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The effect of tertiary interactions on the observed secondary structure found in the native
conformation of globular proteins was examined in the context of a reduced protein model.
Short-range interactions are controlled by knowledge based statistical potentials that reflect local
conformational regularities seen in a database of three-dimensional protein structures. Long-range
interactions are approximated by mean field, single residue based, centrosymmetric hydrophobic
burial potentials. Even when pairwise specific long-range interactions are ignored, the inclusion of
such burial preferences noticeably modifies the equilibrium chain conformations, and the observed
secondary structure is closer to that seen in the folded state. For a test set of 10 proteins~belonging
to various structural classes!, the accuracy of secondary structure prediction is about 66% and
increases by 9% with respect to a related model based on short-range interactions alone@Kolinski
et al., J. Chem. Phys.103, 4312~1995!#. The increased accuracy is due to the interplay between the
short-range conformational propensities and the burial and compactness requirements built into the
present model. While the absolute level of accuracy assessed on a per residue basis is comparable
to more standard techniques, in contrast to these approaches, the conformation of the chain now has
a better defined geometric context. For example, the assumed spherical domain protein model that
simulates the segregation of residues between the hydrophobic core and the hydrophilic surface
allows for the prediction of surface loops/turns where the polypeptide chain changes its direction.
The implications of having such self-consistent secondary structure predictions for the prediction of
protein tertiary structure are briefly discussed. ©1997 American Institute of Physics.
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I. INTRODUCTION

It is frequently assumed that a key to prediction of t
native conformation of a protein lies in the prior predictio
of its secondary structure.1,2 Having such information in
hand, one could then assemble the native fold from its c
stituent secondary structural elements followed by fi
tuning the atomic details.2–4 Assuming three classes of se
ondary structure@a helix ~H!, expandedb-type conformation
~E!, and everything else, i.e., coil/turn~2!#, classical predic-
tion methods achieve an accuracy ranging from 55%
65%.1,5 Even using the most elaborate methods that emp
multiple sequence alignment information, the resultant le
of accuracy is about 70%–75%.6 A likely origin of the limi-
tations in accuracy is the fact that all classical methods
protein secondary structure prediction are inherently loca
nature. In reality, the secondary structure seen in the na
conformation of globular proteins may reflect an energe
compromise between the local conformational propensi

a!Author to whom correspondence should be addressed. Electronic
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and global restraints emerging from close packing of glo
lar proteins, specific patterns of side chain interactions,
drogen bond restraints, etc. Indeed, some short sequ
fragments adopt a helical conformation in one protein, wh
in another protein, the same fragments is part of ab sheet.7

Consequently, exact prediction of secondary structure
equivalent to the prediction of tertiary structure, an as
unsolved problem. While the idea that tertiary interactio
modify secondary structure is widely believed to be true, t
effect has not been explicitly investigated in any prote
model. Thus, in the context of a reduced protein model,
explicitly examine whether incorporation of some tertia
information enhances the accuracy of secondary struc
prediction and explore what additional information can
provided by such an analysis.

Recently we described a reduced model of protein str
ture and dynamics and proposed a factorization of sh
range interactions that reproduced the secondary structu
globular proteins with an accuracy of about 60%~50%–75%,
depending on the sequence! for three structural classes~he-
lix, H, extended, E, and - everything else!.8 This model of
short-range interactions was then implemented in a redu
protein model that allowed Monte Carlo~MC! folding of a
number of small proteins.9

il:
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954 A. Kolinski and J. Skolnick: Secondary structure of polypeptide chains
In this work, we present a related model that incorp
rates some aspects of long-range interactions typica
single domain, globular proteins. These long-range inte
tions are limited to one body, residue specific mean-fi
potentials that reflect preferences for the location of vari
amino acids within a globular structure, that is, they play
role of a burial energy. In the absence of any pairwise~and
higher order! long-range interactions, the Metropolis Mon
Carlo ~MMC! sampling10 of the model is very fast. Further
more, the assumption of a close to spherical shape also
mits the imposition of some global restraints that can m
erate the protein secondary structure. For example, bec
globular proteins are compact, regular secondary struct
elements cannot be too long or too short.11 Thus, the aim of
the present study is to analyze the interplay between th
global restraints: secondary structure propensities, pro
compactness, and hydrophobic–hydrophilic phase separa
as embodied by a one body approximation to the hydrop
bic burial potential. We expect that the tertiary ‘‘perturb
tion’’ will moderate the local conformations of the mod
polypeptide, thereby allowing for more accurate second
structure predictions based on the statistics of the chain
ometry at low temperature. Due to the approximate treatm
of the long-range interactions, the method is applicable to
single domain globular proteins or to well defined doma
of multidomain proteins. In the latter, the division of th
protein into domains must be done by a different method

The assumption of a spherical domain globular prot
model was recently employed by us in a very simi
context.12 There, the goal was to predict the most proba
set of ‘‘hairpins’’ defined as a regular fragment of second
structure followed by a surface loop or turn where the ch
reverses global direction and then another regular fragm
of secondary structure. This prediction was done for the
quence of interest by threading randomly selected fragm
of protein structure through a hypothetical, spherical globu
That is, the protein consists of a set of hairpins that are
essence stitched together. The resulting model exhibited
high accuracy in the prediction of loop regions and the do
nant secondary structure of regular~transglobular!
fragments.12 However, the accuracy of prediction of the se
ondary structure assignments on a per residue basis is m
erate due to the ‘‘overregularization’’ of the structures a
frequent errors near the loop regions. The latter are due to
very approximate way that the hairpins were constructed
the present study, we explore a similar set of interactions,
which are now applied to a continuous chain, thereby enfo
ing a more self-consistent manifold of local conformatio
that define the secondary structure assignment.

