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ABSTRACT There is considerable experi- 
mental evidence that the cooperativity of pro- 
tein folding resides in the transition from the 
molten globule to the native state. The objective 
of this study is to examine whether simplified 
models can reproduce this cooperativity and if 
so, to identify its origin. In particular, the ther- 
modynamics of the conformational transition of 
a previously designed sequence (A. Kolinski, W. 
Galazka, and J. Skolnick, J. Chem. Phys. 103: 
1028610297, 19951, which adopts a very stable 
Greek-key p-barrel fold has been investigated 
using the entropy Monte Carlo sampling 
(ESMC) technique of Hao and Scheraga (M.-H. 
Hao and H.A. Scheraga, J. Phys. Chem. 98: 
98824883,1994). Here, in addition to the origi- 
nal potential, which includes one body and pair 
interactions between side chains, the force field 
has been supplemented by two types of multi- 
body potentials describing side chain interac- 
tions. These potentials facilitate the proteinlike 
pattern of side chain packing and consequently 
increase the cooperativity of the folding pro- 
cess. Those models that include an explicit co- 
operative side chain packing term exhibit a 
well-defined all-or-none transition from a dena- 
tured, random coil state to a high-density, well- 
defined, nativelike low-energy state. By con- 
trast, models lacking such a term exhibit a 
conformational transition that is essentially 
continuous. Finally, an examination of the con- 
formations at the free-energy barrier between 
the native and denatured states reveals that 
they contain a substantial amount of native- 
state secondary structure, about 50% of the na- 
tive contacts, and have an average root mean 
square radius of gyration that is about 15% 
larger than native. o 1996 Wiley-Liss, hc. 
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INTRODUCTION 
A remarkable feature of naturally occurring glob- 

ular proteins and some properly designed or rede- 
signed proteins is that, under suitable conditions of 
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temperature and solvent, they adopt a unique, 
densely packed, three-dimensional structure. For 
single-domain proteins, the folding process has some 
of the features of a first-order phase transition and 
can be described by an all-or-none The low- 
energy native structure seems to be separated from 
the manifold of denatured and/or molten globule 
states by a substantial free-energy gap. Conse- 
quently, the population of intermediates is very 
small, and folding is cooperative. However, while 
valuable insights into the cooperativity of folding 
have been provided by thermodynamic measure- 
ments1*2 and theoretical investigations of protein- 
like model systems,3-14 the physical origin of this 
cooperativity is not very well understood. What is 
particularly interesting is that for a number of sys- 
tems the cooperativity arises on passage from the 
molten globule to the native state rather than from 
the collapse to compact intermediates from the de- 
natured state.15,16 Such compact intermediates ap- 
pear to have a substantial amount of secondary 
structure, have a volume about 50% larger than na- 
tive, and have side chains that are not yet locked 
into place. Thus, the fixation of side chains accom- 
panying the transition to the native state appears 
involved in the cooperativity observed in protein 
folding; however, the molecular origin of this pro- 
cess is still not understood. 

During the past few years, in order to develop the 
ability to predict the native structure of proteins, we 
have developed a series of lattice models of increas- 
ing res~lution."-~~ In contrast to the very idealized 
lattice systems commonly used in studies of protein 
folding thermodynami~s,6~~~~~ these high coordina- 
tion lattice models, while still computationally trac- 
table, can quite accurately reproduce the geometry 
of real polypeptide chains." The lattice models used 
in these studies enable protein main chain atoms to 
be represented with an accuracy in the range of 0.7 
A RMS (root mean square deviation) from the crys- 
tallographic coordinates of the Ca trace.17 However, 
most importantly from the point of view of the stud- 
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ies described here, the model side chains are com- 
prised of rotamers, and not just a single site rigidly 
attached to the backbone. Use of a single united 
atom, multiple rotamer representation of side 
groups, permits some details of side chain packing to 
be treated with an accuracy that is estimated to be 
on the level of 2-3 A RMS from the native state. 
This estimate emerges from an analysis of the model 
geometry, from the quality of the predicted struc- 
tures of small globular proteins, and from dynamic 
stability tests, or target folding, for larger globular 
proteins. Thus far, the best structures obtained in 
the de novo folding sir nu la ti on^^^-^^ have an RMS in 
the range of 2-3 A. Target folding driven by the 
model force field and a small to moderate number of 
NMR-type restraints leads to a 3-4 A (Ca RMS) 
accuracy in larger proteins." Unfortunately, these 
moderate resolution models are too complex for the 
detailed analysis of the thermodynamics of the pro- 
tein folding process by exact enumeration of all (or 
at least all compact) conformational states, as was 
done for more highly idealized models (reviewed in 
Dill et a1.9. 

Recently, Hao and S~heraga' ' .~~ undertook a se- 
ries of very interesting studies on the thermodynam- 
ics of protein folding. The model they employed was 
substantially more complex than those for which the 
exact enumeration of compact states is possible. 
Nevertheless, a version of multicanonical Monte 
Carlo sampling,21,22 the so-called entropy Monte 
Carlo sampling (ESMC) method proposed in their 
work, allows for a quite exact thermodynamic de- 
scription of the model In these models, 
there is a single rotamer for each side chain. They 
demonstrated that some sequences, having a well- 
defined pattern of hydrophilic and hydrophobic res- 
idues, exhibit a cooperative all-or-none transition to 
a well-defined nativelike state. Other sequences, 
whose amino acid pattern is less consistent with the 
global fold, undergo a smooth collapse to compact 
globular states. They also demonstrated that the co- 
operativity of the folding transition results from 
proper long-range interactions, while the short- 
range interactions contribute substantially to the 
stability of the native state. 

Inspired by these studies, in this paper we exam- 
ine the thermodynamics of the folding process of an 
even more complex and, we hope, an even more re- 
alistic, protein model. The model is based on a high 
coordination lattice discretization of the conforma- 
tional space of globular proteins and employs vari- 
ous potentials of mean force that may mimic a va- 
riety of physical interactions that control protein 
f ~ l d i n g . l l - ~ ~ , ~ ~  Among the questions addressed in 
the present studies are the following: Is the transi- 
tion from the manifold of random coil conformations 
to the globular state all-or-none? What is the free- 
energy gap separating these states? What is the na- 
ture of the transition state? If the resulting transi- 

tion is not all-or-none, how can the cooperativity of 
the folding process be augmented in these model sys- 
tems to make it similar to real proteins? With re- 
gard to the last question, we explicitly examine the 
effect of multibody side chain interactions. These 
multibody interactions are expressed in the form of 
knowledge-based potentials of mean force that re- 
flect the side chain packing preferences seen in real 
proteins. What is the physical meaning of these ex- 
plicit cooperative terms? The first possibility is that 
the reduced, single sphere representation of the 
model protein side chains introduces a bias toward 
more liquidlike, nonspecific packing. If so, then the 
multibody term would work as a correction to the 
painvise interactions, regularizing the side chain 
packing patterns; that is, it is necessary to fix prob- 
lems with a reduced model. Another possibility is 
that the regular packing of protein side chains seen 
in the native state cannot be simply achieved in any 
model (even in one with atomic detail) of protein 
dynamics and structure without the inclusion of 
higher order multibody interactions. We discuss 
these possibilities in detail in the following sections 
of this paper. 

