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ABSTRACT A new and more accurate
method has been developed for predicting the
backbone U-turn positions (where the chain
reverses global direction) and the dominant
secondary structure elements between U-turns
in globular proteins. The current approach
uses sequence-specific secondary structure pro-
pensities and multiple sequence information.
The latter plays an important role in the en-
hanced success of this approach. Application
to two sets (total 108) of small to medium-sized,
single-domain proteins indicates that approxi-
mately 94% of the U-turn locations are cor-
rectly predicted within three residues, as are
88% of dominant secondary structure ele-
ments. These results are significantly better
than our previous method (Kolinski et al., Pro-
teins 27:290–308, 1997). The current study
strongly suggests that the U-turn locations are
primarily determined by local interactions.
Furthermore, both global length constraints
and local interactions contribute significantly
to the determination of the secondary struc-
ture types between U-turns. Accurate U-turn
predictions are crucial for accurate secondary
structure predictions in the current method.
Protein structure modeling, tertiary structure
predictions, and possibly, fold recognition
should benefit from the predicted structural
data provided by this new method. Proteins
29:443–460, 1997. r 1997 Wiley-Liss, Inc.
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INTRODUCTION

The three-dimensional (3-D) structure of a globu-
lar protein can be viewed as being built from a series
of linear, transglobular blocks connected by surface
loops and turns where the backbone changes overall
direction1 (the U-turns). The blocks between these
surface U-turns may consist of regular secondary
structural elements, such as helices or b-strands, or
irregular transglobular loops. Figure 1 uses a simple

b-protein to show the above idea. One of the most
important purposes of secondary structure predic-
tion is to provide starting information for 3-D pro-
tein model building. Additionally, the positions of
U-turns provide invaluable information for construct-
ing a qualitatively correct low-resolution 3-D struc-
ture. Kolinski et al.2 have developed a method that
can predict the positions of the surface U-turns and
the dominant secondary structures the protein back-
bone adopts in the transglobular blocks with rather
high accuracy. The results obtained from this method
are potentially very useful in protein model building
and fold recognition and have been applied in the
initial steps of a promising low-resolution protein
tertiary structure prediction algorithm.3,4

There are, however, some practical limitations of
this method. First, the model assumes that the
globular proteins are spherical in shape. Although
this is generally a good approximation, there are
many known exceptions where the form of burial
potential used in the method can be invalid. Second,
this method is only applicable to relatively small,
less than 100-residue, single-domain proteins. For
larger proteins, it is necessary to search for other
methods. Moreover, the U-turn positions predicted
by the method are sometimes very diffuse, and it is
difficult to objectively determine the ends of the turn
regions. This might prevent accurate model build-
ing. Actually, the second limitation mentioned above
reflects the inadequacy of the model in describing the
structures of larger proteins. Although most second-
ary structure elements are still more or less linear,
curved helices and strands are more common in
larger proteins and, thus, the number of topological
elements are less well defined. Furthermore, despite
the fact that loops and turns regions are mostly
exposed in larger proteins, many linear blocks are
not necessarily transglobular in nature, which makes
the length constraints more difficult to apply.
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In this study, we present a new method that is, on
average, more accurate for small proteins than the
previous method,2 but is now also applicable to
larger proteins. The new method is based on a simple
statistical secondary structure propensity energy
function5 derived from experimentally determined
protein structures and the use of multiple sequence
information. Although the realization of the low-
resolution protein model and the prediction objec-
tives are the same, the current method differs signifi-
cantly from our previous approach. First, the previous
method (using only one sequence) treats the U-turns
and the blocks on equal footing. It uses the sum of
various energy terms to optimize the best U-turn
positions and secondary structures simultaneously
by fitting and orienting the structural templates.
Here, U-turns are first identified by the turn propen-
sity (defined by the statistical potential) averaged
over a set of homologous sequences. Then, the domi-
nant secondary structures of the ‘‘blocks’’ between
U- turns are determined by the length constraints
and the averaged secondary structure propensity.
Here, the ‘‘dominant secondary structure’’ specifies
the type of secondary structure conformation (helix

or extended states) adopted by the majority of resi-
dues in a block. Although the previous method
contains more global information, and at face value
seems to be a more reasonable way to make struc-
ture predictions, we find that, in reality, the U-turn
positions in protein structures seem to be primarily
determined by the local interactions. Furthermore,
for globular proteins to maintain roughly spherical
shapes, the secondary structure types that the se-
quence fragments can adopt between the U-turns
correlate strongly with the separations between the
U-turn locations. Thus, if the U-turn positions can be
accurately predicted, then in many cases the domi-
nant secondary structure types of the blocks also can
be predicted with high accuracy. The various terms
in the energy function used in the previous method
more realistically describe the interactions within a
protein structure. However, due to the statistical
nature of these energy terms, they also may intro-
duce more ‘‘noise’’ into the prediction. The current
method uses only one of these energy terms, and the
inclusion of the multiple sequence information seems
to significantly reduce the noise level. In terms of
computational efficiency, the current method is very
straightforward. A typical prediction with a reason-
able number (less than 100) of homologous se-
quences takes only seconds on a modern workstation
compared with the previous method that used a
single sequence and took on the order of hours of
CPU time. In principle, we also can use multiple
sequence information in our previous method, but in
practice it would be too time consuming. Further
comparisons to the previous method will be made
later in this article.

Our current approach bears some similarity to the
turn prediction approach by Cohen et al.6 in that
both methods are designed to directly predict the
turn positions in all classes of globular protein
structures using local sequence properties. Their
method is based on specific ‘‘sequence patterns,’’
which involve hydrophobicity, charge, and special
sequential arrangements of residues implemented in
the context of a pattern-matching computer lan-
guage. Some length constraints (length-dependent
masking) also are applied for fine-tuning the predic-
tions. High accuracy was achieved on their test set of
proteins. However, to reach this high accuracy, the
class of the hairpin structure (a/a, a/b, or b/b) has to
be known beforehand, as are the complex sets of
different patterns for each class of turns. On the
other hand, the current method is energy based and
does not require the knowledge of hairpin types or
any predetermined sequence patterns. Also, the cur-
rent method predicts the dominant secondary struc-
ture types of the blocks after the U-turn positions are
determined, as opposed to use of the secondary
structure types as input. Thus, we anticipate that

Fig. 1. Ribbon diagram of a small (62 residues) b-protein, 1
ebx (x-ray structure). This figure shows the idea that the protein
structure at low resolution consists of secondary structural ele-
ment blocks and U-turn regions. The black regions are the
predicted U-turn positions by the current method, which correlate
very well with the crystal structure. Notice that a transglobular loop
crosses the main b-sheet. Even though it is not a ‘‘regular’’
hydrogen-bonded secondary structural element, the U-turns at
both ends of this loop are correctly predicted.
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the current method will be more general and easier
to apply.

The outline of the rest of the article is as follows. In
Materials and Methods the form of the energy func-
tion and details of implementation of the new method
is presented. Then, in Results and Discussion, re-
sults on two test sets of 68 and 40 proteins, respec-
tively, are shown, including the 38 proteins tested in
the previous study, and comparison with our previ-
ous method is made. To assess the accuracy and the
reason for success, predictions based on random
assignment of the U-turn positions on a subset of the
test proteins are made and analyzed. Finally, in the
conclusion, the strengths, limitations, and possible
further improvements of our current approach are
discussed.

