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Abstract The knowledge of the three-dimensional structure of proteins is crucial
for understanding many important biological processes. Most of the biologically rel-
evant protein systems are too large for classical, atomistic molecular modeling tools.
In such cases, coarse-grained (CG) models offer various opportunities for efficient
conformational sampling and thus prediction of the three-dimensional structure. A
variety of CG models have been proposed, each based on a similar framework con-
sisting of a set of conceptual components such as protein representation, force field,
sampling, etc. In this chapter we discuss these components, highlighting ideas which
have proven to be the most successful. As CGmethods are usually part of multistage
procedures, we also describe approaches used for the incorporation of homology
data and all-atom reconstruction methods.

1 Introduction

1.1 Why Do We Need CG Models?

Proteins are key components of all life processes. Thus, the development of rela-
tively cheap and automaticmethods for determining amino acid sequences of proteins
raised hope for a breakthrough in many branches of science, including pharmacy and
biotechnology.However, the knowledge of sequence is insufficient for themajority of
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applications, and it is necessary to determine three-dimensional structures of proteins
and their complexes.Unfortunately, determining the three-dimensional structures has
turned out to be amuchmore demanding problem than studying their sequences. Cur-
rently, the Uniprot database [111, 137] contains over 60 million protein sequences,
while the total number of known protein structures, or their complexes, in RCSB Pro-
tein Data Bank [114] is over 130 thousand. Just a few years ago these numbers were
significantly smaller. In May 2012 the RefSeq database [110] contained less than 16
million sequences, while the total number of known structures in Protein Data Bank
[7] was about 80 thousand. The main reason for the increasing disproportion is that
experimental structure determination may be both expensive and time-consuming.
Additionally, in many cases it simply cannot succeed.

Theoretical methods are a potential alternative to the experimental techniques.
Over half a century ago, Anfinsen and coworkers [6] showed that the three-
dimensional structure of bovine pancreatic ribonuclease is exclusively determined
by its sequence. Later, this statement has been generalized for the great majority of
globular proteins. Thus, the problem of finding the native state of a protein can be
regarded as a problem of free energy minimization [5]. However, due to the number
of atoms in protein compounds, their conformational space is often defined by as
many as 104–106 degrees of freedom (DOFs). Therefore, to be able to computation-
ally study biomolecule behaviors, such as large internal motions or conformational
changes, we have to reduce the number of DOFs by at least one order of magnitude.
This goal can be achieved by buildingmodels in which some of the atoms are ignored
or grouped to form united pseudo-atoms. Models that follow this paradigm are often
called reduced or coarse-grained (CG) models [58].

An ideal coarse graining approach should be able to simplify an atomistic system
without losing its important features, such as structural details, characteristic inter-
actions and internal dynamics. Although many CGmethods have been created, none
of them fully satisfies these requirements. Currently, CG models can be regarded as
a part of a multi-scale procedures rather than stand-alone protein prediction methods
(Fig. 1). Nevertheless, the idea of CG models was a milestone in protein structure
prediction by computational methods [58].

1.2 History of CG Models

Coarse graining is used in biomolecular modeling since the very beginning of this
discipline. In their seminal work, Levitt andWarshel [87] started protein simulations
with a model where each residue in a peptide chain was represented by its alpha
carbon (Cα) and a united atom substituting its side chain. Since then, a huge variety
of models have been proposed that cover the whole range of complexity: from the
most simplistic Cα-only approaches to all-atom representation [3, 19, 22, 45, 68, 60,
65, 74, 113, 125, 126, 127]. Between these two extreme representations we can find
modelswith orwithout residue side chains. Each side chainmay in turn be represented
by one or more interacting centers. A few different methods for the protein backbone
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Fig. 1 Protein structure prediction stages in CGmodeling. The diagram presents a general pipeline
for multiscale modeling (CG merged with all-atom) and depicts major differences between easy
and difficult modeling tasks. Easy or medium-difficulty cases, if necessary, require only limited CG
sampling of the conformational space, usually to fill small gaps and quite small uncertainties in
available experimental or homology inference data. Extensive CG sampling is required for difficult
cases when knowledge about the expected structure is limited

have also been proposed. Finally, discretization may be used to impose additional
limits on the space of possible conformations the model can adopt. A quick glimpse
of the review articles [20, 41, 58, 67, 140] suggests that most likely all the choices
of CG representations have already been explored. This review certainly does not
describe all these solutions. Instead, we introduce several important concepts of CG
modeling of proteins and other biomolecules and describe the way they have evolved
in the past few decades.