The ESMC computations were done for a designed 
sequence that adopts a six-stranded (two-sheet), 
Greek-key minimal p-barrel fold for which the fac- 
tors influencing the design of this sequence have 
been previously described.23 The sequence is as fol- 
lows (amino acid sequences of particular strands are 
listed on separate lines): 

1. Gly-Val-Asp-Val-Asp-Val- 
2. Gly-Gly-Gly-Val-Asp-Val-Asp-Val- 
3. Gly-Gly-Phe-Arg-Phe-Arg-Val- 
4. Gly-Gly-Gly-Val-Arg-Phe-Arg-Phe- 
5. Gly-Gly-Val-Asp-Val-Asp-Val- 
6. Gly-Gly-Gly-Val-Asp-Val-Asp-Val 
Strands 1,4, and 5 are expected to form the first p 

sheet, while strands 2, 3, and 6 form the second 
sheet. The loop/turn regions are composed of flexible 
Gly connectors. Val and Phe residues are expected to 
form the hydrophobic core, while the hydrophilic 
sides of the globule contain charged amino acids. In 
previous work,23 we demonstrated that the model 
protein reproducibly folded to the desired native 
state. Between independent folding simulations, the 
resulting structures differ by about 3 A RMS for the 
Ca trace. Using a simulated thermal annealing pro- 
tocol, the folding process was simulated by a Metrop- 
olis scheme. In this work, we examine the thermo- 
dynamics of the folding process of the original 
model, as well as two updated models which include 
higher order multibody side chain interactions. The 
results of these investigations address, at least par- 
tially the questions raised above, and thus provide 
additional insights into the nature of the protein 
folding phenomenon. 

The outline of the remainder of this paper is as 
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follows. We start with a summary of the protein 
model, which includes a discussion of the multibody 
potentials. Then, we outline our realization of the 
ESMC technique that essentially follows that given 
by Hao and S~heraga. '~.~' However, we introduce 
one important technical update that makes this rel- 
atively complex system computationally tractable 
and which involves the use of simulated annealing 
trajectories as a conformational pool for the ESMC 
procedure. Then, in the Results section, we analyze 
various aspects of the thermodynamics of the folding 
process and the uniqueness of the low-energy state. 
The Conclusion section summarizes our results and 
describes the physical picture for the origin of pro- 
tein folding cooperativity that emerges from this 
study. 

METHOD 
For the reader's convenience, we begin with a 

brief overview of our geometric realization of a pro- 
tein. Next, three models of the force field are intro- 
duced. The first one, model I, is essentially the same 
as that used previously, except for a somewhat dif- 
ferent treatment of the hard core repulsions neces- 
sitated by the ESMC procedure.23 More important 
are the updates of the two remaining models (model 
I1 and model 111) of the force field, where we intro- 
duce explicit cooperative terms into the long-range 
interactions. This section concludes with the outline 
of the ESMC sampling method. 

High Coordination Lattice Protein Model 
The lattice model of proteins employed in this 

work has been previously described in Very 
similar models have also been used in test predic- 
tions of the native folds of small globular pro- 
t e i n ~ " , ~ ~  and small multimeric proteins.14 The Ca 
trace of the model polypeptide is confined to an un- 
derlying simple cubic lattice with a mesh size equal 
to a = 1.22 A. The Ca backbone is a chain composed 
of vectors a.v with v belonging to the following set 
{v) = {(l,l,l), ..., (3,1,0), ..., (3,0,0), ..., (2,2,1), ..., 
(2,2,0), ...}. Allowing all possible permutations of co- 
ordinates, the set consists of 90 basis vectors. How- 
ever, due to the angular limitations of successive 
virtual bond vectors introduced to reproduce those 
seen in real proteins, the number of possible contin- 
uations of the Ca trace, given a conformation of the 
preceding residue, is about three times smaller. 

In Figure 1, we illustrate the main geometrical 
features of the model employed here. The lattice- 
confined Ca trace provides a convenient reference 
frame for the definition of peptide bond atoms and 
pseudoatoms representing the side chains. The pep- 
tide bond coordinates of a given Ca-Ca chain seg- 
ment are quite well defined by the geometry of three 
consecutive Ca  trace vectors (the average error is on 
the level of 0.1-0.3 A) and are stored in a large 
array. Consequently, during the simulation and af- 
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Fig. 1. Schematic illustration of the model chain geometry. 
The Ca trace vectors (thick lines) are confined to a high coordi- 
nation lattice. The position of the peptide bond plate is defined by 
the geometry of three consecutive, virtual Ca backbone vectors. 
The dashed lines indicate the vectors from the Cu center located 
at the repulsive core to the center of the side group united atom 
(for a given rotational isomeric state). 

ter a conformational update, the reconstruction of 
the backbone atoms requires just a few arithmetical 
 operation^.^^,^^ Moreover, one can easily define the 
model of main chain hydrogen bonds employing the 
peptide bond atoms.23 Similarly, the side chain 
pseudoatoms (having a single interaction center for 
the entire side group) can adopt a discrete set of 
positions with respect to the main chain. This way 
the model mimics the various rotational isomers of 
the side groups. The centers of interaction for the 
glycines are located near the corresponding Ca car- 
bons. The alanine side chain always has one rota- 
mer. Rotamers for longer side chains are repre- 
sented with an accuracy of 1 A with respect to the 
center of mass of the side chain rotamers seen in the 
database. The centers of interaction for the side 
groups are not confined to the lattice; however, the 
lattice backbone is used as a reference frame. This 
geometric organization of the model decreases the 
cost of geometrical transformations by two orders of 
magnitude with respect to an equivalent off-lattice 
model and is the reason why a lattice representation 
is used. 