The outline of this article follows. In Sec. II, we briefl
describe the lattice model, the MC sampling technique,
the interaction scheme. Short-range interactions are exa
the same as those described previously,8 and therefore only a
short summary is provided for the reader’s convenience.
approximations of the long-range~one body! interactions are
discussed in more detail. Next, the method is applied to a
of 10 representative test proteins, and an analysis of the
formation provided by this approach is presented. We c
J. Chem. Phys., Vol. 107

Downloaded¬06¬Apr¬2004¬to¬128.205.53.57.¬Redistribution¬subject¬
-
of
c-
d
s
e

er-
-
se
al

se
in
ion
o-

ry
e-
nt
ll
s

n
r
e
y
n
nt
e-
ts
.
in
ry
i-

-
d-

he
In
ut
c-

d
tly

e

et
n-
-

clude with a discussion of our results and possible directi
of future research.

II. METHODS

The method of secondary~and to some extent superse
ondary! structure prediction presented here is based upo
high coordination number lattice model of protein structu
and dynamics developed over the last few years by
group.3,4,8,9,13,14This model has been used for studies
polypeptide dynamics,8 protein folding thermodynamics,14

structure prediction,4 and other aspects of protei
biophysics.4 Recently we undertook an effort to refine th
entire force field of the model and to carefully reexamine
contribution of various interactions and their effects
model protein properties,8,15,16 the overall goal being to de
velop better, more sensitive potentials. This article repres
another step in that direction.

A. Lattice representation of polypeptides

The Ca trace is modeled as a lattice chain that cons
of a sequence of vectors belonging to the following 90 ba
vector set$~3,1,1!,... ~3,1,0!,... ~3,0,0!,... ~2,2,1!,... ~2,2,0!,...%.
The best fit of such a lattice chain to high resolution prot
structures in the Brookhaven Protein Data Bank~PDB!17,18is
obtained when the mesh size of the underlying simple cu
lattice is assumed to be equal to 1.22 Å. As a result,
average length of a Ca–Ca segment on the lattice is equal t
3.8 Å, and the fluctuations of the Ca–Ca distance do not
exceed60.3 Å. In contrast to low coordination lattice mod
els of proteins, the accuracy of protein representation is
sentially independent of the orientation of the fitted stru
tures with respect to the lattice principal axis.19,20

From the fit of a set of high resolution, nonhomologo
proteins to the lattice, one can derive statistics of the occ
rence of particular triplets of consecutive backbone vect
~say,vi21 ,vi .vi11!.

8 Many triplets never occur, while other
are extremely rare, and perhaps result from database er
structure inaccuracy, or fitting errors. Whatever their orig
it is assumed that such conformations are very unlikely, a
they are prohibited in the model. Interestingly, the set
allowed three-vector conformations derived from t
straightforward statistics of the lattice projection of prote
three-dimensional structures almost exactly overlaps with
set resulting from restrictions superimposed on virtual bo
angles~between two subsequent Ca vectors! and distance
restraints for thei th andi13th a-carbons.

Previously we have shown that the sequence of th
a-carbon vectors defines the orientation of the central~for
the fragment! planar ~trans! peptide bond unit.21 Two con-
secutivea-carbon virtual bonds provide a reference fram
for the definition of the side chain position. In this work, w
employed a single rotamer representation of the side ch
~corresponding to the center of mass of the most proba
rotameric isomeric state!.22 For Gly residues, the side chain
coincide with thea-carbon positions. Side chain position
are employed in an approximation of the hydrophobic bu
potential. Figure 1 shows a representative conformation
, No. 3, 15 July 1997
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955A. Kolinski and J. Skolnick: Secondary structure of polypeptide chains
short fragment of the model polypeptide restricted to
‘‘310’’ lattice.

B. Sampling procedure

Conformational space is sampled according to the s
dard asymmetric Metropolis10 scheme with the transition
probability from an ‘‘old’’ state to a ‘‘new’’ state equal to
P(new/old)5exp@2(Enew2Eold)/kBT#, with kB Boltz-
mann’s constant andT the absolute temperature. The confo
mational transitions attempted in a single MC cycle con
of two-bond end moves, two- and three-bond moves, lar
fragment moves generated by long distance~up to 30 bonds
along the chain according to a random selection of the
tance! permutations of two chain vectors and similar long
distance moves employing permutations of two pairs of v
tors. The longer distance moves facilitate faster rearran
ments of more rigid secondary structure elements~e.g., heli-
ces!. These are quite important due to global restrai
superimposed onto the model chains. For a chain of len
N, such medium distance moves are attempted with a
quency equal to 1/N with respect to the frequency of th
local micromodifications. Examples of the short-range a
medium-range moves are schematically shown in Fig. 2.

The sampling algorithm is ‘‘local,’’ i.e., the cost of a
tempting a single micromodification does not depend on
chain length. This was achieved by using a lattice occupa
list to detect self-overlaps of the chain units, as descri
later. Thus, the expense of a single sampling step~which
corresponds to unit time in the model!, consisting ofN at-

FIG. 1. Illustration of the lattice model of protein chain. The closed circ
correspond to thea-carbon backbone, the open circles are side chains
single rotamer~the most probable position of the side chain center of ma!
approximation was used.
J. Chem. Phys., Vol. 107
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tempts at both types of local moves and single attempt
medium-range moves, is proportional to the chain leng
N. Since the longest relaxation time of polymeric chai
scales roughly asN2, the total cost of the simulation scales
N3. One experiment~chain collapsing upon the simulate
thermal annealing followed by the isothermal sampling! for a
50-residue protein requires about 10–15 min CPU on a H
735 workstation running at 125 MHz, and grows to a fe
hours for a 150-residue protein. Thus, the method is cle
unsuitable for massive screening of protein sequences, b
is relatively inexpensive when applied to selected cases.