MATERIALS AND METHODS

The goal of the current study is to develop a
method to accurately assign the U-turn positions in a
protein sequence and the dominant secondary struc-
ture between the U-turns. First, a given amino acid
sequence is scanned by using a statistical secondary
structure propensity potential to identify localized
regions showing a strong turn propensity. The some-
what noisy signals obtained in this way are smoothed
by a local three-point averaging, by multiple se-
quence averaging using homologous sequences (if
available), and by using a discrete Fourier transform
(DFT)7 as a high-frequency filter. Once the U-turns
are identified, the secondary structure types of the
blocks between the U-turn regions are decided by
length constraints as well as the overall secondary
structure preference of the residues within the blocks,
which are also determined by the same statistical
potential. A detailed description of the potential and
the procedures follows.

Secondary Structure Propensity (r14)
Potential

This short-range sequence-specific secondary struc-
ture propensity potential has been discussed previ-
ously5 and has been used in lattice simulations of
protein folding3–5 and in threading.8 It is based on
the statistics of the occurrence of particular consecu-
tive triplets of Ca-Ca vectors in the database of
known protein 3-D structures. For easier derivation
and practical use, the three-vector descriptor is
mapped onto the ‘‘chiral’’ distance between the ends
of vectors,

es 5 es(ai, ai11, r2*i21,i12)

r2*i21,i12 5 r2*i21,i12 sign ((ni21 3 ni) · ni11) (1)

where ai is the amino acid residue type at position i,
vi is the vector from Cai to Cai11, and r2*i21,i12 is the

‘‘chiral’’ square of distance from Cai21 to Cai11 and is
positive if the three vectors are arranged in a right-
handed conformation and negative if they are in a
left-handed conformation. The observed values (in
Å2) of r2*i21,i12 in experimentally determined struc-
tures of proteins are grouped into six coarse-grained
bins that correspond to different structural classes:

2128 ,r2*i21,i12 ,85 bin 5 1 extended b

285 ,r2*i21,i12 ,38 bin 5 2 loops and turns
(left-handed)

238 ,r2*i21,i12 ,0

0 ,r2*i21,i12 ,37 bin 5 4 helix (right-
handed)

37 ,r2*i21,i12 ,83 bin 5 5 loops and turns
(right-handed)

83 ,r2*i21,i12 ,135 bin 5 6 extended b

The generally used form is thus

er14 5 eri21, i12
(ai, ai11, bin) (2)

where the bin number signifies the range of ‘‘chiral’’
distance squared and the structural class. The term
r14 indicates that the energy is a function of the
distance between two Ca atoms separated by three
residues in the sequence. A total of 234 high-
resolution protein structures were used in the poten-
tial derivation. The entire set of 2,400 (20 3 20 3 6)
energy parameters may be obtained from the au-
thors upon request. It is noted that the structures
corresponding to specific r14 bins, which are based
only on local Ca-Ca distances, do not always corre-
late with the hydrogen bond-based secondary struc-
ture classification.9 In particular, bin 1 and bin 6 can
represent extended loop regions as well as hydrogen-
bonded b-strands; bin 2 and bin 5 often represent
turn regions connecting different secondary struc-
ture elements. Bin 5 also can include distorted
helices. Table I shows a comparison of the r14
definition with that of the DSSP9 assignments for
three representative proteins.

Turn Position Determination

We define a ‘‘turn state energetic preference,’’ E8T,
at each residue as

E8T (i) 5 min [er14(ai, ai11, 2), er14(ai, ai11, 5)]. (3)

Similarly, the ‘‘extended state energetic preference,’’
E8E, and the ‘‘helix energetic preference,’’ E8H, are
defined as follows:

E8E (i) 5 min [er14(ai, ai11, 1), er14(ai, ai11, 6)]. (4)

E8H (i) 5 er14(ai, ai11, 4). (5)
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Because a left-handed helix is very rare and the
statistics for this bin are not very good, we do not use
bin number 3 in calculating E8H. To avoid local
fluctuations, these energies are averaged over three
consecutive residue positions:

ET (i) 5 1⁄3[E8T (i 2 1) 1 E8T (i) 1 E8T (i 1 1)] (6)

EE (i) 5 1⁄3[E8E (i 2 1) 1 E8E (i) 1 E8E (i 1 1)] (7)

EH (i) 5 1⁄3[E8H (i 2 1) 1 E8H (i) 1 E8H (i 1 1)]. (8)

We then define

ET*(i) 5 ET (i) 2 min [EE(i), EH (i)] (9)

which is a measure of the turn propensity relative to
the most favorable helix or extended type of struc-
ture. If one now plots the E*T along the sequence,
distinct low-energy minima are usually apparent.
These regions correspond to the predicted turns.
However, the E*T vs. residue position curve is usually
noisy, with closely spaced minima. For easier auto-
matic assignment of the turn positions, we filter out
the ‘‘high-frequency’’ component of the E*T curve by
using a DFT and inverse Fourier transform. The
ET(i) is first transformed into the ‘‘frequency do-
main’’ by

F (u) 5
1

N o
i

E*T (i) exp (2j2pui/N ) (10)

where N is the number of data points and j isÎ21.
We then define a cut-off frequency as

ucut 5 1/nmin (11)

where nmin is the minimum length (in residues) of a
b-type block as defined in the previous study:2

nmin 5 1.8 S0 /3.4 (12)

S0 5 2.2 m0.38 (13)

where S0 is the estimated radius of gyration10 in
angstroms, 1.8 S0 is the estimated diameter of the
hydrophobic core, 3.4 Å is the axial translation of an
extended state per residue, and m is the number of
residues of the protein. We modify F(u) as follows:

F*(u) 5 F(u), if u , ucut

F*(u) 5 0, otherwise. (14)

We then perform the inverse Fourier transform

ET
f (i) 5 SF*(u) exp ( j2pui/N ). (15)

Usually, the resulting ET
f (i) is a smooth curve with

only a few minima, or valleys. A typical example is
shown in Figure 2. A valley is defined at residue ip

TABLE I. Comparison Between the r14† and DSSPAssignments

Protein: 1pra
10 20 30 40 50 60

Sequence SISSRVKSKR IQLGLNQAEL AQKVGTTQQS IEQLENGKTK RPRFLPELAS ALGVSVDWLLNG
T

r14 .HHHHHHHHH HTTETHHHHH HHTTETHHHH HHHHTTTETE TTTHHHHHHH TTETHHHHHEE.
.

DSSP HHHHHHHHHH HHT HHHHH HHHTS HHHH HHHHHT SS TTHHHHHHH HT HHHHHS

Protein: 1cyo

10 20 30 40 50 60
Sequence LKCHNTQLPF IYKTCPEGKN LCFKATLKKF PLKFPVKRGC ADNCPKNSAL LKYVCCSTDKCN
r14 .EETTTTTTE EEEETTTTTE EEEEETTTTT EETETEETEE TTETTETTTE EEEEETTTTE..
DSSP EE S SSS EE TT EEEEEEETTS SS EEEEE ESS TT EEEEEESSTT

Protein: 1ego

10 20 30 40 50 60 70 80
Sequence MQTVIFGRSG CPYCVRAKDL AEKLSNERDD FQYQYVDIRA EGITKEDLQQ KAGKPVETVPQIF VDQQHIG GYTDFAAWVKEN

LDA
r14 .EEETETTTT HHHHHHHHHH HHHHHHTTTE EEEEETHHHT EETHHHHHHH TTETTETTEEEET TTTETTT THHHHHHHHHHH

E..
DSSP EEEEE TT STHHHHHHHH HHHHHHHHSS EEEEE HHH HT SHHHHH HT S S

EEEETTEEEESSHHHHHHHHHHHH

†Bins 1 and 6 are assigned as ‘‘E,’’ bins 2 and 5 are assigned as ‘‘T,’’ and bins 3 and 4 are assigned as ‘‘H.’’
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where