The conformational updates of the model chain 
involve side group rotamer modifications with a 
fixed main chain, as well as local and global modi- 
fications of the chain geometry. There are three 
types of local backbone rearrangements: two Ca  
bond moves, three Ca bond moves, and four Ca bond 
moves. All are accompanied by the corresponding 
rotamer updates. Global chain rearrangements are 
constructed by random changes of a single Ca-Ca 
bond (which is accompanied by the appropriate shift 
of all coordinates of the N-terminal or C-terminal 
part), collective motions of a randomly selected 
larger part of the chain by application of a series of 
three bond rearrangements, and rotations (subject 
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to lattice restrictions) of a randomly selected part of 
the chain. The most global updates, specific to the 
ESMC sampling method (see the section on ESMC 
procedure below), involve the periodic reading of the 
coordinates of the entire chain from a conforma- 
tional pool that contains a large set of representa- 
tive conformations ranging from random coils to 
completely folded states. 

Contributions to the Potential in Models I, 11, 
and I11 

Here, we outline the various components of the 
model force field present in all three models. Partic- 
ular terms in the interaction scheme simulate the 
internal conformational energy of the side chains, 
short-range interactions reflecting conformational 
stiffness of polypeptides and sequence-specific sec- 
ondary structure propensities, hydrogen bonding en- 
ergy and cooperativity of the hydrogen bond net- 
work, and a centrosymmetric burial energy of the 
side groups and their pairwise contact energy. This 
scheme is very similar to that used p r e v i ~ u s l y . ~ ~  
The only important update is related to the treat- 
ment of the excluded volume of the chain.lg Instead 
of strong repulsive interactions on the order of 4kBT 
(k ,  is Boltzmann’s constant, and T is the absolute 
temperature) that were used in previous work, here, 
we implement a hard core (infinite) repulsion at the 
previously used cutoff distances. The parameters of 
the potentials defining the model force field are 
available via anonymous ftpZ6, or upon request to 
the authors. Another small update entails the ne- 
glect of one of the generic terms involving consecu- 
tive triplets of virtual Ca-Ca bond vectors (see equa- 
tion 3 in ref. 23). We found that this term could be 
eliminated by somewhat stronger contributions 
from other generic terms of the force field. All con- 
tributions to  the model force field are listed below. 

First, there is rotamer energy (E,) that reflects 
the average frequency of particular rotameric 
states. Rotamers are simulated in the model by a 
discrete set of (single united atom) side chains whose 
positions are dependent on the backbone conforma- 
t i 0n . l ‘~~~  Then there are two sequence-specific con- 
tributions that simulate the short-range interac- 
tions, that is, secondary structure propensities and 
the local conformational stiffness of polypeptide 
chains, and depend on the pairs of amino acids Ai, 
Aj. The first term depends on the local geometry of 
the chain expressed by backbone vectors, E,, 

with 

?* = sign [(viPl x vi) v ~ + ~ I ~ ; Z ~ - ~ , ~ + ~  (2) 

and 

and on the angular correlations between the side 
chains 

O i j  is the angle between bi and bj, where bi is the 
vector from the ith Ca to the ith side chain center of 
mass. In all equations, the summation, 2, is along 
the chain. 

Additionally, there is a generic term that “nor- 
malizes” the distribution of intermediate distances 
in the chain, thereby providing a bias toward com- 
pact helical states and expanded p type or coil 
states. 

where 

qi = -1 for ?i-z,i+z < 35 

qi = -1 for ?i-z , i+2 > 75 
qi = 0 otherwise 
All distances are in lattice units. One lattice unit 
equals 1.22 A. 

Local conformational stiffness is additionally en- 
forced by the preferred mutual orientation of the 
peptide bond plates (here we assume planar peptide 
bonds). 

E, = Z{COS (hi, hi+’) + cos (hi, hi+J} (6) 

with cos(hi,hj) denoting the cosine between the ith 
and j th  vectors defining the orientation of the pep- 
tide bond plates (the vectors between the amide hy- 
drogen and the carbonyl oxygen). As was previously 
discussed (see also ref.23), the positions of the back- 
bone atoms are well defined by the local geometry of 
the Ca chain. It should be pointed out that the above 
described factorization of local secondary structure 
propensities and the proper conformational “stiff- 
ness” of polypeptides reproduces the secondary 
structure (measured by the local geometrical crite- 
ria) with reasonable accuracy, and is comparable to 
the accuracy of standard secondary structure predic- 
tion methods (see ref.24 and references cited 
therein). 

The readily accessible explicit positions of the pep- 
tide bond atoms enable the straightforward model- 
ing of the hydrogen bond  interaction^'^.^^: 

&H-bond = qH(1 - fH)/( r0.H + 2 exp (-?O,H)) (7) 

where fH, the angular factor, is of the following 
form: 

fH = W.77 - cos (roiSw, roi,Hi)l’ 

+ i0.77 - cos (roi,w, roJw)lz. (8) 
qH is an arbitrary scaling factor for the strength of 
the hydrogen bond that implicitly accommodates 
partial charges, local dielectric constant, and so on; 
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roi,w is the vector between the oxygen in peptide 
plate j and the hydrogen in peptide plate i; the nu- 
merical value of 0.77 corresponds to the most prob- 
able angular geometry of the main chain hydrogen 
bonds in polypeptides. The model for hydrogen H 
bonds coincides nicely (almost all main chain bonds 
are the same in the context of both methods) with 
the DSSP definiti~n.'~ Our model of the H-bond net- 
work is cooperative, and the strength of the network 
increases by 0.20 qH every time two bonds form a 
parallel pattern that is characteristic of either p 
sheets or a helices. The H bond contribution is dou- 
bled when the number of H bonds per residue is 
equal to two per peptide unit; this further enhances 
the cooperativity of the network. We note that if the 
H bond indices are associated with peptide bonds 
rather than with the corresponding residues, then 
one obtains the same hydrogen patterns for both 
parallel and antiparallel sheets. This purely techni- 
cal allows for the above uniform treatment of 
the cooperativity of all regular structural elements 
in globular proteins. 

The sequence-specific long-range interactions 
arise from a one-body centrosymmetric potential 
and from a pairwise potential. All the one-body and 
two-body interaction parameters are derived from 
the statistics of the protein structural databa~e~'.~' 
and are available via anonymous The one- 
body contribution reads: 

El = CE,[~(AJSOI (9) 
with 

<S>,  = 1.8n0.38 (in lattice units) (10) 

where <S>, is the expected radius of gyration of the 
native state of a single-domain protein consisting of 
n amino acids. Equation 10 has been derived from 
the statistics of known structures of single-domain 
proteins. r(AJ is the distance of the center of mass of 
the ith side group from the center of mass of the 
entire chain. The potential is used in the form of 
amino acid-specific histograms. 