One of such inspiring ideas was lattice models [71]. Restricting atomic coor-
dinates to a grid became a very straightforward and simple way to discretize the
conformational space. The search space size was greatly reduced and many of its
local minima vanished. Atomic coordinates became integer values, which opened
many possibilities for use of hash tables. Most importantly, the Cartesian space itself
could be stored in a three-dimensional array which resulted in the O(1) time com-
plexity (constant time) of collision detection. Due to these advantages lattice models
were at least one or two orders of magnitude faster than their continuous space
counterparts. Low resolution grids, however, have a few serious drawbacks. First of
all, simple lattice (cubic lattice, face-centered lattice, etc.) representations of protein
structures (usually limited to Cα traces, or at least to a few atom centers) were of
relatively low resolution, with average errors of such representation of 2–6 Å. Even
more risky aspects of low resolution lattice models are related to lattice anisotropy.
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Depending on the orientation in respect to the fixed lattice, the resultingmodel chains
changed local geometry and local resolution. Moreover, essentially for all types of
interactions the local energy may change with chain orientation. Consequently, the
models were highly degenerated, with changing energetic preferences for various
orientations of protein fragments.

The first detailed analysis of these problemswas published byGodzik and cowork-
ers [34]. Higher resolution reduced protein models, for example Chess-Knight lattice
models, led to more accurate representations and smaller anisotropy effects. Proba-
bly the best functionality of lattice models was achieved by higher resolutions (more
lattice steps per residue) and allowed fluctuation of Cα-Cα distances in the mod-
els. This led to a large number of single-bead orientations, higher resolution (1–2 Å
in respect to experimental structures) and essentially negligible anisotropy. Obvi-
ously, the higher resolution of such models led to a much larger number of allowed
structures which caused somewhat higher computational cost. With increasing com-
puting power, the higher resolution lattice models could still deliver fast simulations
of protein folding, multibody interactions and related problems. The most impor-
tant advantage of high-resolution CG protein models (with slightly fluctuating fixed
distances in protein chains, usually the Cα-Cα distance) is their computational effi-
ciency. In comparison to continuous models the high-resolution lattice models could
be simulated much faster.

Another very prolific concept in protein structure modeling is the use of frag-
ments, that is, short peptides extracted from known protein structures. This concept
was originally introduced by Jones and Thirup [50] as a crystallographic method
for rapid model building based on experimental electron density. The authors also
discussed potential applications of short protein fragments in purely theoretical mod-
eling approaches, which in practice was applied in the late 1990s by J.R. Gunn as
well as by Baker and coworkers [13]. The latter application soon became the famous
Rosetta program [113], one of the most successful methods in ab initio structure pre-
diction. Later, fragment-based sampling was applied to numerous protein modeling
approaches [145, 147]. It should be noted, however, that fragment-based sampling
introduces a very strong bias in the dynamics of the sampled chain which makes it
unsuitable for studying numerous research problems.

Multibody Force Fields
Interactions within a CG model cannot be directly learned from a physical system.
Therefore, they have to be established in the form of a mean field potential. Such a
potential can be derived either from statistics extracted fromknown protein structures
[124] or from Molecular Dynamics simulations [90]. Knowledge-based force field
models have been actively developed for the past few decades, which resulted in the
remarkable improvement of their performance. Among the most important elements
we note the proper choice of the reference state [151] and multibody terms. It has
recently been shown that two-body potentials are not capable of recognizing all native
folds against large datasets of decoy structures [138]. They also cannot properly
mimic the cooperativity of the protein folding process [21]. Multibody potentials



Protein Structure Prediction Using Coarse-Grained Models 31

remediate these problems to some extent and perform significantly better than two-
body terms.

