ

5 Leu d -4.6 -6.8 -1.3 -2.1
9 Asn a 0.34 -1.5 -1.1 -1.7
a All values in kT units per monomer.

Table 8: Predicted Dominant Species and Thermodynamical
Parameters for 41 Residue Fos Sequence without CGG Linker

dominant
speciesa

concn dependence of
monomer/dimer ratiob

translational
entropy lossf

theory expt 43µM 1 mM
free

energies 2µM 43 µM 1 mM

-165.7c
1 1, 2 99:1 89:11 -336.8d 13.6 10.6 7.4

-5.4e

a The dominant species assigned for the entire concentration regime
(43 µM-1 mM). “2” indicates the presence of dimers only, whereas
“1” the presence of monomers.b The predicted ratio of the monomers
to dimers calculated for different concentrations.c The configurational
free energy of the unfolded state monomers inkT. d The configurational
free energy of the folded state (coiled coil dimer) inkT. eThe
configurational free energy change upon folding (the free energy of
dimer minus twice the monomer free energy) inkT units. f The
translational entropy loss upon formation of the dimer multiplied by
the reduced temperature for different concentrations (2µM, 43 µM, 1
mM) in kT.

Fos-Fos+ Jun-JunT 2Fos-Jun (13)
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Table 9 shows the predicted dominant species for the
unimolar mixture of Fos (corresponding to residues 161-
200 of c-Fos (Schuermannet al., 1991) with an additional
H200Y mutation) and Jun (corresponding to residues 279-
318 of c-Jun (Schuermannet al., 1991) with additional
H318Y mutation) with CGG linkers at N-termini. The free
energy of each sequence in the coiled coil dimer and average
RMS deviations around the average structures obtained from
MC simulations are also presented in Table 9. Only
heterodimers of Jun-Fos are predicted to be present. This
is consistent with the experimental observation (O’Sheaet
al., 1989). Based on Table 9, homodimers of Jun have the
highest relative stability, whereas Fos homodimers have the
lowest relative stability. Because the average free energy
of homodimers (half of the sum of the free energies of Jun
and Fos) is higher than the free energy of heterodimers,
heterodimers are preferred. The specificity of heterodimer
formation can be accounted for by the relatively low stability
of Fos-Fos homodimers. This observation is in agreement
with the previous suggestion based on experiment that
heterodimers are formed because of the low stability of Fos
homodimers (O’Sheaet al., 1989). Thus, in this example
the most stable species (Jun-Jun) is not dominant, and the
preference for heterodimer formation comes from the
instability of another component of the system (Fos ho-
modimers).
The plots of the energy per residue presented in Figure 5

indicate that the reasons for the relatively low stability of
Fos homodimers with respect to the Fos-Jun heterodimer are
quite complex. Based on our simulations, the residues that
contribute to the relative destabilization of the homodimeric
Fos structure through interhelical interactions are located in
region 5-13 (in particular, residues in positions 5a and 8d)
and residues at positions 22d, 30e, and 33a. Position 8d (Leu
in both Fos and Jun) is destabilized in Fos due to the
interaction with two Thr residues (5a, 12a), whereas in Fos-
Jun, Leu 8d interacts favorably with Ile 5a and Val 12a from
Jun monomer. Positions 22d (Leu in both Fos and Jun) and
30e (Leu in Fos and Arg in Jun) are relatively destabilized
in Fos-Fos homodimer due to unfavorable packing interac-
tions and partial exposure to solvent. Position 33a (Lys in
Fos and Val in Jun) is destabilized in Fos-Fos due to the
unfavorable interactions with the corresponding 33a from
the second chain. In general, the determinants of lower
relative stability of Fos-Fos are related to both inter- and
intrahelical interactions.
It is interesting to compare the absolute stabilities of dimers

with GGC linkers. Table 9 shows the configurational free

energy differences (free energy of folded structures minus
twice the free energy of unfolded monomers) for both
homodimers and heterodimer. The absolute stabilities are
consistent with the relative stabilities. However, Jun-Fos
heterodimer is now roughly of the same stability as Jun-Jun
homodimer.