The pairwise interactions of the side chains are 
expressed in the form of a square-well contact po- 
tential. For attractive pairs of side groups, the in- 
teraction strength is moderated by an angular fac- 
tor, f, that reflects the preferred packing angles of 
interacting polypeptide fragments. 

m, for r, < R,"P 
E . .  w = E.. U' for Rgrep < r, <R,, and cii > 0 (11) 

feg, for R,'"P < rli < R,, and E, < 0 
(12) 

where RGr"P and R ,  are the cutoff values for hard core 
excluded volume interactions and for square-well, 
soft pairwise interactions, respectively. RGrep equals 
the average contact distance (obtained from the sta- 
tistics in a structural database for amino acids i and 

f = 1.0 - (COS2 (Ui, Uj) - cos2 (20°)}2 

j) minus two standard deviations of this value. R, is 
equal to  the average contact distance plus three stan- 
dard deviations. The vectors ui define the local di- 
rection of the main chain. For amino acid i, 

Ca.  
The scaling of the various terms is necessary due 

to the statistical origin of the potential. The strength 
of the particular interactions ensures a reasonable 
balance between the short- and long-range interac- 
tions and must reproduce the low level of secondary 
structure in the denatured state characteristic of real 
proteins.ll-14,23,24 The scaling factors of the partic- 
ular contributions to the force field are as follows: 
rotamers (l), peptide plate correlations (11, sequence- 
specific, backbone short-range correlations (2), an- 
gular side chain correlations (l), generic backbone 
regularizing term (11, hydrogen bond network (2.Q 
one-body long-range (11, and pairwise long-range in- 
teractions (0.5). The different (stronger 2 versus 1) 
scaling with respect to the previous work23 of the 
sequence-specific backbone short-range correlations 
results from omitting a generic term of the same type. 

Four-Body, Cooperative Side 
Chain Interactions 

The force field described above has been used in 
the series of computations in model I. For the two 
other series of calculations related to model I1 and 
model 111, explicit cooperative terms for side chain 
interaction have been introduced. These terms are of 
the type: 

u.=r. r+2-ri-2, where rk is the coordinate of the kth 

with Ikl = In(. C, = 1, when side groups z and j are 
in contact; otherwise C, = 0. 

For model 11, the value of n was assumed to be 
equal to 3 and 4. This means that if there are simul- 
taneously contacts between residues i and j and be- 
tween residues i + n and j + n (also i + n and j - 
n, or i - n and j - n, or i - n and j + n), then the 
system has additional energy contribution equal to 
the sum of the corresponding pairwise interactions. 
The idea is illustrated in Figure 2A. The n = 3 and 
4 repeat is characteristic of the helix-to-helix pat- 
tern of side group contacts as well as the pattern 
seen in the p sheets (and less frequently between the 
sheets). Because our pairwise interaction parame- 
ters are negative for contacts of similar residues (hy- 
drophilic residues with hydrophilic residues, and hy- 
drophobic with hydrophobic residues), in native 
proteins, these sums are usually negative. 

Previously, it has been shown that this kind of 
cooperative term facilitates (when appropriate) a 
process similar to "side chain fixation" that is char- 
acteristic of the transition from the molten globule 
state to the native state." It should also be pointed 
out that this contribution to tertiary interactions 
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Fig. 2. Illustration of cooperative four-body side chain interac- 
tions for model II (A) and model 111 (6). The shaded squares 
represent the reference contact i - j and the set of contacts that 

does not automatically enforce nativelike packing 
and side chain fixation. For example, in two se- 
quences designed by DeGrado and c ~ w o r k e r s ~ ~ - ~ ~  
that were previously studied using a similar 
model” in agreement with experiment, we found 
that one of these sequences adopted unique side 
chain packing, while the other remained in the mol- 
ten globular state. Rationalization of such behavior 
emerges from the inspection of these two designed 
sequences. The sequence with a uniform, leucine- 
based, hydrophobic core forms a four-helix bundle, 
which, while very stable, does not exhibit side chain 
fixation. Indeed, in such a case, there are many he- 
lix-to-helix packing patterns that give the same co- 
operative contribution. For the sequence in which 
some leucines were replaced by other hydrophobic 
residues, the packing arrangements involving dif- 
ferent side chains possessed different energies, and 
the degeneracy of side chain packing is broken. Con- 
sequently, the native state packing becomes unique. 
This empirical success argues that the choice of the 
magnitude of cooperative multibody contribution to 
the tertiary interaction as a sum of corresponding 
pairwise interactions is not an unreasonable first- 
order approximation to what is undoubtedly a more 
complex process. 

In model 111, additional cooperative terms are 
added, see Figure 2B. Besides patterns involving n 
= 3 and n = 4 repeats, an n = 1 repeat was also 
introduced into the four-body interactions. The last 
repeat is rather specific for the side chain packing 
patterns seen in P-type proteins, but it is rarely seen 
in helical structures. 

In order to maintain the same balance between 
the short-range and long-range tertiary interactions 
in all the models, the scaling of pairwise interac- 

contribute to cooperative interactions with painnrise contact i - j .  
The underlying pattern of contacts corresponds to the ideal anti- 
parallel p-type packing of side groups38 

tions (and consequently, the four-body interactions) 
in model I1 and model I11 must be modified. Instead 
of a 0.5 scale factor (see the previous section) for the 
pair terms used in model I, the corresponding scal- 
ing is 0.25 and 0.2 from model I1 and model 111, re- 
spectively, for both the pair and multibody compo- 
nents. This way, the thermodynamic characteristics 
of the three particular models could easily be com- 
pared. The magnitude of the tertiary interactions in 
all cases is the same, while the cooperative contri- 
bution changes substantially. 

Entropy Monte Carlo Sampling Method 
In the well-known Metropolis Monte Carlo (MMC) 

sampling methods, conformational space is ran- 
domly sampled according to the equilibrium Boltz- 
mann distribution of (distinguishable) conforma- 
tions: 

Pi = exp (-Ei/K,T) (14) 

The resulting transition probability pijfiom the 
“old” conformation i to the “new” conformation j (for 
the asymmetric scheme) is controlled by the energy 
difference AE, = Ej-E,: 

pij = min (1, exp (-AEi/kBT)}. (15) 

Thus, the method is sensitive to the presence of 
energetic barriers. 

The ESMC method was originally proposed by 
Lee33 in the context of a simple Ising model, and 
more recently, it has been applied to the study of 
protein models by Hao and S ~ h e r a g a . ” . ~ ~  ESMC is 
similar in spirit to the multicanonical MC technique 
of Berg and co1leagues2l that was recently used by 
Hansmann and Okamoto22 in their studies of small 
peptides. Here, since the Hao-Scheraga formulation 
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appears to be the most straightforward, and their 
work deals with models similar (however, of lower 
resolution and with a simpler force field) to those 
used in this work, we follow their formalism. 