2 Necessary Components of CG Models

2.1 Protein Representation and Coordinates

When undertaking a biomolecular modeling study of a particular system, the level
of coarse graining must be defined. This includes defining atoms that are explicitly
present in the model, atoms that are grouped into united pseudo-atoms and finally
atoms that are ignored. By reducing the number of interacting centers we can reduce
the cost of energy evaluation. The number of modeled atoms is also related to the
number of degrees of freedom (DOFs) of the modeled system, although the depen-
dence is not straightforward.

In most cases, the Cα atom is explicitly defined and serves as the most important
point within a residue (perhaps the SICHO model [63, 72, 139] is the only medium-
resolution exception to this rule). As for the other backbone atoms, there are three
commonly used approaches: Cα only (with N, C and O neglected), all atoms present
[48, 113, 145] and a virtual point method. The major issue resulting from remov-
ing peptide plate atoms is the problem with the accurate definition of a hydrogen
bond between two residues. Cα-only backbone representations attempt to define the
hydrogen bonding potential on Cα coordinates; however, such definitions are rather
inaccurate [24]. At the same time, hydrogen bonds are crucial for maintaining the
proper local geometry of a backbone and for forming secondary structure elements.
Thus, a relatively accurate description of this interaction is required. In a virtual point
approach, originally proposed by Levitt [86], a point is defined in the geometric cen-
ter between two subsequent alpha carbons. This approach has been implemented in
numerous applications, both in intermediate resolution lattice models [62, 64, 66,
100] and in off-lattice Cartesian space models [12, 94]. Based on its coordinates, a
hydrogen bond can be defined with reasonable accuracy. Virtual point also describes
the excluded volume effect of the neglected backbone atoms; ϕ/ψ angles, however,
cannot be defined.

Various methods differ in the coarse graining of side chains. It may comprise just
one united Side Group (SG) atom, Cβ+united atom (Cβ+SG) or a few united atoms.
The simplest case, where the whole side chain is modeled just as a sphere, is also the
most inaccurate one. At the next accuracy level, the whole side chain is represented
by an ellipsoid [90] or by a Cβ and a united sphere of all the other side chain
atoms [68]. These two representations enable satisfactory accuracy with reasonable
computational cost. The advantage of the Cβ+SG approach is that of the 20 biogenic
amino acids four (G, A, S and C) residues are already accurately represented and for
a few others the approximations are rather small. The most challenging, however, are
the long side chains incorporating both polar and aliphatic moieties, such as LYS or
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TRP. For a better description of these entities, finer coarse graining must be defined
with more than two united atoms substituting a side chain [8, 11].

The choice of atoms used to represent a protein chain is strongly connected to
the set of the degrees of freedom to be sampled. In Cα-only, Cα+SG and similar
approaches, conformational search is done in the Cartesian space. In many cases,
however, the conformational space is smaller than 3 N DOFs, because conforma-
tions of some these atoms depend on the others. In CABS [68], for example, each
residue comprises up to 4 atoms, but only Cα atom is independent. All the remain-
ing atomic positions are unambiguously defined by the Cα trace. To the contrary, in
the SICHO model [63, 72, 139] with two interaction centers: Cα and SG, only SG
is independent and Cα coordinates based on them are back-calculated. In another
example the Rosetta model definition [113] is based on all backbone atoms and SG,
but the conformation of a peptide chain is defined by three degrees of freedom only,
dihedral angles of each residue: ϕ, ψ and ω.

Another method used to increase the computational efficiency of a computational
model is the discretization of the conformational space. It has been realized since
the early days of protein simulations [106] that even a small set of distinct states
allowed for a residue can result in the reasonable accuracy of a projected structure.
Such a set of selected states can be easily defined when a conformation is described
by its internal coordinates. For models defined in the Cartesian space a lattice (grid)
is used to limit the search space. In practice a set of basis vectors is defined to connect
any two Cα atoms that follow each other in a protein chain. This implies that any
conformation of a chain of N residues can be uniquely written as N-1 integer indexes
that refer to particular vectors in the basic set. Other atoms of the CG representation
(such as SG) may or may not be restricted to the grid.