To obtain reasonable estimates of the relevant confor
tional properties in the interesting low temperature range,
model chains were slowly ‘‘cooled’’ from random expande
states and were then subjected to an isothermal sampling
This procedure was repeated several times, and the traje
ries from the runs with the lowest average conformatio
energy were taken for the final analysis.

C. Short-range interactions

The short-range interaction scheme was described
examined previously.8 Here, for the convenience of th
reader, a brief overview of the various terms is given. Sho
range potentials consist of four-contributions. Three are
neric and do not depend on amino acid sequence. The ro
the generic terms is to provide a strong bias toward a ‘‘p
teinlike’’ distribution of main chain conformations. The firs
generic term comes from the statistics of the three-vec
fragments of the PDB lattice replicas of globular protei
and is equivalent to an effective Ramachandran torsio
potential23 for these reduced models

«g5 f ~vi21 ,vi ,vi11!. ~1!

The potential is encoded in the form of a histogra
defined in terms of six bins of the ‘‘chiral’’ value of the
square end-to-end distance for three-vector fragme
r 2* i21,i12, defined as follows:

r 2* i21,i125r 2i21,i12 sign~~vi21^vi !•vi11!. ~2!

The binning definition and numerical values of this p
tential are given in Table I. The fourth bin corresponds to
right-handed helical conformations, while bin Nos. 1 and
correspond to the expanded,b-type conformations.

The second generic short-range interaction term provi
a longer distance bias toward a proteinlike distribution
states. This favors ‘‘regular’’ elements of secondary stru
ture, i.e., helices andb-type expanded states.

h i5 f ~r i22,i12! ~3!

and the functionh i is of the following form, where

h i521, for ~r 2i22,i12!
1/2,6.2 Å,

h i521, for ~r 2i22,i12!
1/2.10.6 Å, ~4!

h i50 otherwise.

The third generic term is somewhat more complica
and reflects the stiffness of protein chains. The idea is ba

A

, No. 3, 15 July 1997
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956 A. Kolinski and J. Skolnick: Secondary structure of polypeptide chains
FIG. 2. Elementary moves employed in the Monte Carlo sampling algorithm.~A! examples of single residue, two-vector moves. The solid line marks
‘‘old’’ conformation, while the dashed lines and open symbols of Ca united atoms symbolize a subset of possible new conformations. The number o
conformations depends on the old conformation and the maximum number is equal to 11. The specific new conformation is selected by a pse
mechanism. Only moves that lead to ‘‘proteinlike’’ conformations of all involved three-vector fragments~i.e., conformations that occur in known protei
structures! could be accepted by the algorithm.~B! examples of end move. Here the number of allowed new conformations is bigger due to the
conformational flexibility of chain ends.~C! several examples of three-bond moves,~D! a longer distance, two bond permutation move. The virtual Ca bonds
indicated by arrows are the only ones affected by this kind of move.~E! a longer distance four-bond permutation move. The bonds indicated by the ar
in the top of the figure are permuted with the two bonds on the bottom of the figure, and the intervening portion of the chain translates in a ‘‘rigid b
fashion.
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le-
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e
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a

TABLE I. Sequence independent torsional potential.

Bin
No.

Description
of conformation

Range ofr 2* i2 i ,i12

~in lattice units!
«g

~in kBT)

1 Expanded, beta 289,257 20.052
2 Coil/turn 256,226 0.105
3 Left-handed helix 225, 0 2.474
4 Right-handed helix 0, 25 20.987
5 Coil/turn 26, 55 0.075
6 Expanded, beta 56, 91 1.043
J. Chem. Phys., Vol. 107
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on the observations that the mutual orientations of cer
pairs of peptide bond plates are highly correlated in the e
ments of secondary structure found in folded proteins.

«p5cos~hi ,hi12!1cos~hi ,hi14!, ~5!

where cos(hi ,hj ) denotes the cosine of the angle between
i th and j th vectors defining the orientation of the peptid
bond plates~the vectors from amide hydrogen to the nitrog
and carbonyl oxygen!. These peptide vectors are parall
along the helical fragments. In expanded states, every pa
second~and forth! peptide bond vectors is parallel. The ide
, No. 3, 15 July 1997
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957A. Kolinski and J. Skolnick: Secondary structure of polypeptide chains
behind the reconstruction of all backbone atomic coordina
and the correlation between the peptide plates is depicte
Fig. 3.

The sequence specific part of the short-range interact
was defined in a similar way as the generic potential@Eqs.
~1! and ~2!#; however, this term depends on the identity
the two consecutive amino acids:

«s5 f ~Ai ,Ai11 ,r
2* i21,i12!. ~6!

The potential is used in the form of six bin histogram
that are amino acid pairwise dependent depending on
identity of residueAi andAi11, whereAk is the identity of
the kth residue in the sequence. The potential is availa
upon request or can be downloaded from an anonymous
site.24

The total conformational energy associated with
short-range interactions has been computed as follows:

Eshort5( ~4«s11.5«g1«h1«p!, ~7!

where the summation is performed along the peptide ch
The scaling of the sequence specific interactions relativ
the generic terms is to some extent arbitrary. These sca
factors were previously adjusted by trial and error meth
for a few representative proteins belonging to various str
tural classes.14 In the presence of long-range interactio
~mostly due to a surface effect associated with the segr
tion of polar and nonpolar residues on the protein surfa
see Sec. II D!, the short-range interactions have to comp
with the tertiary preferences. Thus, in order to compens
for this effect, relative to our early work, the contribution
one of the generic potentials («g) was increased from 1.0 to
1.5. Due to our approximate account of long-range inter
tions, the secondary structure is more regular than was
previously in their absence. Consequently a more pre
definition of the secondary structure in the scoring proced
~see Sec. II E! for the predictions may be used. This is a
other reason for applying stronger short-range terms than
been used in the simulations that ignored all long-range
teractions. It has to be mentioned, however, that the met
works quite well with the original scaling~with the predic-
tions of secondary structure for somea/b-type proteins be-
ing poorer by 2%–3% using the original scaling! as well as
other scale factors ranging over quite a broad range of
ues.