ET
f (ip 2 1) . ET

f (ip) , ET
f (ip 1 1). (16)

The ‘‘major’’ valleys (or turn signals) are then se-
lected as the centers of the predicted turn positions.
The criteria for a ‘‘major’’ valley at residue ip are 1)
the E*T value at one of the five residues centered at ip

(from ip 2 2 to ip 1 2) must be less then zero, i.e., the
turn is preferred over the other two types of second-
ary structures, and 2) the E*T value at ip must be less
than a threshold Emin, which is defined in the current
study as

Emin 5 max (20.5, Ep /3) (17)

where Ep is the average value of E*T in all the valleys.
The width of a valley, which is here made equivalent

to the range of a turn, is found by extending the turn
region from the minimum position (ip) toward both
sides until

ET
f (ip 2 nL ) $ ET

f (ip) 1 0.3 0ET
f (ip) 0, (18)

ET
f (ip 1 nR) $ ET

f (ip) 1 0.3 0ET
f (ip) 0 (19)

where nL and np are positive integers. The region
from residue ip 2 nL to ip 1 nR is then assigned as a
U-turn region. The parameters 20.5 and 3 in Eq.
(17) and 0.3 in Eqs. (18)–(19) were empirically
determined values from the predictions on the first
10 proteins listed in Table II. Although we find that
our prediction is not very sensitive to these empirical
parameters, this makes the first 10 proteins not part
of the ‘‘genuine’’ test set. As will be discussed in the

Fig. 2. Energy plot of the E*T [Eq. (9)] (gray, thinner line) and the ET
f [Eq. (15)] (black) curves of a

typical protein, 3icb. The Fourier high-frequency filter smooths the local fluctuations of the turn
propensity. The predicted U-turn regions are marked with ‘‘T’’ below the curves.
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next section, the accuracy obtained for these 10
proteins is not very different from that of the other
test proteins.

Secondary Structure Determination

After the U-turn regions have been determined,
the sequence fragments between these turns are
used to determine the dominant secondary structure
of the ‘‘blocks,’’ which is either a helix or extended
state. It is noted in this study that if a block is
shorter than four residues, it is simply assigned as a
loop or extended region. The dominant secondary
structures are first determined by length con-

straints, i.e., if the blocks are linear and transglobu-
lar in nature, then a very long block can be only a
helix and a short block very likely an extended state.
We define

MinH 5 Min (10, 1.8 S0 /2.3 2 1) (20)

MaxE 5 Max (11, 2.5 S0 /3.4 1 3) (21)

where the number 2.3, which corresponds to the
average length in angstroms of a residue that is 60%
helical and 40% extended in nature, in Eq. (20) is
empirically determined to give a reasonable lower

TABLE IIA. PDB Names, Sizes (in residues), and Types (numbers of a-helices
and b-strands) of the 68 Test Proteins in Test Set I

Name Size Type Name Size Type Name Size Type

1gb1 56 1a4b 2utg 70 4a 2aza A 129 1a8b
proA 46 3a 1ctf 68 3a3b 3fis A 73 4a
1fas 61 5b 1crn 46 2a2b 3icb 75 4a
1pou 71 4a 1msh 72 1a3b 3wrp 101 6a
1tlk 103 8b 1ftz 70 3a 1bel 120 3a6b
1ris 97 2a4b 1cis 66 1a4b 1cnp A 90 4a
1lpt 90 4a 1tin 69 1a3b 1ert 105 4a5b
1ten 89 7b 1cvo 62 5b 1fmb 104 2a8b
1mjc 69 5b 1adr 76 5a 1iba 78 3a3b
1gps 47 1a3b 1hme 77 3a 1kte 105 5a4b
1tfi 50 4b 1vna 65 1a4b 1ncm 99 8b
1tpm 50 5b 2ait 74 6b 1nin 105 8b
Alcc 51 3a 1cod 62 5b 1pbk 116 1a6b
1pra 63 5a 1cb1 78 4a 1upj 99 8b
1c5a 66 4a 1aca 86 4a 1rge 96 1a6b
1trf 76 4a 1aaj 105 9b 1acx 108 8b
1lea 72 3a2b 1aap A 56 2a2b 1azu 126 1a8b
2ptl 78 1a4b 1aba 87 3a4b 1bds 43 3b
1hdn 85 3a4b 1bov A 69 1a5b 1cbh 36 3b
1bta 89 4a3b 1cd8 114 9b 3ebx 62 5b
1ego 85 3a4b 1ifb 131 2a10b 6hir 49 4b
1svq 94 2a5b 1mba 146 8a 3rnt 104 1a6b
1ubq 76 1a5b 1pcy 99 7b

TABLE IIB. PDB Names, Sizes (in residues), and Types (numbers of a-helices
and b-strands) of the 40 Test Proteins in Test Set II

Name Size Type Name Size Type Name Size Type

1bfm A 69 3a 1ihf B 94 3a3b 1pyt A 94 3a3b
1bmg 84 8b 1ihw A 52 3a3b 1sap 66 1a4b
1cew I 108 2a5b 1mol A 94 1a6b 1smp I 100 1a8b
1ctj 89 5a 1myl B 40 2a 1tif 76 2a4b
1ecm A 91 3a 1ntx 60 5b 1tig 88 2a4b
1erw 51 4a5b 1orc 64 3a3b 1tii D 98 2a6b
1fim 102 2a4b 1otf A 59 1a2b 1vih 71 3a3b
1fip 73 4a 1pdg A 87 6b 1wap A 68 7b
1ftt 68 3a 1pfs A 78 6b 1ytf C 46 6b
1grx 85 3a4b 1pht 83 1a5b 2bop A 85 2a4b
1gua B 76 1a5b 1pog 62 3a 2crt 60 5b
1hcn A 85 6b 1poh 85 2a4b 2hpe A 99 1a8b
1hsm 79 3a 1prt D 98 1a7b
1hst A 74 3a2b 1ptf 87 3a4b

448 W.-P. HU ET AL.



limit for helix sizes in small proteins. (A topological
helix block may contain several residues in the
extended state. Thus, if 1.5 Å is the axial translation
of a helical residue, as used in Eq. (20), the resulting
value of MinH would be too large.) The ‘‘2.5 S0’’ in Eq.
(21) is the estimated diameter of the entire globule.
Any blocks that are longer than MaxE residues are
first assigned as helices, and those shorter than
MinH as extended states.

Supposing that the block begins at residue ibeg
and ends at residue iend, we calculate the following
energies:

EE 5 o
i5ibeg

iend

EE (i) (22)

EH 5 o
i5ibeg

iend

EH (i) (23)

The secondary structures of those blocks assigned by
the length constraints can be overridden when the
energies calculated above indicate differently. Specifi-
cally, when the block size is longer than MaxE and
less than MaxE13 residues, but EE , EH, and 0 (EH 2
EE)/EH 0 $ 0.25, then the block is assigned as an
extended state instead of a helix. Similarly, when the
block size is shorter than MinH and longer than
max(5, MinH-3) residues, EH , EE, and 0 (EE 2 EH)/
EE 0 $ 0.25, then the block is assigned as a helix
instead of an extended state.

For those blocks having lengths between MinH
and MaxE, the secondary structures are determined
primarily by EE and EH. In particular, if EE , EH,
then the secondary structure of the block is assigned
as an extended state; otherwise, it is a helical block.
If EE 5 EH, then the block is assigned as a helix if its
length is longer than 10 residues; otherwise, it is
assigned as an extended state. If the block size is less
than four residues, it is assigned as a loop or turn
region regardless of the energy values.