DISCUSSION

In this paper, we have presented a method based on a
transfer matrix treatment to calculate the monomer-dimer
equilibrium in leucine zipper systems. For all cases exam-
ined, the prediction of dominant species is in good agreement
with experiment. A detailed analysis of the simulations
showed for some fragments of the GCN4 leucine zipper that
quite substantial rearrangement can occur with respect to the
wild type GCN4. Sometimes, as in the 11-33 fragment,
many residues rearrange because of lack of stabilization of
the coiled coil structure which when combined with loop
entropy favors helix dissolution. In other cases (8-30), side
chains slightly rearrange to minimize the conformational free
energy. Thus, because fragments can locally adjust their
conformation, one cannot simply assess subdomain stability
based on the wild type data alone. Our results confirm the
observation of Lumbet al. (1994) that some subdomains
(fragments) of the GCN4 can form stable dimeric coiled

Table 9: Thermodynamical and Structural Parameters for the Fos-Fos, Jun-Jun and Fos-Jun Dimers with CGG Linkers

dominant species

protein Pa Eb
rel ratio

of the dimersc
free energies in coiled

coil structured
free energy of
unfolded chains

vol occupied by the
first beadV0g

RMS
in Åh

Fos-Fos 1.5 -371 -175.9e 107.6 1.7
-19.6f (1.3)

Jun-Jun 1.5 -389 -180.6e 144.3 1.0
-27.5f (0.3)

Fos-Jun X X 97 -384 -178.3e 107.1 3.4
-27.7f (1.1)

a The predicted (calculated) dominant species; “X” indicates which dimers are assigned.b The dominant species assigned from the experiment.
c The fractions of each dimer.d The configurational free energy of the dimeric coiled coils inkT. eThe configurational free energy of the unfolded,
monomeric states inkT. f The configurational free energy change upon folding (the free energy of dimer minus twice the free energy of a monomer)
in kTunits. g Volume occupied by the first beadV0 in Å3 of the second chain (provided that the first bead of the first chain is pinned) and averaged
over all simulations.h The average CR RMS deviation of a single structure from the average structure (standard deviation is shown in parentheses).

FIGURE 5: Plot of the energy per residue difference between Jun-
Fos and Fos-Fos homodimers (computed as the energy per residue
in Jun-Fos minus the energy per residue in Fos-Fos). The labels
for residue numbers indicate (from the top) the Fos residue at a
given position, the Jun residue, and the heptad positions, respec-
tively. The largest, energetic relative destabilization of Fos-Fos
homodimer appears to come from residues 4-13, as well as residues
22, 30, and 33. Most of those residues occupy positions at the helical
interface (a, d, e, g).
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coils. On the basis of our data, we speculate that, in order
to stabilize a hydrophilic Asn residue in a helical conforma-
tion in the hydrophobic core, it is necessary to have two
sufficiently stable, interacting helical turns at both sides of
this residue. This observation is an illustration of loop
entropy, which in coiled coils prohibits randomly coiled
residues between interacting helical stretches. If one of those
helical turns is not strong enough to force a hydrophilic
residue in the helical interface to be helical, then the entire
fragment will be disordered.
In Fos-Jun system, heterodimers are formed because of

the relative instability of Fos homodimers. This relative
instability is predicted to come mainly from the region
comprising residues 5-13 (interfacial Thr 5a, Leu 8d). Other
interfacial residues (Leu 22d and Leu 30e, Lys 33a) also
destabilize the Fos-Fos homodimer. The source of the
relative instability comes from interhelical interactions, local
packing, and different burial preferences. Our findings point
out that the relative instability of Fos homodimers comes
mainly from those residues occupying positions a and d of
the heptad repeat. Residues at e and g positions seem to be
less important. In general, our predictions are in agreement
with experiment (Schuermannet al., 1989, 1991; O’Sheaet
al., 1992); however, further investigation is required to
determine the specific role of any given residue in the
preferential heterodimer formation. Because preferential
heterodimer formation results from the relative instability
of Fos homodimers, all of the residues responsible for the
relative instability of Fos homodimers ultimately drive the
process of heterodimerization.
Coiled coils are highly cooperative systems, and many of