FIG. 3. Illustration of the geometry employed in the definition of the gene
stiffness of the model polypeptide; some pairs of peptide bond vectors
almost always close to parallel orientations in real protein structures.
J. Chem. Phys., Vol. 107
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D. Spherical protein model and long-range
interactions

Let us consider the mean square radius of gyration,S.

S5FN21( ~rCM2r i !
2G1/2, ~8!

whererCM is the position of the center of mass of the glo
ule, andr i is the position of the center of mass of thei th side
chain. In their native state, single domain globular prote
exhibit closely packed conformations with a very small nu
ber~and size! of cavities. Thus, based on a statistical analy
of known protein structures, the mean square radius of g
tion S scales with the number of residuesN according to

S52.2N0.38 in angstroms. ~9!

The exponent 0.38 is very close to the value of 1/3 e
pected for a collapsed long polymer chain. This arises
cause the vast majority of monomeric, single domain glo
lar proteins adopt a close to spherical shape, w
hydrophobic residues predominantly buried inside the gl
ule and polar residues exposed to the solvent. These ob
vations constitute the basis of the one body burial potent
employed in this work. Again, there are generic compone
of these potentials and sequence specific potentials. The
potential is based on the statistics of the distribution
amino acids found at a given distance from the center
mass in a library of native protein structures. This distrib
tion, in the form of a histogram, is given in Table II, and th
model system is driven to adopt this distribution. The cor
sponding potential has the following form:

Eb5«b( umo,i2mi u, ~10!

wheremo,i is the target number of amino acids at a giv
distance from a fixed point~the center of the MC working
box! that is also assumed to be the center of mass of
model chain. Of course, at the beginning of the simulat
run, the random chain is always placed at the center of
MC box. Note that the sphere of radiusS contains somewha
less than half amino acids~see Table II!, and in part defines
the hydrophobic core of globular proteins.

In order to achieve a more uniform distribution of pr
tein fragments within the globule, an approximate exclud
volume was introduced. A 33333 cluster of underlying cu-

re

TABLE II. Distribution of centers of mass of protein side chains within t
globule.

B in of S

Distance from the
center of mass
~fraction ofS) Percent of residues

1 0–1/3 2.43
2 1/3–2/3 16.51
3 2/3–1 36.47
4 1–4/3 34.29
5 4/3–5/3 9.61
6 5/3–2 0.56
, No. 3, 15 July 1997
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958 A. Kolinski and J. Skolnick: Secondary structure of polypeptide chains
bic lattice points is associated with each side chain. A M
working box serves as an occupancy array for the mo
polypeptide side chains. The excluded volume per residu
significantly underestimated, and therefore the cubic sh
of the side chains does not distort the model chain geome
Each time the two side chains overlap, the system ene
increases by« rep. The short-range excluded volume~up to
the sixth neighbors down the chain! is treated more explic-
itly, prohibiting side chain–side chain distances below
values typical for proteins; again, the penalty for too clos
distance is« rep.

The situation when the polypeptide chain changes
direction inside the globule instead of reversing on the s
face is extremely rare; thus, an additional penalty« rep is
superimposed when the sharp turn is buried below the
face limited by the sphere of radiusS. Erep is the sum of the
excluded volume and premature turn penalties over the e
chain.

The sequence specific burial potential consists of t
terms. The first is a surface term defined with the help of
Kyte–Doolittle25 hydrophobic scale by

«Ai,KD , when r i.S,

« i ,KD5 ~11!

0, when r i,S.

The «Ai,KD are the Kyte–Doolittle~KD! hydrophobicity
parameters.25 The total contributionEKD is the sum of this
term over all residues.

The second sequence specific term,Er , is derived from
the straightforward statistics of particular amino acid occ
rences at a given distance from the center of mass of
globule and was discussed previously. The idea is give
Fig. 4. The numerical values of the potential are given in
form of a histogram. For larger values ofr ~above 1.5S!, the
potential for all amino acids was extrapolated by a monoto
cally increasing function. The data forr,0.3S ~three first

FIG. 4. Illustration of the idea of a centrosymmetric, one body burial
tential. See the text for more detail.
J. Chem. Phys., Vol. 107
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bins! were omitted due to the dispersion associated with
small volume of this region of the molecules and, con
quently, the poor statistics in this bin. In the simulations, t
statistical potential~numerical data could be found in PAP
supplementary material26! was smoothed by replacing it by
weighted average over three consecutive bins. The three
bins have values equal to the values in the fourth bin a
smoothing. The scaling of the contributions to the burial p
tential is as follows:

Eburial5Eb1Erep10.25*EKD14.0Er . ~12!

Using this scaling, all the components are in the range
61–2 kBT per residue, and the burial energy is of comp
rable magnitude as the short-range interactions. Never
less, the scaling is arbitrary, and it is possible that with
different scaling factor the performance of the second
structure prediction method described here could be so
what better. The total energy of the model system is the s
of long-range burial and short-range interactions.