In contrast to the MMC method, the ESMC 
method generates an artificial distribution of states 
that is controlled by the conformational entropy as a 
function of the energy of particular conformations: 

Pi = eXp [-S(E,)/k,]. (16) 

In practice, Ei corresponds to a small energy in- 
terval (later called “a state”). The transition proba- 
bility can be formally written as: 

p i j =  min (1, exp (-AsiJ/kB)} (17) 

with ASii being the entropy difference between 
states i and j, respectively. 

Of course, the entropy is usually not known at  the 
beginning of the simulation. It is easy, however, to 
show that one can iteratively find an estimate, J(E), 
of the entropy S(E), using a density of states (energy 
histogram), H(E). The kth iteration consists of an 
ESMC simulation run with S(E) approximated by 
Jkp1@). The simulation produces a histogram, which 
is subsequently used to update Jk(E) by 

J,(E) = Jkp1(E) + In Cmax (1, HJE)}l. (18) 
After a sufficient number of runs, all the states 

(energy intervals) become sampled with the same 
frequency. This produces a flat histogram of H(E), 
and the curve of J(E) + const approaches the true 
S(E) curve. 

The energy interval used for the definition of the 
histogram H(E) is assumed here to be equal to  4.2 
k,T. This value is relatively large in comparison 
with previous work.lg On the other hand, the energy 
of the system studied here varies over a range that 
roughly spans -350 k,T to 0 k,T. Moreover, as 
shown in the Results section, states separated by 
few k,T in many cases have very similar conforma- 
tions. Thus, this coarse-grained histogram acceler- 
ates sampling with respect to a finer grid, without a 
substantial penalty in conformational resolution. 

It is clear from the above formulation that the 
method can easily surmount local energy barriers; 
however, in ESMC, entropic barriers become impor- 
tant. The best way to avoid the situation where the 
sampling process is trapped by entropic barriers 
(these mainly result from the different conforma- 
tional degeneracy of various energy levels) is to use 
a “conformational pool” to randomly shift the sys- 
tem between distant energy levels. This way the 
sampling process surmounts possible entropic barri- 
ers. The conformational pools used in the present 
work come from the simulated annealing MMC sim- 
ulation described el~ewhere.’~ Various sparse tra- 
jectories from the folding experiments were com- 
bined in such a way that the ESMC procedure 
converged after a long series of computations. The 

convergence is assumed when the change of the rel- 
ative entropy becomes independent of the energy 
within a tolerance of 0.3 k,. This condition obtains 
except over the very narrow range of the lowest en- 
ergy states of very low degeneracy, where large fluc- 
tuations persist, and obviously, here the simulation 
has not fully converged. 

The sampling procedure for model I took several 
weeks of computation on a dedicated HP-735 work- 
station. The cost of computation for models I1 and I11 
was substantially lower; here, the ESMC procedure 
uses as the first approximation to the entropy the 
final result for model I. This way the entropy esti- 
mate, J(E), in Eq. 18 was not constructed from 
scratch. The models are suficiently similar (similar 
structure of the force field and similar strength of 
the long-range interactions) to enable such a proce- 
dure to work. 

RESULTS 
Effect of Cooperative Side Group Interactions 
on Folding Thermodynamics 

The entropy-driven Monte Carlo sampling method 
provides the relative numerical values of the en- 
tropy of the system as a function of the energy. The 
constant term (see Eq. 18) has no physical meaning 
and is dependent on the number of ESMC steps in 
all iterations and the details of implementation of 
the method. The simulations performed for all three 
models were very long due to the relatively complex 
models and the size of the system. In Figure 3, we 
compare the final profiles of J (the entropy estimate) 
for the three models studied. The constant term is 
the smallest for model I. This does not mean that the 
simulations for this model were shorter than for the 
remaining models. The difference is due to the pro- 
cedure we used to lower the computational cost. For 
models I1 and 111, the initial estimates of J were 
taken from the final results for model I. Hence, since 
additional iterations are performed, one might ex- 
pect the constant term to be larger in models I1 and 
111. 

The J(E) curves of the model systems show a num- 
ber of interesting features. First, in all cases there is 
no single ground (nativelike) state. Instead, there 
are manifolds of low-energy folded conformations 
(we will examine the problem of conformational 
uniqueness separately below) of differing entropy. 
These low-energy regions are indicated by the very 
steep regions of the curves. Second, while the curve 
for model I is almost of the same slope over the en- 
tire relevant conformational energy range, for 
model 11, a slight concave region is clearly visible. 
The plot for model I11 is more concave, suggesting 
the existence of two different, well-defined states at 
equilibrium. However, the most direct way to assess 
this is to plot the free-energy versus energy profiles; 
these are presented below. 

Other thermodynamic characteristics of the model 
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Fig. 3. Final estimates of the relative entropy J as a function of 
configurational energy E for three models (in model II, model 111, 
and model I, from the top curve to the bottom curve, respectively) 
of side chain interactions. Different shifts (constant term) for var- 
ious models reflect different initial guesses as for the entropy (see 
the text for more details). 

are derived easily from the S(E) versus E profiles. At 
any temperature, one may obtain the free energy of 
the system as a function of energy from 

F(E, T )  = E - TS(E) (19) 

Consequently, an average property, Q (e.g., the 
average energy <E> or the heat capacity C,) as a 
function of temperature could be calculated. 

= CQCE) exp (-FI~~T)/c.(-FI~~T) (20) 

where the summation is over the various states 
characterized by the given energy interval SE. 

Figure 4 shows the F(E, T )  profiles obtained for 
model 11 at  a series of T values. At  a certain tem- 
perature, T,, the free energies of the low-energy and 
the high-energy states have the same values. This is 
the folding temperature T,. The estimated numeri- 
cal values of T ,  for all three models are given in 
Table I. Figure 5A-C shows the free-energy profiles 
at T = T ,  for the three models of tertiary interac- 
tions. Since ESMC introduces a constant term into 
the estimate of the entropy, the numbers on free- 
energy axes only have a relative meaning. It is clear 
from inspection of Figure 5 that the two state model 
of the folding transition is very well pronounced in 
model 111, is slightly weaker for model 11, while the 
folding of model I is almost continuous. For model I, 
the free-energy barrier (taking into consideration 
the estimated transition temperature), which sepa- 
rates the folded and denatured states is rather 
small, and is 0.9 k,T,. This value is only a couple of 
times larger than the estimated error of the simula- 
tions. The free-energy barrier increases to about 2.0 
k,T, in model I1 and is about 4.7 k,T, in model 111, 
respectively. Thus, model I, lacking cooperative side 
chain packing interactions, has a quasi-continuous 
transition. On increasing the possibility of coopera- 
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Fig. 4. In model II, free-energy, f(€, T)IT, plots versus energy, 
€, at various temperatures. 

tive interactions, the conformational transition as- 
sumes an all-or-none character. 