the phenomena observed in these systems can be explained
by either cooperative or nonadditive effects. By cooperat-
ivity, we mean the additional energy a system gains if two
or more events occur at the same time. The stabilization of
Asn 16 in the helical interface in the wild type was explained
by the necessity of maintaining the cooperative network of
hydrogen bonds and by the stabilizing role of the cooperative
pairwise interactions (Viethet al., 1994a, 1995a). Similarly,
the effect of a single point N16V mutation was rationalized
by the cooperative pairwise interactions and nonlocal com-
pensation effects (Viethet al., 1995). The difference
between the energetic profiles of the wild type and fragments
can also be explained by smaller or larger structural
rearrangements. The lack of stabilization of the hydrophilic
Asn in the interface of the 11-33 subdomain can be
explained by the insufficient cooperativity of the hydrogen
bond network and side chain interactions in the region
adjacent to this residue. Finally, the stabilization of Lys
residues in the helical interface of Fos-Fos and Jun-Fos can
also be explained by the stabilization resulting from the
cooperative hydrogen bond network as well as the coopera-
tive packing interactions.
The method we presented in this paper is, in principle,

general enough to calculate the free energy of folding of
any small protein assuming that the final structure is known
or can be deduced. Thus, the effect of the mutations could
be studied for both folded and unfolded states and compared
to experimental data. In principle, the method presented here
is not limited to lattice models but could be applied to any
protein model that has a small number of local minima for
the corresponding set of peptide fragments. Work in this
direction is now in progress.

The work presented in this paper sets the stage for the
lattice free energy calculations of proteins. It also builds a
groundwork for fast coiled coil prediction algorithms. In
particular, this work provides the basis for the automated
assessment of the heterodimerization ability of leucine
zippers that is of great importance in studies of transcriptional
regulation. While coiled coil systems have been recognized
as the simplest examples of proteins and the methodology
presented here has, even for these systems, limitations and
problems, this paper provides encouragement for further
theoretical studies along these lines of proteins and biological
systems in general.
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APPENDIX A

Description of the Lattice Model.
(1) Geometric Representation and MoVe Set. There are

in principle 90 possible ways of connecting two consecutive
R-carbons on this lattice, but some geometric restrictions for
consecutive two and three sets of vector occurrences limit
this number by roughly 60%. Crystal structures of proteins
from the Brookhaven Protein Data Bank, PDB, can be
represented by the lattice model with an average, root mean
square deviation, RMS, of 0.6-0.7 Å (Godziket al., 1993).
For the folded state calculations, the Monte Carlo move set
consists of two bond moves, three bond rearrangements,
small shifts of larger chain pieces, chain end modifications,
and rotamer equilibration. One Monte Carlo cycle for this
system is considered to have (N - 2)M two bond moves,
2M two bond moves,M shifts of the chain pieces, andM(N
- 3) three bond moves, whereM is the number of chains
(in this calculationM ) 2) andN is the number ofR-carbons.
Each simulation run consisted of (200000)M cycles (Vieth
et al., 1995a).
(2) Interaction Scheme.The entire potential (with the

exception of the hydrogen bond term) is based on a statistical
analysis of a set of high resolution crystal structures from
the PDB database. The use of statistical potential to estimate
protein stability has been attempted previously. For example,
Bryant and Lawrence showed that the frequency of occur-
rence of charged residues in the proteins from PDB obeys
Coulombs law; however, the dielectric constant is too high
(Bryant & Lawrence, 1991). Thus, such statistical potentials
may provide some insight toward understanding protein
stability. Based on the folding of the Hodges sequences
(Hodgeset al., 1981) and a test of the dynamic stability of
assembled dimers, the scaling factors for the different energy
terms were chosen to keep the helix content of the nonin-
teracting chains below 50%, as well as to maintain a proper
balance of the short range and long range interactions. The
scaling factors for all of the coiled coils systems studied
below are the same as in the previous study on the GCN4
leucine zipper folding from random chains (Viethet al.,
1994b) as well as in a previous study of oligomeric equilibria
(Vieth et al., 1995a). A detailed description of all energy
terms is presented elsewhere (Viethet al., 1995a).
The total energy of the entire system is given by (Vieth

et al., 1995a):
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whereEtot is the total energy of the system,Eshort(long) is the
short (long) range interaction energy.EHB is the hydrogen
bond potential,Eâ is the CR-Câ short range orientational
potential,E14 is the potential associated with three consecu-
tive CR-CR vectors,Eone is the one body term,Epair is the
pair potential, andEtem is the cooperative pair potential. All
parameters are available via anonymous ftp (Viethet al.,
1994b).
For all of the simulations in the present work, the reduced

temperature,Tred (used to determine acceptance ratio of the
moves via a standard asymmetric Metropolis scheme (Me-
tropolis et al., 1953)), was set to 1.85. This temperature
was chosen because, in the original folding simulations of
GCN4, this corresponded to native conditions (Viethet al.,
1994b).