E. Scoring procedure for the secondary structure
prediction

In order to compare the properties predicted by
model to the structure of real proteins, it is necessary
define a method for assigning the secondary structure f
low temperature, isothermal MC simulations. Of cours
since long-range hydrogen bonds are not explicitly includ
into the potential, we cannot use a standard class
method27 that starts from assignment of hydrogen bonds. W
therefore opt for a classification based on backbo
geometry.28,29 There is, of course, a direct corresponden
between the main chain conformations and the second
structure of the polypeptide.29 The method used here is th
same~except for modifications resulting from use of mo
rigorous criteria for helical states! as in our previous work,
and is based on a single distance and chirality paramete
a given residue. In particular, when

r i22,i12.10.6 Å, assign thei th

residue asb extended~E!,

r i22,i12,7.2 Å, and r i22,i11
2* and r i21,i12

2*

are right handed, assign as helix~H!, ~13!

otherwise, assign as coil/turn~2!.

This simple geometrical assignment correlates very w
with the three-class reduced notation~commonly used to
score various secondary structure prediction methods! of the
Kabsch–Sander assignment.27 It should be noted that the
proposed method of secondary structure classification
vides much more information due to the possibility of an
lyzing various geometrical properties. Actually, one can p
dict quite complex short-range conformational characteris
that are not available from standard methods. Thus comp
son of the results from the scoring of secondary struct

-
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959A. Kolinski and J. Skolnick: Secondary structure of polypeptide chains
predictions proposed here with other methods should be
derstood as the most conservative estimate of the predic
accuracy and the utility of this approach.

The method also predicts the surface turns~or loops!
where the polypeptide chains change their average direc
~a U turn!. The procedure for identifying a loop region is a
follows. First, a constant simulation time interval, the cha
is scanned, and the chain reversals are counted accordi
the criteria given below. The first scan detects a ‘‘conve
part of the chain; however, some end residues of vari
regular elements of secondary structure could be include

~r i2r i25!•~r i152r i !,0, then lk~ i !51,
~14!

otherwise lk~ i !50.

Next, a second scan is performed to detect
‘‘straight’’ regions of the chain, that presumably are the
ements of regular secondary structure. This could be fur
used to remove false assignments of loop residues. Le
residues be assigned a structural index,s( i ), which is ini-
tially set equal to zero fori51,...N. Then, the second scan
ning updatess( i ) according to the following criteria:

when u~r i152r i11!2~r i142r i !u2,13.4 Å2,

and u~r i152r i11!u.10.6 Å, ~15a!

and u~r i142r i !u.10.6 Å,

then the fragment is assinged to be expanded, ands( i1k)
51, with k51,4.

u~r i152r i11!2~r i142r i !u2,13.4 Å2,

and u~r i152r i11!u,7.2 Å, ~15b!

and u~r i142r i !u,7.2 Å,

then the fragment is helical, ands( i )51, with k50.5.
The third scan of the chain assigns loop residues c

bining the curvature index,lk( i ), and the secondary structur
index,s( i ), according to

loop~ i !5 loop~ i !11, when s~ i !50 and lk~ i !51.
~16!

The idea of U turn~surface loops! detection is further
clarified in Fig. 5. At the end of the simulations, one obta
a histogram of loop frequency loop(i ); i51,N; with values
of loop(i ) ranging from 0 to 20~the number of scanning
passes in a single run!. For high values of loop(i ) exceeding
an assumed threshold value~six counts!, the i th residue is
assigned as part of a U turn. If two residues assigned as pa
of a U turn are separated by less than four residues,
intervening residues are also assigned as being part o
same U turn. This filtering corrects for the false detection
very short regular elements of intervening secondary st
ture, i.e., it is assumed that a helix or beta strand~with pos-
sible flanking expanded coil fragments! cannot be shorte
than four residues. Such short expanded fragments are
ally parts of wide surface U turns.

At first glance, the frequency of collecting statistics f
loop assignment may appear to be very low; however,
J. Chem. Phys., Vol. 107
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algorithm is very stable in this respect. While the over
chain conformation relaxes very quickly and changes m
times during the single run, the loop signatures remain
most invariant. A test simulation with a 10 times higher sa
pling frequency of the loop geometry gave qualitatively t
same results. At the end of each run, the secondary struc
is assigned according to the criteria given in Eq.~13!, based
on the average~time average from the MC run! values of the
corresponding intrachain distances and chirality facto
Residues that are detected as a member of U-turn region
then reassigned as coil residues~2!, regardless of the out
come of the initial assignment~the threshold value for the
number of counts as a loop region is three!. However, this
reassignment very rarely changes the original one. Never
less, it contributes to a slightly more consistent final pred
tion.

III. RESULTS AND DISCUSSION

In the present study, we tested the same set of sin
domain globular protein sequences as was employed in
previous work without tertiary interaction. For each test s
quence, at least three independent simulations were
formed; each starts from a random coil state, and is subje
to simulated annealing and collapse of the chains. Then
isothermal run atT51.0, during which the final statistic
were collected, is performed. The results of the simulatio
are very reproducible, and there is good correlation betw
the total energy and the accuracy of the secondary struc
prediction.

FIG. 5. The idea for detecting the loop fragments. The units indicated by
arrows are detected as belonging to the loop region by a convexity crite
~antiparallel orientation of the two solid vectors!. One of the convex units is,
however, part of a helix~parallel orientation of the two dashed-line vectors!,
therefore its loop assignment was disregarded.
, No. 3, 15 July 1997
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960 A. Kolinski and J. Skolnick: Secondary structure of polypeptide chains
A. Burial energy and size restraints improve
secondary structure prediction

The main question in this work is associated with t
interplay of long-range~between residues that are at lon
distances along the chain! and short-range interactions i
globular proteins. The secondary structure seen in the fo
native state is a compromise between these two kinds
interactions. In Table III, we summarize the accuracy of s
ondary structure prediction for the 10 test proteins~addi-
tional details could be found in PAPS supplementary data26!.
The secondary structure for the test sequences was ass
according to the geometrical criteria described in Sec. II.