Multiple-Sequence Averaging

It is generally assumed that proteins with homolo-
gous sequences adopt very similar structures.11 On
the basis of this assumption, it is desirable to use a
set of aligned homologous sequences (if any) to
improve the signal-to-noise ratio in the prediction. In
the current study, all the homologous sequences are
weighted the same. If we suppose that there are ns
homologous sequences available for prediction, the
multiple sequence averaging replaces Eqs. (3)–(5) by

E 8T (i) 5
1

ns o
j51

ns

min [er14(ai, j, ai11, j, 2),

er14(ai, j, ai11, j, 5)] (24)

E 8E (i) 5
1

ns o
j51

ns

min [er14(ai, j, ai11, j, 1),

er14(ai, j, ai11, j, 6)] (25)

E 8H (i) 5
1

ns o
j51

ns

er14(ai,j, ai11,j, 4) (26)

where aij is the ith residue in the jth sequence. The
gap positions are skipped and do not contribute to
the averaging. Thus, ns in Eqs. (24)–(26) is defined
as the actual number of sequences that do not have a
gap at residue i in the multiple sequence alignment.
Figure 3 shows the E8T curves with and without
multiple sequence averaging for a typical protein.
The U-turn and secondary structure predictions can
then proceed as outlined above without modification.
As discussed in the next section, use of multiple
sequence averaging, in general, significantly im-
proves the prediction. In the current study, multiple
sequence alignment information is obtained from
the PHD12,13 program, but this information also can
be obtained from a variety of other sequence search
programs. A flow chart illustrating the entire predic-
tion procedure is depicted in Figure 4.

Test Proteins

Two test sets of proteins with known structures
are used in the current study. The PDB14 names of
these proteins are listed in Table II. Approximately
65% have more than 10 ‘‘quality’’ homologous se-
quences whose sequence identity ranges between 85
and 35%. The first test set consists of 68 proteins,
including the 38 proteins tested in the previous
study and 30 new ones. The structures of 17 of these
68 proteins were used in the derivation of the r14
potential, forming a self-consistent subset for validat-
ing the method. This point is discussed further in the
next section. To test further the predictive power of
the current method, predictions on a second test set
of 40 proteins also are performed. None of the 40
protein structures is used in the derivation of the r14
potential or any other empirical parameters in the
current method.

Accuracy Assessment Method

The measure of the prediction accuracy, which is
the same as used previously,2 is as follows. If there is
overlap between the predicted and the actual U-turn
regions, the errors in U-turn positions are measured
as the additional overlap (if any) between the pre-
dicted turn regions and the regular secondary struc-
ture regions (based on DSSP assignment) in experi-
mentally determined protein structures. If there is
no overlap between the predicted and the actual
U-turn regions, then the distance between the C-
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terminal ends of the predicted and the actual turn
regions is used. The number of over and under
predicted turns also are examined. The accuracy in
secondary structure block assignment is measured
as the ratio of the number of correctly predicted
dominant secondary structures of the blocks to the
total number of regular linear secondary structure
elements, as classified by DSSP, excluding very short
secondary structural elements (less than three b-
residues or less than four helical residues in a block).
A secondary structure element in an experimentally
determined protein structure is counted as correctly
predicted if (1) at least half of the predicted block
region overlaps with a block region in the actual
protein structure and (2) in the experimentally deter-
mined protein structure, the predominant secondary
structure type in the block region (which is predicted
by the current method) is the same as the prediction.
Only one predicted block region can be assigned to a
particular block region in an experimentally deter-
mined protein structure. For example, if the current
method predicts residues 21–35 to be a block be-

tween two U-turns and the predicted dominant
secondary structure type is helical, and in the experi-
mentally determined protein structure, residues
23–34 are a block region and 10 of them are assigned
as helical by DSSP, then we say the prediction is
correct. However, if in the experimentally deter-
mined protein structure, a block runs from residues
30–40 and is helical, then the predicted block does
not correspond to the actual block because less than
half of the predicted block region overlaps with the
actual block region. Thus, the predicted helical block
from residues 23–34 does not count as a correct
prediction.

For the second set of test proteins, an additional
prediction based on the PHD three-state assignment
instead of our r14 energy function has been per-
formed for comparison purposes. The U-turn regions
are taken from the sequence regions between the
assigned secondary structure elements (more than
one consecutive ‘‘H’’ or ‘‘E’’ assignment). The predic-
tion also is assessed by the same method mentioned
above.

Fig. 3. Energy plot of the E*T of a typical protein, 3icb, with a
single sequence (dashed curve) and with multiple-sequence
averaging (solid curve). The DSSP assignment of the turn regions
are marked below the curves. The shapes of both curves are

usually similar; however, the multiple-sequence curve usually
contains less false U-turn signals. In the current case, the
single-sequence curve contains a false signal at residue 7.
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RESULTS AND DISCUSSION
Overall Accuracy

The first set of 68 test proteins is divided into three
overlapping sets: 1) the 38 proteins tested in the
previous method, 2) the 17 proteins whose structures
were used in the derivation of the r14 potential, and
3) the 51 proteins whose structures were not used in
the derivation of the potential. Table IIIA shows the
overall prediction accuracy and the comparison with
the previous method. On average, the inclusion of
the multiple sequence alignment information (if
available) improves the results significantly. In the
following discussion, unless otherwise stated, we
refer only to the multiple sequence averaged results.
It can be seen from Table IIIA that, for the same set
of 38 proteins, the turn positions are predicted much
more accurately than in our previous method, with
an average error improving from more than two
residues to less than one residue. Approximately
94% of the U-turns are predicted within three resi-
dues, whereas our previous method achieved only
80% accuracy. (This should not be confused with the
95% accuracy reported in our previous study,2 which
defined a correct prediction when the predicted
U-turn regions have any overlap with the actual
U-turn regions. Although our current method gives
approximately the same accuracy by that definition,

it usually predicts narrower and more well-defined
U-turn regions.) The prediction of dominant second-
ary structure also improves significantly from 82 to
88% when multiple sequence averaging is used. Due
to the nature of the new method, it is more likely to
overpredict turns; however, the new method is only
slightly worse in this aspect compared with the
previous method, and there are fewer underpredic-
tion errors in our new method. A summary of current
predictions with multiple sequences and comparison
with our previous method for the 38 proteins is given
in Table IV in the same format as Table II of Ref. 2.
(The prediction details of other proteins in the
current study and the prediction program can be
found on our World Wide Web server.15)

As seen in Table IIIA, the prediction accuracy is
consistent across all three sets of proteins, suggest-
ing that there is very little ‘‘memory’’ in the statisti-
cal potential. The slightly lower accuracy for the 17
proteins used in the r14 potential derivation is
probably also due to the insufficient statistics within
this small set. The overall accuracy for the entire 68–
protein set is very encouraging: 94% of the U-turn
regions are predicted within three residues (84% are
within 1 residue) with an average error of less than
one residue; 89% of the identity of dominant second-
ary structures in blocks are correctly predicted.
Another good way to measure the prediction accu-
racy is to calculate the Matthews coefficient.16 In the
current study, the overall prediction gives a Mat-
thews coefficient of 0.92 for the U-turn regions and a
value of 0.79 for the predicted identity of dominant
secondary structure. It is noted that we found no
homologous sequences for four of the test proteins
and that 24 of the test proteins have less than 10
quality homologous sequences. However, if the 24
test proteins are excluded in the test set, the accu-
racy increases only slightly, e.g., the overall accuracy
of the dominant secondary structures becomes 90%.
All other accuracy measures are almost identical to
the values in Table IIIA and, thus, are not shown in
this study. This suggests that, even though multiple
sequence averaging is very helpful for the predic-
tions, perhaps only a few quality homologous se-
quences are sufficient to yield much better accuracy.
As mentioned in the previous section, the first 10
proteins in the test set are used in the determination
of some empirical parameters [Eqs. (17)–(19)]. Table
IIIA also lists the prediction accuracy obtained for
these proteins. It can be seen that they are not
particularly higher than those of the other proteins
and are very close to the average accuracy.