In addition to the presence of a free-energy barrier 
between the folded state and non folded states (we 
defer a discussion of the structural characteristics in 
various regions of the energy spectrum for a mo- 
ment), the transition is much sharper in those mod- 
els possessing the possibility of cooperative tertiary 
interactions. This is clearly demonstrated in Figure 
6A-C where the energy and the heat capacity are 
plotted as a function of temperature. On passing 
from model I to model 111, the energy curves become 
much steeper in the transition region, and the heat 
capacity peak becomes much sharper. 

The analysis of the folding thermodynamics of 
these three model systems shows that the transition 
from unfolded states to compact globular states de- 
pends on the assumed form of the tertiary interac- 
tions. Although model I adopts (as do the remaining 
models) a well defined, folded state topology (see the 
work describing MMC simulations of the folding 
process23) that is the same as the Greek-key topol- 
ogy seen in many p type globular proteins, the co- 
operativity of the transition is low. This occurs in 
spite of the cooperative hydrogen bond scheme in- 
corporated into the model and the exaggerated pat- 
tern of hydrophilic and hydrophobic residues. 

it is 
possible that the compact state of model I has more 
features of the molten globule than the unique native 
state. This could be responsible for the small free- 
energy barrier, and consequently, the low coopera- 
tivity of the folding transition. Nevertheless, it is the 
qualitative conclusion that cooperativity emerges 
when multibody interaction terms are included in 
the potential (as in models I1 and 1111, which is the 
most important result of these model simulations. 

At this point, it seems worthwhile to point out 
that in order to obtain a stable folded state for model 
I by simulated annealing MMC  ampl ling,'^ it was 

As was suggested in our previous 
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TABLE I. Comparison of the Thermodynamic 
Characteristics of the Three Models for Side 

Chain Interactions 

Model I Model 11 Model I11 
+01* 0.5 0.25 0.2 
Ernin? -365.6 kBT -345.8 kBT -366.3 kBT 
T C *  2.01 1.79 2.13 
E,,,JT,Q -181.9 -193.2 -172.0 

*Scaling of pairwise interactions of the side chains. 
+Minimum conformational energy seen in the ESMC proce- 
dure. 
$Folding temperature. 
$Reduced minimum energy. 
mduced free-energy barrier. 

AFIT,Y 0.9 2.0 4.7 

necessary to cool down the model system to temper- 
atures below T = 1.5. This is considerably lower 
than the transition temperature T, = 2.01 found by 
the ESMC procedure. This is the temperature at 
which the values of the system’s free-energy in the 
two minima are the same (see Fig. 4). The different 
realization of the excluded volume interaction (pres- 
ence of hard core instead of a strong repulsive force) 
used here cannot be responsible for such a large dis- 
crepancy in apparent folding behavior. The more 
likely explanation is that, due to an almost contin- 
uous transition, the temperature range where folded 
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Fig. 5. Plots of free energy, F(€, T)IT, for model I (A), model 
II (B), and model 111 (C), as a function of conformational E a t  the 
transition temperature T,. 

and unfolded conformations coexist is very broad. 
Consequently, to lock the system in the low-energy 
basin, one needs to substantially quench the mole- 
cule below its true transition temperature. This is 
again indicative of the low cooperativity of the fold- 
ing transition exhibited by model I. 

The situation changes dramatically for models 
with explicit cooperative potentials (model I1 and 
model 111) of interactions between the side groups. 
The folding thermodynamics for these cases is well 
described by a very sharp, all-or-none transition 
that is consistent with experimental findings for 
globular proteins. Thus, these simulations indicate 
that in more realistic protein models, in agreement 
with experiment,16 the cooperativity of the folding 
transition arises from the fixation of side chains. 
This fixation is only possible in these models upon 
introduction of cooperative side chain packing inter- 
actions. 

Behavior of the Models at Various Energies 
The two free-energy minima in all three models 

correspond to a spectra of random coil, denatured 
high-energy states and to low-energy, folded states. 
Figure 7 shows model polypeptide conformations at  
four values of the energy. The representative snap- 
shots, with only the Cct trace displayed for the sake 
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of clarity, were taken from the ESMC procedure for 
model I. The high-energy conformations (Fig. 7A) 
have the character of an expanded random coil, with 
very little secondary structure and rather few, es- 
sentially random, contacts between the side chains. 
Decrease of the energy to the point that corresponds 
to the free-energy maximum changes the picture. 
Conformations at this energy (B) have a higher level 
of secondary structure, and there are more contacts. 
The global conformations are rather random, but 
are mostly inconsistent with the final fold. A differ- 
ent behavior is seen in models I1 and 111, see below. 
Over a very broad energy range, the low-energy 
states have mostly correct folds, and dense packing 
of the side chains. Typical conformations at energies 
around -300 K,T (C) differ from the lowest energy 
state (D) only by a slight perturbation of the hydro- 
gen bond pattern and the side chain packing. Nev- 
ertheless, in energy region C, some misfolded states 
(in particular, those folds having the mirror image 
topology) could be seen, although rarely. When the 
energy approaches the minimum observed energy, 
the fraction of misfolded conformations diminishes 
to zero. Within a 15-20 k,T energy range near the 
lowest energy state, misfolded structures were not 
detected. Above this range of energies, the energy 
spectra for globally correct folds (perhaps, some of 
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R 

Fig. 6. Conformational energy and the heat capacity of model 
I (A), model II (B), and model 111 (C) of polypeptide interactions (in 
an implicit solvent) as a function of temperature. 

whose conformations correspond to the molten glob- 
ule state) and the energy spectra of misfolded com- 
pact structures partially overlap. We believe this is 
a general feature of the energy landscape of proteins 
and is not an artifact of this model. 

A similar collection of various conformations, 
with decreasing energy of the systems, could be seen 
for model I1 and model III. In spite of the very sim- 
ilar features of unfolded and folded states, there are, 
however, substantial differences. The energy range 
for the folded structures becomes narrow on increas- 
ing the contribution of cooperative interactions. 
Moreover, states with intermediate energies, which 
correspond to partly folded structures, have a very 
low thermodynamic probability due to their differ- 
ent free-energy versus energy profiles. We now turn 
to a more detailed analysis of the properties of mod- 
els I1 and I11 at  the free-energy versus energy max- 
imum. 