As compared to simulations lacking the restraints
chain compactness and the contributions of chain burial,
accuracy of the secondary structure prediction increases
stantially, on average by 9.1%~from 56.7% obtained in the
previous work to 65.8% in this work, as an average weigh
by the number of residues in each protein sequence!; how-

TABLE III. Comparison of secondary structure predictions obtained in
present Monte Carlo simulations, in the simulations without burial inter
tions and by PHD method.

Proteins
Results of MC
simulations~%!

Without burial term
~%!

PHD
~%!

1cd8 67.5, 68.4, 70.2 56.1 76.3
1crn 63.0, 67.4, 67.4 60.9 39.1
1ctf 66.2, 60.3, 61.8 58.8 60.3
1gb1 87.5, 82.1, 80.4 73.2 91.1
1mba 63.7, 58.9, 65.1 54.8 78.2
1pcy 65.7, 65.7, 65.7 60.6 75.8
351c 64.6, 67.1, 64.6 61.0 69.5
2pab.A 62.3, 61.4, 65.8 52.6 70.2
3fxn 70.3, 65.9, 66.7 60.1 73.9
2trx 59.3, 58.3, 63.9 50.5 63.0

Average 65.8 56.7 71.2
J. Chem. Phys., Vol. 107
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ever, in some cases the improvement is of a qualitative
ture while in others it is rather small, but always well abo
statistical error. This demonstrates that the burial poten
and compactness restraints significantly influence the res
ing secondary structure. First, there is a somewhat tri
effect that comes from globule size restrictions. A given s
ondary structural element simply cannot propagate for a s
stantial distance beyond the boundary of the globule. In c
trast, such a situation occurs in most one-dimensio
methods that overpredict the central helix of protein G in
direction of theN terminus. This effect was also observed
our previous MC studies, where the all tertiary interactio
were neglected. Second, in single domain proteins, the
drophobic side chains tend to be buried in the core of
globule, whereas the polar, hydrophilic side chains tend to
exposed to the solvent. This, of course, has to moderate
secondary structure. Some regularizing effect could also
due to the more~on average! hydrophilic loop regions. This
also may regularize the secondary structure between
loops.

The results of particular runs for a given sequence dif
due to the statistical character of the method. The fluct
tions are larger for smaller proteins and become relativ
smaller for larger structures. This tendency is demonstra
in Tables IV and Tables V where the results of three ind
pendent predictions for the sequence of the 56 residueB1
domain of protein G~1gb1! are compared with the results o
three independent runs for the 138 residue protein flavodo
~3fxn!. Besides the secondary structure prediction, we a
include the results of surface loop/turn assignments. Here
means that the loop probability is very high@ loop(I ).6#,
while smaller values indicate the presence of more flexi
and partly exposed~in the time averaged sense! residues.
loop(I )>3 overrides the secondary structure assignmen
other states. Apparently, the magnitude of local fluctuatio
in the prediction accuracy~the extent of secondary structur

e
-

of the
hird line

ons
ording

ths,
TABLE IV. Results of five independent simulations for protein G~1gb1!.

87.5%, 82.1%, 80.4%, 80.4%, and 87.5% correctly predicted.
123456789012345678901234567890123456789012345678901234567890123456
MTYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVDGEWTYTDDATKTFTVTE
-EEEEEE------EEEEEE---HHHHHHHHHHHHH------EEEEE----EEEEE-
-EEEEEEE------EEEE----HHHHHHHHHHHHHH-----EEEE---EEEEEEE-
-EEEEEEE-------EE-----HHHHHHHHHHHHHH------EEE---EEEEEEE-
-EEEEEEE------EEE-----HHHHHHHHHHHHHH-EEE-EEEE---EEEEEEE-
-EEEEEEE------EEE-----HHHHHHHHHHHHHH-EEE-EEEE---EEEEEEE-
-EEEEEEEE-----EEE-----HHHHHHHHHHHHHH-----EEEEE---EEEEEE-
--------5U21-----1UUU----------------15----114U4--------
-------21455UU4-13UUU------------------3UU111UU4--------
--------1-2UUU1-2UU2-----------------1--1----3UU1-------
--------UUUUU---1UU33----------------------21UU2--------
---------UUUU---2UUUU11--------------41------2UUU1------

Note: The first three lines describe the native structure. The first line of this panel gives the last digit
residue number, the second line the one-letter codes of the protein G amino acid sequence, and the t
provides the three-letter code of the secondary structure assignment, according to DSSP method~H—helix,
E–extended/beta, and ‘‘-’’ coil, or everything else!. The next five lines are the secondary structure predicti
from the five independent MC runs; the remaining lines provide the surface U-turn/loop predictions acc
to the procedure described in Sec. II. U denotes a strong prediction of the surface loop region~more than 5 per
20 counts during the simulations!, the numbers from 1 to 5 denote weak loop predictions of various streng
and ‘‘-’’ means that at a given position the loop conformation was never detected.
, No. 3, 15 July 1997
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Downloaded¬06¬A
TABLE V. Results of three independent simulations for flavodoxin~3fxn!. ~Note: See footnote of Table IV;
here, the results come from three independent Monte Carlo simulations.!