Predictions were also performed on the second set
of 40 test protein structures. Table IIIB summarizes
the prediction accuracy. As mentioned in the previ-
ous section, additional predictions based solely on
the output of the PHD program also are analyzed. It
can be seen that the accuracy obtained with our new

Fig. 4. Flow chart of the procedure used in the current
approach.
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method is very similar to that of the first test set. The
method based on the PHD assignment does not work
as well as our current method of predicting U-turn
positions and dominant secondary structures, and
the PHD method tends to underpredict (or miss) the
U-turns. This method, however, seldom overpredicts
the U-turns. This opens up the possibility of a
combined approach with our current algorithm,
which is discussed further in this section. In this test
set, the PHD method never misassigns a helix to a
b-strand and, thus, has a higher Matthews coeffi-
cient for dominant secondary structure prediction.
The seemingly high standard deviations in Table
IIIB are caused by the discrete nature of the predic-
tion, i.e., the error in U-turn prediction is measured
in multiples of residues, and any imperfection in
dominant secondary structure prediction of a protein
will cause more than 10% error because all proteins
in the test set have less than 10 secondary structure
elements.

Figures 5–7 present typical energy plots for a, b,
and ab proteins with multiple sequence averaging.
As seen in these plots, the ET

f curves clearly identify
the turn regions, whereas the EH and EE curves show
the relative helical and extended-state propensities
between the turn regions. Figure 8 illustrates a
typical example of an overpredicted turn in the

middle of a helix and a case where the length
constraints override the secondary structure propen-
sity.

Turn Predictions

It is actually a little surprising that a very simple
local energy function can be used to determine turn
positions and secondary structure types with such
high accuracy. It has been shown that the loop or
turn regions are easier to locate because they usually
contain a high percentage of hydrophilic and charged
residues or certain residue patterns.17–23 Such pat-
terns are implicit in the statistical potential, and the
current approach does not require any explicitly
predefined patterns. Furthermore, the predictive
power of the current approach is reinforced by
multiple sequence information under the assump-
tions that homologous sequences have very similar
structures. The high accuracy of the U-turn predic-
tion from this study suggests, once again, that the
turn positions are determined predominantly by the
local interactions19 and do not heavily depend on
tertiary interactions.

One drawback of the current method is that be-
cause it looks for the sequence regions showing
strong turn propensity, it has a tendency to overpre-
dict U-turns, as seen in Table III. Apparently, a turn

TABLE IIIA. PredictionAccuracy for Test Set I and Comparison With Previous Method

Previous
test set

(38 proteins)

Structures
used in the

Er14 derivation
(17 proteins)

Structures
not used in

the Er14

derivation
(51 proteins)

First 10
structures

(10 proteins)

The entire
test set I

(68 proteins)

Average U-turn errors in residues per
U-turn

(2.2)†

1.0‡

0.7§

1.2
1.1

0.8
0.6

1.0
0.6

0.9
0.7

Predicted U-turns region with errors2

three residues (%)
(80)
92
95

90
90

94
96

92
96

92
94

Overpredicted U-turns¶ (%) (5.4)
8.2
6.9

11.9
11.9

5.9
5.2

8.2
10.0

7.3
6.7

Underpredicted U-turns†† (%) (4.0)
2.2
1.1

1.7
0.9

1.4
0.7

2.0
0.0

1.5
0.7

Matthews Coefficient for U-turn pre-
diction

(0.73)
0.84
0.88

0.87
0.88

0.92
0.94

0.90
0.91

0.91
0.92

Dominant secondary structure (%) (82)
76
88

76
88

83
90

80
90

81
89

Matthews Coefficient for dominant
secondary structure prediction

(0.75)
0.60
0.79

0.69
0.76

0.70
0.80

0.60
0.81

0.65
0.79

†The numbers in the parentheses are the results from the previous study.2
‡Results using a single sequence.
§Results using multiple sequence averaging (if no homologous sequences available, a single sequence is used).
¶Percentage of the mispredicted U-turn region that divides a secondary structure element.
††Percentage of the U-turn regions that are completely missed by the prediction.
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position can be either a U-turn or a local distortion of
the polypeptide chain (e.g., a b-bulge), the latter of
which is less useful and can even be confusing for
low-resolution modeling. A natural question arises in
that because the statistical potential by definition
does not distinguish between a U-turn and a local
turn, how does the current method distinguish be-
tween these two types of turns? In fact, it is some-
times very difficult to determine whether a predicted
turn is located within a secondary structure block or
is a global U-turn position. However, we estimate
that less than 20% of the b-strands in experimen-
tally determined protein structures contain a b-
bulge. Also, the Fourier high-frequency filtering
smooths out local fluctuations in turn propensity. As
a result, the local turn propensity does not signifi-
cantly interfere with the global U-turn recognition,
although it cannot be eliminated completely. As seen
in Table III, the ability to predict the positions of the
U-turn regions with a much higher accuracy more
than compensates for the slightly higher overpredic-
tion rate when compared with our original approach.

Our observation shows that the current method
achieves slightly higher accuracy for b-proteins. For
the 28 all-b proteins in test sets 1 and 2, more than
98% of the U-turns are correctly predicted with 96%
of them within two residues in position, which is
compared with the 72% obtained by Wilmot and

Thornton.19 Their method, however, does provide
additional information on the types of b-turns.

Dominant Secondary Structure Prediction

In our current study, the dominant secondary
structure types of approximately 60% of the blocks
are determined by length constraints, with an accu-
racy higher than 90%. This suggests that the length
constraint is one of the dominant factors determin-
ing the secondary structure types no matter what
types of residues the block actually contains. The
dominant secondary structure types of those medium-
sized blocks are predicted by using the statistical
potential as outlined in the previous section and
have a prediction accuracy of approximately 85%.
Because this is much better than random, it suggests
that the local interactions also play an important
role in secondary structure determination. Obvi-
ously, given that tertiary interactions are, in prac-
tice, also important, it is surprising how well one can
do when these contributions are neglected. Neverthe-
less, there are errors in the approach; we next turn to
a more detailed examination of their nature.

Sources of Error

The current method tends to overpredict turns.
Often, the errors in dominant secondary structure
prediction are associated with the errors in U-turn
predictions. For example, one of the primary sources
of error is a turn predicted to be in the middle of a
helix. For a medium-sized helix, this splits the block
into two short elements. Then, on the basis of the
length constraints, one or both of the elements are
predicted to be in the extended state. Another com-
mon source of error is that a long and usually curved
b-strand, which is usually hydrogen-bonded to two
different b-sheets, is predicted as a helix based on
length constraints. Also, sometimes the N- or C-
terminal irregular loops and turns are predicted as
helices. The above types of errors contribute to
60–70% of the wrong predictions of the dominant
secondary structures. The rest of the errors may
come from the inability to use local interaction
energies to distinguish between secondary structure
types, perhaps due to tertiary interactions that
override the local preferences of the backbone confor-
mations.