Nature of the Transition State 
The behavior of a number of properties of model I1 

and I11 as a function of energy is further examined in 
Figures 8A-C and 9 A 4 ,  where we plot the average 
(+ 1 standard deviation) fraction of native contacts, 
native secondary structure and mean square radius 
of gyration <S2> in dashed (solid lines). As would be 
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Fig. 7. Snapshots of representative conformations of the 
Greek-key sequence obtained from ESMC simulations of model I. 
A: at E = -100.1; 8: at E = -200.8; C: at E = -304.4; and D: 
the lowest energy state at E = -365.6 k,T. For the sake of clarity, 
the side chains are omitted. 

expected, these properties vary smoothly with de- 
creasing energy. Note that the plots of native con- 
tacts and fraction of native secondary structure do 
not plateau at  a level corresponding to 100%. The 
reason is the variability of the low-energy states, 
where the contact map overlap and the overlap of 
secondary structure (which is defined based on the 
particular binning of the main chain local geometry) 
are on the level of 7040% (see also Table 11). This is 
further discussed in the next section on the character 
of the folded conformation. Of particular interest is 
the behavior of these conformational properties a t  
the transition state which occurs roughly at  -225 kT 
in both models I1 and 111. Of course, by the term 
transition state we refer to those conformations lo- 
cated at maximum of the free-energy versus energy 
curve. In model 11, the transition state is comprised 
of structures having about 45% of the total number 
of native contacts, about 60% of the native state’s 
secondary structure and( <S2> tl<S2>mtiue)3 ’ 
= 1.5. Similarly, in model 111, in the transition state, 
there are structures with about 50% native con- 
tacts, 60% of the secondary structure and 
(<S2>tl<S2>mtiUe)312 = 1.5. This range of native 
like properties is qualitatively consistent with Ku- 
wajima’s description of the physical properties of the 
transition state of a-lactalbumin and Ca2+ binding 
par~a1bumin.l~ Thus, the behavior of these models in 
the transition state also supports a critical substruc- 

ture model. The activated state has a partial amount 
of native state secondary structure formed, but there 
is a manifold of such partially folded conformations 
having some, but not all, of the native state’s struc- 
ture. 

Character of the Folded Conformations 
Although we have demonstrated that the model 

possesses the same qualitative character as real sys- 
tems, there remains the essential question: How 
unique is the very low-energy state? Does it exhibit 
the features of the native states of globular proteins? 
First, let us note that in all models the very low- 
energy state is not frozen, it still undergoes small 
fluctuations. These involve some small packing re- 
arrangements, as well as the breaking and forming 
of one or two model hydrogen bonds. For a set of 10 
low-energy states for each model, we performed an 
analysis of the fluctuations of the Ca backbone as 
well as the side chain packing. This set has been 
randomly selected from a large number of low-en- 
ergy conformations generated during the ESMC pro- 
cedure. In Table 11, we compare the pairwise RMS 
(Ca trace) distances between pairs of these low-en- 
ergy structures for all three models under consider- 
ation. In all models, the Ca backbone fluctuations 
for the low-energy states are small, within 3 A RMS. 
Due to the relatively broad square well of the poten- 
tial describing the interactions of the side groups, 
and due to the relatively permissive definition of the 
hydrogen bond interactions, the resolution of the 
model is on the level of 2-3 A. The conformational 
fluctuations of the very low-energy states, charac- 
terized by the numerical values for the average RMS 
between pairs of independent structures, are exactly 
of this magnitude. Within the resolution of the 
model, all low-energy conformations of the main 
chain are the same for all three models of side chain 
interactions. It should be also pointed out that for 
the assumed energy range for the tested low-energy 
structures, there is no significant correlation be- 
tween the pairwise (between two structures) RMS 
and the corresponding energy. 

The side chain packing is relatively well defined 
i~ all three models. In Figure 1OA-C, we compare 
depresentative side chain contact maps for the low- 
energy states for the three models. The maps show 
clear P-type contact patterns within the two sheets. 
Some additional contacts that result from the single 
sphere representation of the side chains contami- 
nate the ideal pattern for antiparallel p structure, 
which is shown in Figure 2. Within a given model, 
the reproducibility of the contact maps (derived with 
the cutoff distances defined for soft pairwise inter- 
actions between the side chains) (see Eq. 11) is on 
the level of 70%, with a slightly larger standard de- 
viation in model I as compared to models I1 and 111. 
These contact maps represent very similar struc- 
tures, and it should be pointed out that this level of 
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TABLE 11. Structural Characteristics of the 
Low-Energy States* 

Contact 
Energy C a R M S  map 

Model range (in A) overlap (%)+ 

I -366 to -358 1.89 f 0.73 71 * 11 
I1 -346 to -329 2.41 2 0.65 67 f 8 
I11 -366 to -351 2.40 -+ 0.72 68 f 8 
T + TT + I11 2.23 2 0.74 69 2 9 

*The statistics are based on 10 independent low-energy struc- 
tures extracted from the ESMC simulations for each model. 
The average RMS and its standard deviation are based on com- 
parison of all possible pairs. 
+The contact map overlap is defined as 2nIz/(n, + nz), where 
nI2 is the number of common contacts and n, and n2, are the 
numbers of contacts of the two maps that are being compared. 

contact map agreement is also found in two struc- 
tures of the same protein solved by two different 
groups or under different solvent conditions. 

In all cases, there are well-defined hydrophobic 
clusters of the side chains, with Phe side chains hav- 
ing the same interaction pattern. The differences 
between contact maps mostly arise from the fluctu- 
ating numbers of contacts experienced by the loop 
Gly residues. The fluctuations in the number of con- 
tacts for Val residues and for the polar side chains 
are much less; however, some differences could be 
noticed, especially for contacts between the two 
sheets of the barrel. Consequently, the pairwise 
comparison of low-energy states (Cci trace RMS and 
the contact map overlaps) within the particular 
models and between the models indicates the exis- 
tence of a relatively well defined compact structure 
that could be associated with the native state of real 
proteins. 