70.3%, 65.9%, and 66.7% correctly predicted.
12345678901234567890123456789012345678901234567890
MKIVYWSGTGNTEKMAELIAKGIIESGKDVNTINVSDVNIDELLNEDILI
EEEEEE----HHHHHHHHHHHHHHH-----EEEE-------------EEE
--EEEEEEEEE-HHHHHHHHHHHHH-----EEEEEE--EE-HHHHH-EEE
--EEEEEEEEE-HHHHHHHHHHHHH----EEEEEEE----HHHHH--EEE
-EEEEE------HHHHHHHHH-EEEE----EEEE-------HHHHH-EEE
---------11---------------13312-------------------
--------------------------243-------32----------1-
------4UU5--------------1-3U2-----UUU51-------4-2-
12345678901234567890123456789012345678901234567890
LGCSAMGDEVLEESEFEPFIEEISTKISGKKVALFGSYGWGDGKWMRDFE
EEEE-E---------HHHHHHHH-------EEEEEEEE-----HHHHHHH
EEE-HHHHHHHH---HHHHHHHHH-------EEEEEEEEE--HHHHHHHH
EEE----HHHHHH------HH-EEEE-----EEEEEEEEE----HHHHHH
E------HHHHHH-HHHHHHHHHH-EE---EEEEEEEEEEE--HHHH--H
-1---------1-----------224UUUUU2-------1U11-------
----2-1-------22---------23UUUU1-------1311-------
-1------------------------2UUU2-------------------
12345678901234567890123456789012345678
ERMNGYGCVVVETPLIVQNEPDEAEQDCIEFGKKIANI
HHHHH---EE----EEEE---HHHHHHHHHHHHHHHH-
HH---EEEEEE---EEEEE-HHHHHHHHHHHHHHHH--
HH---EEEEEE--EEEEE---HHHHHHHHHHH--HHH-
HH---EEEEEE--EEEEEE-HHHHH---HHHHHHHH--
----------1UU4----1-------------------
----------1UU2---1U3------------------
-----------U52----1-------------------
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overprediction or underprediction! is on a very similar level
for most proteins. Thus, larger relative fluctuations of glo
prediction accuracy are seen in smaller proteins, which u
ally consist of a smaller number of secondary structural e
ments. In general, however, the predictions are quite rea
able. For example, in the case of 1gb1, the main error
occurs in some runs is due to the overprediction of sh
extended fragments for residues 38–40. In the native s
these residues constitute a very broad surface loop/turn
has a rather extended conformation~the loop on the top of
the native structure shown in Fig. 6!; however, it is not a part
of theb sheet. From visual inspection of the conformatio
generated by the MC algorithm, this could be deduced w
rather high fidelity. Moreover, the automatic procedure
loop detections assigns these as loop residues~the black frag-
ments of the MolScript30 structure shown in Fig. 6!. Another
example of such an apparent overprediction is the hel
fragment predicted in 3fxn for residues 41–46. If the fl
vodoxin fold were an ideala/b barrel, these residues shou
be part of a helix. In the real 3fxn structure, these resid
are a series of turns that indeed have a conformation th
close to helical, but which nevertheless is somewhat too
panded for the DSSP~Dictionary of Secondary Structure i
Proteins! algorithm to assign the helical pattern of hydrog
bonds. Consequently, this overprediction of the MC alg
rithm paradoxically could even be helpful in thre
dimensional model building.4 Underprediction of one of the
helical fragments in the second simulation for flavodox
J. Chem. Phys., Vol. 107
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~residues 66–73 in the native state! is clearly an error of the
algorithm.

Comparison of several independent runs may help
building a consensus prediction. For some proteins, the a
rithm tends to converge very quickly with a small dispersi
of the final results. For other proteins, the dispersion of
results is greater and seems to correlate with the overall
diction quality. The more reproducible the results of t
simulation are, the better is the accuracy of the second
structure prediction. In this respect, 1cd8 and 3fxn are
amples of very well behaved proteins, while the algorithm
less stable for 1ctf or 1crn.

B. Simulations provide medium-range geometrical
characteristics

The present method of the study of protein chains t
are gently restrained to occupy the proper volume of a glo
lar state provides a wealth of geometrical information tha
not available from standard secondary structure predic
methods. To illustrate, we compile the comparisons of p
dicted secondary structure elements with the native stat
the protein G domain. The comparison is given in Table
The examples show that the elements of secondary struc
are not only correctly predicted with respect to their stru
tural classes~helix, extended, coil!, but also that their geom
etry is quite accurate. This result is not surprising, since
model has a quite accurate description of short-range in
, No. 3, 15 July 1997
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962 A. Kolinski and J. Skolnick: Secondary structure of polypeptide chains
actions. Noticeably, those fragments of secondary struc
that are reproducibly predicted and never ‘‘contaminate
by sparse loop predictions also have a much better geom
cal fidelity. For the protein G sequence, this is the case
the central helical fragment and for two terminalb strands.
These strands are located in the center of the four-strandb
sheet. Usually such strands~in contrast to the edge strand!
have a better defined pattern of hydrophobic/hydroph
residues. This, perhaps, increases the geometrical accu
of the prediction.

Of course, due to the lack of specific tertiary interactio
~pairwise interactions of the side chains, hydrogen bon
etc.!, the topology of the global fold is not defined by th
present method. An example of a conformation generated
the algorithm is shown in Fig. 7. While the individualb
strands, surface loops, and helical fragments are presen
overall topology is wrong. Nevertheless, for a substan

TABLE VI. Comparison of the predicted geometry for protein G~1gb1!
domain with the native state.

Run
No.

Average Ca rms from native~minimum rms! Å

Protein fragments
1–9 12–20 23–35 39–47 48–56

1 1.64 2.99 1.26 3.15 1.87
~0.88! ~2.27! ~0.71! ~1.58! ~1.20!

2 1.80 2.73 1.22 2.44 1.79
~1.22! ~2.12! ~0.76! ~1.83! ~1.08!

3 1.60 2.72 1.43 2.57 1.53
~0.82! ~2.45! ~0.91! ~1.39! ~1.02!