2.2 Force Field

The already mentioned methods: SICHO, CABS and Rosetta [68, 60, 113] use only
three degrees of freedom per residue; however, they employ more than one center
to define the interactions of a particular residue. All these atoms, united atoms and
virtual points are used to calculate geometric properties, such as distances and planar
and dihedral angles. These properties underlie the definition of the energy function
of a system. The definition usually assumes a very complex mathematical form of
the function which we discuss in detail below. The mathematical formula must be
completedwith a (possibly large) set of parameters, such as various constants, scaling
factors, etc. In the case of all-atom models used for biomolecular studies, the param-
eters can be derived from experimental data, such as small molecule measurements.
This is, however, not possible in the case of a CG model, simply because none of the
models reviewed here exists in the real world and many of their properties cannot be
measured. Therefore, the energy function for a CGmodel comprises at least partially
statistical potentials of mean force. The construction of such force fields has become
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a research discipline on its own. Here we provide a very basic description of mean
field force fields and focus on differences between particular CG approaches.

The evaluation of energy of a particular conformation requires computation of rel-
evant geometrical properties (for example distances or angles). This enforces recal-
culation of the Cartesian representation of a biomolecule if a CG model is defined in
internal coordinates [107]. Lattice models, on the other hand, use hashing and store
some local geometrical properties, such as planar or dihedral angles, vector products
etc., in look-up tables. Moreover, the energy function may be conveniently stored in
an array and indexed by a distance bin or vector indices.

The hydrogen bonding is one of the indispensable terms of the force field. There
were numerous actual attempts proposed in the literature based on different atom
types which capture local geometrical properties of the main chain in different ways
[24, 35, 73, 102]. For better recapitulation of the local geometry of secondary struc-
ture elements, correlations between neighboring hydrogen bonds may be modeled
explicitly by an additional potential [68, 88, 92].

Another very important energy component is the one corresponding to hard core
repulsion between atoms, often described as an excluded volume term. A rapidly
growing function may be used to model this interaction, such as the so-called “12”
Lennard-Jones potential term. Relevant radii for united atoms are computed as an
average over all the relevant conformations of a group that has been coarse grained
into a sphere. Hard core repulsion in low- to medium-resolution on-lattice models
may be evaluated instantly just by a single look-up in the 3D matrix that stores the
lattice space.

The attractive pairwise potential is established by the Boltzmann inversion of
relevant statistics extracted from known protein structures. The potential may depend
solely on the distance between interacting partners; in other approaches it takes into
account the mutual orientation of the groups and their neighborhood [12, 68].

Local backbone conformation and secondary structure formation is controlled
by mean force potentials encoding local correlations between degrees of freedom.
Typically, the potentials also depend on amino acid sequences and encode propen-
sities of particular amino acid types to form a given secondary structure. The actual
formulation of these potentials depends on how the main chain is represented in the
model. In the cases where all backbone atoms are available, Ramachandran-type
energy maps are utilized. Otherwise, local interactions depend on local distances,
for example between the ith and i+2nd Cα, usually denoted as R13, as well as on
R14 and R15. Another choice is to define energy terms based on planar and dihedral
angles between successive Cα atoms.

CG force field is often completed by terms that mimic solvent-induced effects and
long range electrostatics. Examples of such terms include centrosymmetric (com-
pacting) potential and various environmental terms.
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2.3 Conformational Sampling

Even a CG reduced system is still characterized by a very large number of degrees
of freedom (approximately 102–103). Due to the high density of a molecular system
and covalent bonds between atoms (or virtual bonds that connect pseudo- and united
atoms), the potential energy hypersurface is extremely rugged (see [142] and refer-
ence therein). The motion along many of the DOFs may be impossible due to high
energy barriers. A number of methods are used to explore this space, however, the
most common are Monte Carlo (MC) and Molecular Dynamics (MD) approaches.
Unlike other, specialized methods, these two are general and flexible. Both produce
low-energy ensembles, which elucidate protein dynamics.