APPENDIX B

Description of the Transfer Matrix Treatment for the
Unfolded State.For a chain of lengthN, we define the
configurational partition function (rotations are included
because we consider all possible orientations of the first two
vectors) as the sum of the statistical weights for all of the
possible conformations ofN - 1 bonds (Skolnick &
Kolinski, 1992):

whereUijkl
n is the 90× 90 × 90 × 90 statistical weight

matrix for then-th fragment. A single element of this matrix
is defined as (i, j, k, l represent four vectors for each
fragment):

whereδijk is defined by analogy to an ortho-normal basis
set as follows:δijk ) 1 if three consecutive vectorsi, j, k
are allowed, andδijk ) 0 otherwise (due to the excluded
volume and geometric consideration). The treatment is
schematically shown in Figure 6. Let us note that eq B2
would provide the exact number of accessible states of the
chain if all of the energy terms were equal to zero.
Multiplication of 4 element matrices leading to the statistical
weight matrix associated with extension of a chain by one
bond is done as follows (see also Figure 6):

where n denotes the segment number and the summation is
done over 90 possible orientations of the second vector of
the (n - 1)-th segment that is by construction the same as
first vector of the n-th segment. The resulting matrix
elements have statistical weights associated with the specific

chain conformation having the first vectori and three last
vectorsj, k, and l and all possible combinations of vectors
in between.

APPENDIX C

Monte Carlo Simulations of the Folded State.The main
purpose of the simulations is to calculate the average energy
E0, the probability of the average energyP(E0), and
degeneracy of the average energy level,n(E0). First, we need
to generate starting structures in the conformation of dimeric
coiled coil. The protocol for generation of the starting
structures is described in Figure 7. Then long, unrestrained
Monte Carlo simulations (200 000 MC cycles) are run to
obtain the sampling in the neighborhood of the dimeric coiled
coil structures for each sequence as described previously
(Vieth et al., 1995a). The points from the energy plateau
regions for each simulation were used to construct histograms
of the energy distributions. Energy bins of 1kTwidth were
used. Since the histograms were collected at the same
temperature, we used constant temperature WHAM equations
(Kumar et al., 1992) to obtain the final energy probability
distribution for each system under consideration (different
sequences in the dimeric coiled coil structure). From the
final histogram (Figure 8), the average energy of the system
was computed as well as the probability of a system being
in the average energy level.
Monte Carlo simulations of the coiled coil state were

performed to estimate the degeneracy of the average energy
levelE0. In this case, we collected 2000 structures with the
energy within 4kT from the previously computed average
energy. The collection of the structures is done every 50
Monte Carlo cycles. Because the simulation runs are
relatively short and we collect only 2000 structures, not all
of the possible structures around the folded state are sampled.
To enrich the sampling, we assume that the entire ensemble
of folded conformations can be estimated as a product of

FIGURE 6: Schematic representation of internal free energy calcula-
tion for the seven residue chain in the unfolded state. A seven
residue segment is divided into three four bond (or five residue)
segments. For each of them statistical weight matrices are calculated
in all 904 possible conformations. For the first segment, interactions
of residues 1 and 2 with everything else are calculated. For the
middle segment, interactions of the second residue are computed
(here, residue 3), and for the last fragment interactions of the last
four residues are evaluated. Thus, no interactions are double
counted. This picture also shows the consecutive vectorsi,m, j, k,
l that would be used to construct the statistical weight of the matrix
elementi, j, k, l. This element would consist of a sum of 90 weights
over all possible conformations of them-th vector.
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overlapping three residue backbone segments occurring in
the simulation. In addition, all of the conformations gener-
ated in that manner are treated as having the same energy
(the average energy around which sampling is performed).
Thus we calculate the number of states per each chain
independently, with no explicit interchain correlation. These
assumptions probably slightly overestimate the number of
structures having the average energy. With these assump-
tions,n(E0) is given by:

from the combination of overlapping three vector segments
occurring in the simulation. TheF are 90× 90× 90 transfer
matrices for each of theN - 3 segments in chainγ. The
elements of each matrix are defined as:

where the backbone weightsωijk are equal to unity (zero) if
three consecutive vectorsi, j, k (do not) occur during the
simulation. ωi1

ij equals unity (zero) if a given rotameri1
occurs (does not occur) in the course of the Monte Carlo
simulation for a given backbone conformationij . Nij

indicates the maximum number of rotamers of a given type
for a given backbone conformationi, j.
The choice to estimate the number of folded conformations

having the average energy by construction from three bond
fragments is a compromise between lattice model restrictions
and sampling efficiency. First, we have three vector restric-
tions in our lattice model (no longer range restrictions).
Second, the statistics for occurrence in the simulation of three
vector fragments is acceptablesthe collection of 4000 instead
of 2000 structures gives practically the samekT ln(n(E0))
(within 1kT). Using two vector segments would generate
some states that are not permitted by some three vector
restrictions. In contrast, there are not enough statistics for
four vector states.
(2) Configurational Partition Function.Substituting eqs

C1 and C2 into eq 11, we get the expression for the partition
function of the folded state:

Let us note that a similar treatment can be done for any lattice
model of a protein. The entropy associated with energetic
fluctuations around the average energy level (see eq 12) is
usually on the order of 3kT.
The difference between the local volume factorization

method (Vieth et al., 1995a,b) previously used in the
determination of entropy for the equilibria between dimers,
trimers, and tetramers for mutants of GCN4 leucine zipper
with the transfer matrix treatment has been examined. Both
methods predict the same dominant species for 6 out of 8
cases (except VL and IL mutants), and both agree with
experiment in 5 out of 8 cases. Both methods show a similar

FIGURE7: Schematic representation of the alignment of a sequence
to the heptad repeat and generation of the double stranded parallel
coiled coil geometry for the aligned sequence. Alignment of a
sequence to the periodic heptad repeat can start from any of the
seven letters (a-g). Each of the seven alignments has its own score
for a given sequence. The scoring function consists of a pair
potential, assuming an idealized interchain coiled coil contact map
(i.e., ai interacts with ai, gi-1, di, di-1), a one body burial term
(everything except residues in a or d positions is unburied), and an
idealized hydrophobic moment energy. The positions of the atoms
required to compute all energetic contributions were taken from
the crystal structure of the GCN4 leucine zipper. Alignment for
the parallel, homodimeric structures can be viewed as a simulta-
neous rotation around the 7-fold axis for each helix. Then, the
alignment with the best score is selected. In the figure, the
underlined alignment that starts from letter d is selected. For all of
the tested sequences, the alignment is consistent with that based
on the Lupas scoring function (Lupaset al., 1991) as well as with
the experimental crystal structures (O’Sheaet al., 1991). Having
chosen the best alignment for each sequence, two helices are built
on the lattice, translated to a neighborhood of one another with a
and d residues in the interface. The interhelical contact restraints
between corresponding a and d residues together with helical biases
for the secondary structure are then applied, and the structure is
equilibrated by short Monte Carlo simulations.
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FIGURE8: Energy probability distribution for one of the simulations
of the 8-30 fragment. The dashed lines represent the probability
distribution from four independent simulations. The bold line is
obtained by the WHAM method (Kumaret al., 1992) from these
four independent simulations.
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trend in the entropy favoring lower order oligomers; the
entropy in the transfer matrix treatment favors dimers over
trimers (trimers over tetramers) on average by 3.2kT/
monomer (3.1kT/monomer), and in the local volume treat-
ment by 1.5kT/monomer (1.3kT/monomer). While both
methods are approximate, the transfer matrix treatment seems
to be a more natural choice for the lattice models. It allows
for the treatment of the unfolded chains and also includes
explicit short range correlations. The transfer matrix treat-
ment gives roughly a 2 times larger number of states per
residue than the local volume factorization approximation
due to the fact that for one “volume” state there can be
multiple lattice vector states occupying this volume.
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