Partial remedies exist for the first three types of
errors described in the previous paragraph. First, if
a sharp turn signal appears between two short
helix-favored regions, it is a good indication that it is
a false turn signal, or it may correspond to a kink in
the middle of the helix. This might be eliminated by
use of a residue-based secondary structure predic-
tion method. Second, if a long block (which is pre-
dicted as a helix by length constraints) shows a
strong extended state character from the energy
functions and the prediction based on a single se-
quence shows a turn in the middle of the block, it is

TABLE IIIB. PredictionAccuracy for Test Set II

Entire
test set II

(40 proteins)

Average U-turn errors in residues per
U-turn

0.7† 6 1.2¶

0.7‡ 6 1.2
1.5§ 6 1.8

Predicted U-turns region with errors2

3 residues (%)
91
95
79

Overpredicted U-turns¶ (%) 7.2
6.3
2.5

Underpredicted U-turns (%) 5.8
2.2

10.1
Matthews Coefficient for U-turn predic-

tion
0.87
0.92
0.87

Dominant secondary structure (%) 83 6 16†

87 6 13
80 6 20

Matthews Coefficient for dominant sec-
ondary structure prediction

0.76
0.78
0.89

†Results obtained using single sequence.
‡Results obtained using multiple sequences.
§Results extracted from output of the PHD program.
¶Standard deviation.
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TABLE IV. Comparison† With Previous Method2 for the Same Set of 38 Proteins

PDB
name

U-turn
prediction
accuracy

Errors of U-turn
locations

Secondary
structure block

prediction accuracy
Comments on wrong

assignment of current algorithm

1 1gbl 4/4‡

4/4
(1 over)

0-2/2-3-0
1-1-0-0

5/5
5/5

One extra turn predicted in the second
strand§

2 proA 2/2
2/2

(1 over)

2-3
0-2

3/3
2/3

One extra turn predicted in the second
helix

3 1fas 5/5
5/5

2-1-0-2-0
2-0-0-0-0

5/5
5/5

—

4 1pou 3/3
3/3

4-3-2-0
2-0-0-0

4/4
4/4

—

5 1tlk 7/7
7/7

5-3-2/1-1-2-4-7
0-0-0-0-0-0-0

7/8
8/8

—

6 1ris 5/5
5/5

3-5-6-3/4-4
0-1-1-2-0

5/6
6/6

—

7 1lpt 4/4
4/4

(2 over)

0-5-2-0
0-3-0-1

4/4
3/4

One helix predicted as a b-strand

8 1ten 6/7
7/7

1/1-3-0-3-2-2/1
0-1-0-0-1-0-0

7/8
8/8

—

9 1mjc 5/5
5/5

1-2-0-2-0
0-1-0-0-0

6/6
5/6

Last b-strand predicted as a helix

10 1gps 4/3
3/3

(1 over)

0-1-2-1
1-0-2

4/4
3/4

One helix predicted as a b-strand

11 1tfi 4/3
3/3

0-0-0-1
0-0-0

4/4
3/4

One b-strand predicted as a helix

12 1tpm 4/4
4/4

0-0-4-1
1-0-1-0

5/5
5/5

—

13 Alcc 3/2
2/2

2-0-8
0-0/2

2/3
2/3

One short helix predicted as a b-strand

14 1pra 4/4
4/4

7-3-0-2
0-0-0-0

3/5
5/5

—

15 1c5a 3/3
3/3

(1 over)

4-0-5
0-4-1

3/4
4/4

—

16 1trf 4/3
3/3

2-3-3-0
0-0-0/1

3/4
4/4

—

17 1lea 4/4
4/4

(1 over)

2-2-4-0
0-0-1-0

4/5
5/5

One short b-strand inserted

18 2ptl 6/5
5/5

(1 over)

1-3-3-4-3-2
0-2-2-0-0

5/5
3/5

Two b-strands predicted as helices

19 1hdn 5/6
5/5

(1 over)

0-3-4-1-2/2
0-3-0-0-1

6/7
6/7

One short b-strand missing

20 1bta 6/6
6/6

2-0-2-3-0-1
0-0-3-0-0-0

7/7
6/7

One b-strand predicted as a helix

21 1ego 8/7
7/7

0-7-2-2-0-2-0-7
0-3-1-0-0-1-2

6/7
7/7

—

22 1svq 6/6
6/6

1-0-1-0-3-0
1-0-1-0-0-0

6/7
7/7

—

23 1ubq 5/6
6/6

3-0-3-1-4
0-0-1-0-0-0

4/6
5/6

One b-strand predicted as a helix

24 2utg 3/3
3/3

(1 over)

3-2-7
1-0-0

4/4
4/4

One short helix inserted

25 1ctf 4/5
5/5

0-3-0-1/1
0-0-0-0-0

5/6
4/6

One b-strand predicted as a helix, one
helix predicted as a b-strand
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usually an indication of a long, curved b-strand.
Finally, sometimes a short to medium-sized helix is
predicted at the termini of the sequence, and the
energy curves [Eqs. (9), (25)–(26)] show very noisy
patterns. Furthermore, the helix energy function
[Eq. (26)] does not have a usual minimum close to the
center of the block and does not convincingly domi-
nate the other two (turn and extended state) curves,
making it possible that it is just a piece of structure
consisting of irregular turns and loops. However, it is
very difficult to unbiasly implement these observa-
tions into the algorithm. We have tried to make the
prediction as objective and automatic as possible to
eliminate subjective human factors. However, after
obtaining the prediction from the algorithm, it is
sometimes helpful and informative to plot and study
the energy curves themselves.

Size Considerations

In our previous method, we were restricted to
small proteins because of the burial potential model
used. Here, the burial energy is not considered, and
the statistical potential does not depend as heavily

on the shape or size of the protein. To account for the
nonlinear and nontransglobular nature of the blocks,
the length constraints [Eqs. (20)–(21)] used in the
secondary structure assignment are not always size
dependent, e.g., the minimum block size is always
set to four residues. Thus, it is anticipated that the
current method can be applied to larger proteins.
Nineteen of the 108 test proteins in the current
study are larger than 100 residues, compared with
only 1 in the 38 test proteins in the previous study.2

Encouragingly, the prediction accuracy of the domi-
nant secondary structures of these proteins is 88%,
very close to the average. It should be pointed out,
however, that in larger proteins, the blocks are not
always transglobular in nature, and the shape of the
protein may be very nonspherical. Thus, the size
constraints are harder to apply, i.e., it is difficult to
estimate the nmin, MaxE, and MinH in larger pro-
teins. Also, on average, there are more tertiary
interactions in larger proteins, but it is not clear
whether its importance relative to the local interac-
tions in determining the secondary structures in-
creases with protein size. In general, for very large,

TABLE IV. (Continued)

PDB
name

U-turn
prediction
accuracy

Errors of U-turn
locations

Secondary
structure block

prediction accuracy
Comments on wrong

assignment of current algorithm

26 1crn 4/4
(2 over)

7-0-2-0
0-0-2-0

3/4
2/4

Two helices predicted as b-strands

27 1msh 4/4
4/4

0-0-4-0
0-0-0-0

2/4
3/4

One helix predicted as a b-strand

28 1ftz 4/4
4/4

4-3-3-0
1-0-2-3

3/3
2/3

One helix predicted as a b-strand

29 1cis 4/5
5/5

6-0-0-3
0-0-0-0-0

0/5
5/5

—

30 1tin 6/5
5/5

0-4-3-0-3-0
0-0-0-0-0

4/4
4/4

—

31 1cvo 5/5
5/5

0-3-1/2-4-0
0-0-0-2-0

4/5
5/5

—

32 1adr 4/4
4/4

(1 over)

4-3-0-4
3-1-1-0

3/5
3/5

One helix predicted as a b-strand, one
helix missing

33 1hme 2/3
3/3

(1 over)