Most importantly, in spite of the different treat- 
ment of cooperative side chain packing interactions, 
the lowest energy structures are the same in all 
three models. However, in the cooperative models, 
the higher energy, partly unfolded and misfolded 
states are characterized by a much higher free-en- 
ergy in comparison to model I. Consequently, a t  
equilibrium, the energetical and structural fluctua- 
tions in model I are much larger than in models I1 
and 11. In other words, ESMC indicates that the low- 
est energy states of model I are nativelike, and es- 
sentially the same as in the more cooperative mod- 
els. However, there is a manifold of states of almost 
the same free-energy that has higher conforma- 
tional energy and nonnative conformations. In con- 
trast, the free-energy basin of nativelike conforma- 
tions from the cooperative models is well defined. 
Due to the large free-energy barrier between native 
and (partially) unfolded states, the equilibrium pop- 
ulation of intermediates, or partially folded states, 
becomes very small. This, then, is the origin of the 
different thermodynamic behavior of the folding 
transition observed in these models. 

CONCLUSION 

In this work, we applied the ESMC method to 
study the thermodynamics of protein folding on an 
example of a theoretically designed sequence, which 
adopts a Greek-key f3 barrel fold. The studies em- 
ployed a high coordination lattice model of the pro- 
tein and various models of side chain interactions, 
including explicit cooperative terms. The coopera- 
tive side chain packing terms incorporate various 
four-body correlations reflecting structural regular- 
ities seen in real proteins in their native state. We 
find that the inclusion of a cooperative side chain 
packing term significantly changes the thermody- 
namics of the folding transition from a more or less 
continuous transition to one having all-or-none 
character, and concomitantly, the low-energy "na- 
tivelike" state becomes better defined. Within this 
native free-energy basin, the backbone geometry 
and side chain packing fluctuations are small, and 
on the level of the resolution of the model, there is a 
unique native state. 

At this point, it seems worthwhile to compare the 
present study with the previous ESMC study by Hao 
and S~heraga l~ .~ '  on a somewhat simpler model. For 
exaggerated sequences, Hao and Scheraga have 
demonstrated a similar level of cooperativity such as 
that seen here for model I1 or model 111. However, 
they did not employ any explicit cooperative side 
chain packing term. Our sequence is also exagger- 
ated. Why then does our model require the coopera- 
tive side chain interaction in order to reproduce the 
cooperativity of the model polypeptide folding? The 
answer is not due to the somewhat larger number of 
conformational degrees of freedom in our represen- 
tation of the main chain, nor to the more complex 
folding motif studied here. Rather, the qualitative 
difference between the two models that is responsi- 
ble for the above effects is related to the uniqueness 
of the secondary structure preferences and to differ- 
ences in side chain representation. Hao and Scher- 
aga assume that there is a preferred extended con- 
formational state for those residues that form @ 
strands in the putative structure. Here, we use a 
statistical potential to encode for intrinsic secondary 
preferences. Even when an extended state is statis- 
tically preferred, the spectrum of backbone confor- 
mations compatible with such a state is much 
broader. Perhaps even more importantly, they em- 
ploy a fixed orientation of the side groups with re- 
spect to the main chain backbone. By contrast, our 
model allows for multiple side group conformations, 
which corresponds to the spectrum of rotational iso- 
meric states of the side chains of real polypeptides. 
Thus, because of the more constrained specification 
of the native backbone geometry and position of the 
side groups, the conformational entropy accessible 
to the folded conformation is much smaller in the 
Hao-Scheraga model than in the present case. This 
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is the essential difference between our model and 
more simplified models. 

The compact states of our model as in real proteins 
can possess considerable conformational entropy. 
Upon the transition from the molten 
state to the native state, real proteins undergo a 
complex structural rearrangement that accompa- 
nies side chain fixation. This process is commonly 
associated with a large entropy and energy change 
for this transition. In fixed single rotamer side chain 
representations, the molten globule to native tran- 
sition involving side chain fixation is not possible. 
Rather, all such simplified models miss an impor- 
tant physical feature. However, in the framework of 
our reduced model, the explicit cooperative potential 
of side group interactions facilitates the fixation of 
side groups to a collection of rotameric states that, 
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Fig. 10. Side chain contact maps for low-energy states of 
model I (A), model II (B), and model 111 (C). 

when accompanied by a small rearrangement of the 
main chain, leads to a proteinlike pattern of inter- 
actions. 

Is the use of a multibody potential to permit side- 
chain fixation simply the result of the fuzzy (single 
interaction center with the square well contact po- 
tential) side chain representation used in the model? 
To some extent, this must be true. Then the explicit 
cooperative terms provide regularizing corrections 
to protein packing that are poorly defined by the 
pairwise interactions. On the other hand, in molec- 
ular dynamics simulations of full atom models of 
proteins, it has also been observed that the starting 
crystallographic structures tend to diffuse their ini- 
tial regular side chain packing toward a more liq- 
uidlike arrangement .34 These studies demonstrated 
that even detailed models of proteins allow alterna- 
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tive, nonproteinlike, but comparably dense packing 
of the side chains. Apparently, since full atom mod- 
els have similar difficulties, the problem of produc- 
ing native like packing arrangements of the side 
chains is not just an artifact of a reduced protein 
model. Perhaps, in order to reproduce the coopera- 
tive transition from the molten globule to native 
state of globular proteins, some kind of multibody 
interaction potentials have to be incorporated into 
any force field, regardless of the level of detail of the 
side group de~cr ip t ion .~~ Such a viewpoint is very 
much in the spirit (however, on the level of tertiary 
interactions) of the cooperativity of h e l i x - ~ o i l ~ ~  or p 
s h e e t - ~ o i l ~ ~  transitions of statistical mechanical 
models. The present work suggests that, while the 
specific patterns of packing of the protein side 
 hai ins^,^^,^^,^^,^^ could be well characterized in the 
context of static properties, the modeling of the co- 
operative folding transition, using molecular mod- 
els, may require explicit higher order multibody in- 
teractions. 

In summary, the dramatic increase of the cooper- 
ativity of the folding process seen in model I1 and 
model I11 seems to be consistent with the presently 
accepted picture of protein folding. Thus, these sim- 
ulations suggest the origin of the molecular mecha- 
nism of the transition from the denatured state 
through the molten globule state to the native state. 
In model I, the native state is rather poorly defined 
(as far as the thermodynamics is concerned), and its 
almost continuous transition appears to be closer to 
a random coil to molten globule transition. The con- 
formations corresponding to the basin of free energy 
of the folded state have some features of a molten 
globule and some features of a native state. In model 
I1 (and even more so in model 1111, the folding, in 
spite of a comparable conformational energy change, 
is much more cooperative than that observed in 
model I. This larger free-energy gap between the 
native and higher energy structures, and conse- 
quently a more structurally unique low-energy 
state, reproduces the currently accepted picture of 
folding thermodynamics. The cooperativity of the 
folding process is associated with the passage from 
the molten globule to the native state; such cooper- 
ativity arises from cooperative side chain packing 
interactions. 
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