FIG. 6. MOLSCRIPT~Ref. 30! drawing of the native structure of 1gb1. Th
black fragments of the diagram indicate the surface loops/turn detecte
the algorithm.
J. Chem. Phys., Vol. 107
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fraction of proteins, the accuracy of the secondary struct
and the loop predictions allows one to propose a small nu
ber of possible global folds that could be subsequently
fined and tested by other methods.

C. Comparison with other surface U-turns and
secondary structure prediction methods

With respect to the spherical domain model of prote
structure, the method proposed and examined in this wor
somewhat similar to the recently published method for p
dicting surface U turns and transglobular connection12

However, the sampling method and the chain model e
ployed here are more complex and more realistic. While
the previous work12 we achieved a high accuracy of U-tur
prediction ~about 95% of surface turn/loops correctly pr
dicted for 38 test sequences! and prediction of the leading
secondary structure of the transglobular connections~82%
correct prediction!, the secondary structure is better defin
here and is more accurate with respect to a residue
residue comparison. However, the previous method12 led to a
large scattering of secondary structure assignment near
loop fragments. Consequently, the overall accuracy on
residue-by-residue level was low, in the range of 55%. He
the secondary structure assignment was more accurate
somewhat surprisingly, the surface loop predictions w
less accurate. For the set of 10 proteins tested here the
vious method gives 74% correct assignments, while
present method correctly predicted 69% of the surface
turns. Given that the test set used here contains proteins
are on average larger and represent a more diverse colle
of topologies, this level of accuracy is probably acceptab
Note that the most known method of turn prediction~appli-
cable only forb proteins! by Wilmot and Thornton has an
accuracy of about 71%.12,31 The accuracy of our previou
method12 for b proteins was close to 100%, and here t
accuracy forb proteins is also higher~96%!. It should be
added that the present model carries the geometry of

by

FIG. 7. An example of the tertiary ‘‘structure’’ of the B1 domain of prote
G generated by the algorithm. All secondary structure elements and l
are correctly assigned; the fold topology is not defined, however.
, No. 3, 15 July 1997
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963A. Kolinski and J. Skolnick: Secondary structure of polypeptide chains
entire chain. Therefore, it could be expanded very easily
include, for example, some long-range distance restraint
more specific packing restraints.

IV. SUMMARY AND CONCLUSION

In this work, our previously developed models of sho
range interactions for the study of lattice protein dynam
are supplemented by approximate excluded volume inte
tions and a hydrophobic burial potential. The burial poten
was implemented in the form of one body functions that
suitable for single domain proteins. The generic part of
potential drives the model system into conformations wh
residue density in a hypothetical core is comparable to
average density of folded proteins. The sequence spe
burial potential simulates the distribution of various ami
acids with respect to the center of mass of the globular p
tein. Inclusion of this approximate burial potential leads to
better definition of the secondary structure seen during
MC simulations. The accuracy of the predictions of seco
ary structure, as defined by thea-carbon chain geometry
increases by 9%. This is because the global restraint of
collapsed structure to realistic dimensions moderates the
face segregation of the hydrophilic and hydrophobic re
dues, and perhaps to a lesser extent some finer burial pr
ences of various residues. Together with this prediction
secondary structure in a three-letter code~helix, extended,
and coil, which are predicted with an accuracy of 66%!, the
method allows for the prediction of surface loops/tur
where the polypeptide chain changes its direction. This
hances the overall prediction accuracy and its potential va
for protein structure prediction.

How do these predictions compare with the existi
methods? We limit our comparison to perhaps the most p
erful standard method of secondary structure prediction—
Rost–Sander PHD~profile fed neural network system from
Heidelberg! neural network based method.32 For the set of 10
test proteins, the PHD predictions were 5.4% better~71.2%
vs 65.8% from present study!; however, all the proteins con
sidered by PHD are either in the training set or are clos
homologous to members of the training set. The PH
method was used without multiple sequence alignment. N
that multiple sequence alignment information could be e
ployed as well within the framework of the method presen
here. The secondary structural propensities for the mo
chains could be combined to a form ‘‘consensus’’ seque
and the prediction of the secondary structural properties
such a composite could be readily implemented. This po
bility will be explored in the future. However, in contrast
the standard secondary structure prediction methods,
method presented here gives a quite dependable~and consis-
tent with regular fragments of secondary structure! predic-
tion of the surface loop/turns fragments. Moreover,
present method gives the direct geometrical characteristic
the predicted fragments. This has to be contrasted with
nonphysically long helices predicted~for example, the 1 mba
case! by PHD, or a helix changing directly into a stretch
extended states~as in the 1 gbl case!. In addition, one-
J. Chem. Phys., Vol. 107
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dimensional methods~such as PHD! do not distinguish be-
tween false turns~as b bulges! and real turns, where the
chain reverses its global direction. Thus, the propo
method seems to be a useful tool for secondary struc
prediction, as well as the prediction of protein structure
general.

Of course, the predictions are not 100% accurate. O
technical reason for the limited accuracy of the method
that we translated the local geometry of thea-carbon chain
to the secondary structure of protein. This was necess
because in this model the long-range hydrogen bonds
undefined. While the main chain geometry correlates v
well with the secondary structure, some misalignments
certainly possible. However, the more fundamental rea
for the inexact predictions is probably the lack of any s
quence specific pairwise interactions. The results of
present work suggest that these interactions may have a
nificant effect on secondary structure. This is, of course
somewhat trivial qualitative conclusion; however, on a qua
titative level it is not. Our present studies, as well as those
our previous work,14 show that reproduction of local chai
geometry is possible. A further increase of the accuracy
secondary structure prediction, without invoking the comp
tationally very expensive details of long-range interactio
could be achieved in some specific cases. For example
perimposing some~very few! long-range pairwise restraint
~such asS–S crosslinks, metal binding site, etc.! might fur-
ther increase the fidelity and applicability of the prese
method.
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