2-4
1-2

3/3
2/3

One helix predicted as a b-strand

34 1vna 4/4
4/4

4-2-4-0
0-0-1-0

2/5
4/5

One helix predicted to be within a turn
region

35 2ait 6/6
6/6

2/2-1/1-4-0-3-1
1-2-1-0-1-0

5/6
4/6

One b-strand predicted as a helix, one
b-strand missing

36 1cod 4/4
4/4

4-3-4-1
1-0-0-0

3/5
5/5

—

37 1cbl 3/3
3/3

3-0-0
0-0-0

4/4
4/4

—

38 1aca 4/4
4/4

1-1-0-4/4
0-0-0-4

3/4
4/4

—

†See Table II in Ref. 2 and text for the definition of various accuracy measures.
‡In columns 3–5, the first line in every row refers to the prediction by our previous method, the second line refers to the prediction by
our current method with multiple sequences.
§Column 6 refers only to the current prediction scheme; see Table II in Ref. 2 for comments on predictions from the previous method.
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single-domain proteins, the ability to use local inter-
actions to predict secondary structure types can be
expected to be less successful due to the contribution
of tertiary interactions and less obvious length con-
straints. However, we speculate that with carefully
chosen length constraints, it is possible to extend the
current method to apply to multiple domain pro-
teins. These issues need further investigation in the
future.

Comparison With Residue-Based Secondary
Structure Prediction Methods

The current method identifies the turns with high
accuracy and gives a low-resolution prediction of the
distance-based dominant secondary structure types
of the blocks between turns. In contrast, residue-
based methods12,13 can predict the hydrogen bond-
based secondary structure fairly accurately at the
individual residue level and can refine the block-
based secondary structure prediction. We have exam-

ined a combined approach in which the U-turn
positions are determined by using the current
method, and within each block the dominant second-
ary structures are predicted by using the residue-
based assignment of the PHD program. Such a
hybrid approach4 (using our previous method and
the PHD program) has been used recently as the
initial steps in a protein tertiary structure prediction
algorithm. The resulting accuracy of the current
combined approach is approximately 90% in domi-
nant secondary structure prediction, very similar to
our current block-based approach. Despite its high
accuracy of secondary structure prediction at the
residue level, the PHD method sometimes com-
pletely misses a b-strand or short helix. Thus, this
hybrid method does not necessarily improve the
prediction. From the above discussion, it is apparent
that for the purpose of low-resolution 3-D protein
model building, our current method, perhaps refined
by the high-accuracy, residue-based approach to

Fig. 5. Energy plot (with multiple-sequence averaging) of a
typical a-protein, 1 pra. The dot-dashed, dashed, and solid curves
correspond to EH [Eq. (8)], EE [Eq. (7)], and ET

f [Eq. (15)],
respectively. (For clarity, the E*T curve is not shown, but it should be
noted here that both E*T and ET

f curves are used in determining the
U-turn positions.) The four major turn signals (minima) of the solid
curve separate the sequence into five blocks. Below the curves,

both the DSSP assignment of the turn regions (‘‘T’’ or ‘‘S’’ on the
first line) and the predicted U-turn positions (‘‘T’’ on the second
line) are marked. The helical energies are lower than the extended
energies in most of the block regions, and thus the five helices are
clearly resolved. The predicted U-turn regions correlate very well
with the DSSP assignment.
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correct for turn overprediction, is superior to using
only a residue-based, three-state prediction assign-
ment.

Reasons for High Accuracy of Secondary
Structure Prediction

As mentioned above, the accuracy of the dominant
secondary structure prediction depends heavily on
the accuracy of the U-turn region prediction. How-
ever, it would be interesting to know how much extra
accuracy one gains compared with a random predic-
tion of the turn regions. That is, is the enhanced
accuracy due only to the averaging window for the
blocks and nothing more? To examine the effects of
good U turn predictions on the accuracy of dominant
secondary structure prediction, we randomize the
U-turn prediction part of the current method. The
implementation of this random prediction protocol is
as follows. (1) The total number of U turns is
randomly chosen from m/25 to m/8 where m is
number of residues. (2) The size of these U-turn
regions are randomly chosen from 1 to 8 residues. (3)

The U-turns are randomly distributed in the se-
quence with the constraint that the size of the block
between the U-turns should be between 4 and 25
residues. On the basis of the randomly assigned turn
regions, the dominant secondary structure between
these U-turns is then predicted in the same way as
described in Materials and Methods with multiple
sequence averaging. Twenty such ‘‘random’’ predic-
tions are performed and averaged for a given se-
quence. The results for a subset of 8 proteins (2a, 2b,
and 4ab) are shown in Table V. The average turn
position error is 2.7 residues (70% of predictions are
within 3 residues), and the prediction accuracy of the
dominant secondary structure of blocks is 49%, close
to a random prediction of either helical or extended
blocks. However, there are significant differences
among different sequences. It seems that the helical
proteins have a higher accuracy of the secondary
structure predictions, but a lower accuracy in the
U-turn region prediction, presumably due to their
longer block sizes. b proteins have smaller errors for
the location of the U-turn regions because of their

Fig. 6. Energy plot (with multiple-sequence averaging) of a
typical b-protein, 1 cvo. The labeling scheme is the same as in
Figure 5. The five major turn signals (minima) of the solid curve
(excluding the one at the C-terminal, which is only used as an
N-cap for the last block) separate the sequence into six blocks.

The extended energies are lower than the helical energies in all of
the block regions, and thus, five b-strands and an extended loop
(residues 40–45) are clearly resolved. Except in the extended loop
region, the predicted U-turn regions correlate very well with the
DSSP assignment.
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shorter block sizes. However, the high accuracy in
secondary structure prediction does not necessarily
follow because in actual b-proteins, the number of U-
turns are at the high end of the allowed values. Thus,
the chance of underpredicting U-turns is high in
random predictions, with blocks often assigned to be
helical due to the size constraints. a-b proteins show
medium accuracy in the U-turn prediction and lower
accuracy in the dominant secondary structure predic-
tion. Speaking overall, the quality of the prediction
based on the random assignment of the U-turn
regions is significantly inferior to the current ap-
proach. It is thus obvious that good prediction of the
U-turns is essential for good prediction of dominant
secondary structures in the blocks.

CONCLUSION

In the continuing effort to improve our original
surface U-turn and block secondary structure predic-
tion algorithm, we have developed a new method
that uses a statistical secondary structure propen-
sity, evolutionary information, and some data-

processing techniques to produce higher prediction
accuracy and efficiency. In the current study of two
test sets (total 108) of proteins, approximately 94% of
the U-turns are predicted within three residues of
that observed in experimentally determined protein
structures, with the average error per U-turn of
approximately one residue. The prediction accuracy
of the dominant secondary structure in the blocks is
approximately 88%. Multiple sequence averaging
significantly improves the prediction over the single
sequence case. The prediction accuracy is very simi-
lar whether or not the proteins of interest are part of
the training set used to build the potential. Also, the
results are very similar for smaller (less than 90
residues) and somewhat larger proteins (less than
150 residues). The success of the current approach
indicates that local interactions play important roles
in determining the U-turn position and the second-
ary structure types. Recently, the importance of local
interactions in protein folding also has been de-
scribed in the work of Unger and Moult,24 Aurora et
al.,25 and Srinivasan and Rose.26

Fig. 7. Energy plot (with multiple-sequence averaging) of a
typical ab protein, 1 ego. The labeling scheme is the same as in
Figure 5. The six major turn signals (minima) of the solid curve and
a less prominent signal at residue 59 separate the sequence into
eight blocks. The three helical regions (the second, fourth, and the

last blocks) are clearly resolved. Residues 54–58 are in an
extended loop region, and the other four blocks correspond to
b-strands. The predicted U-turn regions correlate well with the
DSSP assignment.
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Compared with our previous method,2 both pro-
vide comparable accuracy when using a single se-
quence, but the new algorithm is much more effi-
cient. However, the much simpler implementation of
the current method offers the advantage of using
information from multiple sequence alignment, which
significantly improves the accuracy with a negligible
increase in computational cost. The current method
has been applied to slightly larger proteins, and it is
possible to extend the approach to multiple domain
proteins. For the same set of 38 proteins, the current
approach that uses multiple sequence information is
more accurate than our previous method in all
aspects except for slightly more overpredictions of
U-turn regions, especially within long helices.

The current prediction scheme is complementary
to standard residue-based secondary structure pre-
diction protocols12–13 because the former concen-
trates explicitly on U-turn prediction and gives good
length-based secondary structure predictions,
whereas the latter provides accurate hydrogen bond-
based predictions of secondary structure types. In
some cases, a hybrid approach could provide higher

Fig. 8. Energy plot (with multiple-sequence averaging) of an a
protein, 2utg (chain A). The labeling scheme is the same as in
Figure 5. An overpredicted turn (at residues 37–38) is located in
the middle of the third helix, which separates two predicted short

helix-preferring regions. The last block is correctly predicted to be
a helix by length constraints even though the dashed curve
(corresponding to the extended conformations) is lower in most of
the region.

TABLE V.Accuracy of Random
Predictions† on 8 Proteins‡

PDB
name Turn§

Secondary
structure¶

(%)

1pou 4.1 64
1cnp 3.1 64
1tpm 1.5 63
1aaj 1.8 39
1gb1 2.6 51
1bov A 2.9 39
1ctf 3.7 36
1ubq 1.8 35
Average 2.7 49
†Random predictions are performed 20
times for each protein and averaged; see
text.
‡The first two are a-proteins, the next
two are b-proteins, and the rest are ab
proteins.
§Average U-turn errors in residues per
U-turn.
¶Percentage of correctly predicted domi-
nant secondary structure.
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accuracy and more information for practical use.
Such accurately predicted structural data are crucial
for 3-D protein model building and are anticipated to
improve the success rate of a newly developed ter-
tiary structure prediction method.4 The results ob-
tained from the current method also may serve as an
additional filter for fold recognition methods. Pos-
sible further improvements of our approach include
(1) applying more sophisticated pattern recognition
techniques to the energy curves to discard the over-
predicted turns and to determine more accurately
the dominant secondary structure types in the border-
line cases; (2) modifying the size constraints to
extend the ability to treat multiple domain proteins;
and (3) more effective use of homologous protein
sequences.

ACKNOWLEDGMENTS

We thank Drs. Adam Godzik, Baohong Zhang, and
Li Zhang for helpful discussions. This work was
supported in part by NIH grant GM-48835. The
research of Andrzej Kolinski was supported in part
by an International Research Scholars grant from
the Howard Hughes Medical Institute (75195-
543402).

REFERENCES

1. Richardson, J. The anatomy and taxonomy of protein
structure. Adv. Prot. Chem. 34:167–339, 1981.

2. Kolinski, A., Skolnick, J., Godzik, A., Hu, W.P. A method for
the prediction of surface ‘‘U’’-turns and transglobular con-
nections in small proteins. Proteins 27:290–308, 1997.

3. Skolnick, J., Kolinski, A., Ortiz, A.R. MONSSTER: A
method for folding globular proteins with a small number
of distance restraints. J. Mol. Biol. 265:217–241, 1997.

4. Ortiz, A.R., Hu, W.P., Kolinski, A., Skolnick, J. A method for
prediction of the low resolution tertiary structure of small
proteins. J. Mol. Graph., in press, 1997.

5. Kolinski, A., Milik, M., Skolnick, J. A reduced model of
short range interactions in polypeptide chains. J. Chem.
Phys. 103:4312–4323, 1995.

6. Cohen, F.E., Abarbanel, R.M., Kuntz, I.D., Fletterick, R.J.
Turn prediction in proteins using a pattern-matching
approach. Biochemistry 25:266–275, 1986.

7. Gonzalez, R.C., Wintz, P. ‘‘Digital Image Processing.’’ 2nd.
edit. Menlo Park, CA: Addison Wesley, 1987:61–109.

8. Skolnick, J., Jaroszewski, L., Kolinski, A., Godzik, A.

Derivation and testing of pair potentials for protein fold-
ing. When is the quasichemical approximation correct?
Protein Sci. 6:676–688, 1997.

9. Kabsch, W., Sander, C. Dictionary of protein secondary
structure: Pattern recognition of hydrogen-bonded and
geometrical features. Biopolymers 22:2577–2637, 1983.

10. Kolinski, A., Skolnick, J. Monte Carlo simulation of protein
folding. I. Lattice model and interaction scheme. Proteins
18:338–352, 1994.

11. Sander, C., Schneider, R. Database of homology-derived
protein structures and the structural meaning of sequence
alignment. Proteins 9:56–58, 1991.

12. Rost, B., Sander, C. Combining evolutionary information
and neural networks to predict protein secondary struc-
ture. Proteins 19:55–72, 1994.

13. Rost, B., Sander, C. Progress of 1D protein structure
prediction at last. Proteins 23:295–300, 1996.

14. Bernstein, F.C., Koetzle, T.F., William, G.J.B., et al. The
Protein Data Bank: A computer-based archival file for
macromolecule structures. J. Mol. Biol. 112:535–542, 1977.

15. The prediction program and related information can be
found in our group World-Wide Web server at ‘‘http://
moray3.scripps.edu/newll/.’’

16. Matthews, B.W. Comparison of the predicted and observed
secondary structure of T4 phage lysozyme. Biochim. Bio-
phys. Acta 405:442–451, 1975.

17. Rose, G.D. Prediction of chain turns in globular proteins on
a hydrophobic basis. Nature 272:589–590, 1978.

18. Rose, G.D., Gierasch, L.M., Smith, J.A. Turns in peptides
and proteins. Adv. Protein Chem. 37:1–109, 1985.

19. Wilmot, C.M., Thornton, J.M. Analysis and prediction of
the different types of b-turns in proteins. J. Mol. Biol.
203:221–232, 1988.

20. Rooman, M.J., Wodak, S.J., Thornton, J.M. Amino acid
sequence templates derived from recurrent turn motifs in
proteins: critical evaluation of their predictive power.
Protein Eng. 3:23–27, 1989.

21. Hutchinson, E.G., Thornton, J.M. A revised set of poten-
tials for b-turn formation in proteins. Protein Sci. 3:2207–
2216, 1994.

22. Ohage, E.C., Graml, W., Walter, N.M., Steinbacher, S.,
Steipe, B. b-turn propensities as paradigms for the analy-
sis of structural motif to engineer protein stability. Protein
Sci. 6:233–241, 1997.

23. Chou, P.Y., Fasman, G.D. Empirical predictions of protein
conformation. Annu. Rev. Biochem. 47:251–276, 1978.

24. Unger, R., Moult, J. Local interactions dominate folding in
a simple protein model. J. Mol. Biol. 259:988–994, 1996.

25. Aurora, R., Creamer, T.P., Srinivasan, R., Rose, G.D. Local
interactions in protein folding: Lessons from the alpha-
helix. J. Biol. Chem. 272:1413–1416, 1997.

26. Srinivasan, R., Rose, G.D. LINUS: A hierarchic procedure
to predict the fold of a protein. Proteins 22:81–99, 1995.

460 W.-P. HU ET AL.