The general idea of theMonte Carlo [99] may be applied to biomolecular systems
in numerous ways. Probably the simplest one is simulated annealing [57] which uses
the Metropolis criterion [98] to construct the Boltzmann ensemble of states at an
arbitrary temperature. Simulation starts fromahigh-temperature conformationwhere
the system undergoes large configurational changes but its energy is relatively high.
Using gradual cooling leads the system to adopting a conformation in a local energy
minimum. Repeating this process leads to the exploration of the energy landscape.
However, the chance of finding the global minimum of a biomolecular system is
relatively low. This problem can be alleviated to a great extent using the Replica
ExchangeMonte Carlo (REMC), also known as Parallel Tempering [31, 38, 42, 132].
In this approach many (usually a few to tens of) simulations are run simultaneously.
Each simulation runs a separate non-interacting copy (called a replica) of the same
system using isothermal Metropolis MC. Occasionally two systems (Xi and Xj)
exchange their temperatures. The system Xi which has been so far simulated at Ti

goes to Tj andXj goes from Tj to Ti. The probability p of this exchange is determined
by temperatures Tj and Ti as well as by the energies of the two systems:

Ei and E j : p � min(1, exp(�)) (1)

where � is expressed by:

� � (
1/Ti − 1/Tj

)(
Ei − E j

)
(2)

Such an algorithm constructs aMarkov chain over a number ofMarkov chain pro-
cesses. The exchange between the structures in different replicas facilitates relaxation
of structures that might otherwise be trapped in local energy minima. The density
of states of the sampled system can be recalculated by a histogram reweighting
technique [27, 28, 39, 80]. The Parallel Tempering algorithm can also be applied to
Molecular Dynamics simulations [131].

There are also many variants of Molecular Dynamics [51, 82, 101]. In its standard
formulation, the trajectory of a molecular system is calculated by solving the New-
ton’s equations of motion at each time step. The forces on the system are computed
as the gradient of the potential energy function (the force field) which is dependent
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on the positions of atoms. To reduce the computational complexity, some limitations
may be imposed on the range of interactions between atoms or united atoms.

As inMonteCarlo sampling, Cartesian coordinatesmay be substituted by general-
ized variables. Practical examples include all-atom [1, 97] and CG simulations [93].
This approach indeed allows for a significant increase of the integration time step.
However, the applicability of this approach is limited, since the forces evaluation
requires a recalculation of the Cartesian coordinates of the system (which involves
a time-consuming matrix inversion) at every time step.

3 Representative CG Methods

Above, we described all the major components of a coarse-grained model. Now let
us summarize a fewwell-established computational models with particular emphasis
on these elements. The models differ in the level of coarse graining and the number
of degrees of freedom utilized to define a polypeptide chain. For convenience, the
key features of the models are presented in Table 1.

Table 1 Comparison of selected CG methods

Method Protein
representation

Conformational
space

Coordinates
system

Sampling scheme

Levitt and
Warsell model

Cα, SG Continuous space Angular Molecular
dynamics

CABS Cα, Cβ, SG and
virtual point at
the peptide bond
center

Cubic lattice with
0.61 Å spacing
which restricts
Cα positions

Cartesian Replica exchange
Monte Carlo

SICHO SG, Cα Cubic lattice with
1.45 Å spacing
which restricts
SG positions

Cartesian Monte Carlo

Rosetta All backbone
atoms and SG or
all-atom
representation

Continuous space Angular Monte Carlo

UNRES Cα, SG and
peptide group

Continuous space Cartesian/angular Mesoscopic
molecular
dynamics and
Monte Carlo
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3.1 The Original Cα+SG Model

The model originally proposed by Levitt and Warshel in 1975 [87] uses two inter-
action centers per residue: the Cα atom, which is modeled explicitly, and the side
chain, represented by a SG sphere. Each residue is allowed one degree of freedom
only: the torsion angle between the 4 successive Cα atoms. Interactions between
side chains are modeled by a van der Waals type potential. The radius of each united
atom representing a side chain is calculated as the average radius of gyration of the
particular group. Another important contribution to the potential energy is the side
chain-solvent interaction estimated by the experimental free energy of transfer from
water to ethanol. The force field is completed by local interaction expressed as a
Fourier expansion function of the torsion angle defined by four Cα atoms. Classi-
cal molecular dynamics is used to sample the conformational space. Simulations of
the bovine pancreatic trypsin inhibitor sometimes produced structures resembling
the native fold, with the best structures having root-mean-square deviation from the
native in the range of 6.5 Å. In his later works [86], Levitt introduced an additional
degree of freedom for each residue, namely the planar angle between three adjoining
Cα atoms. A virtual atom has also been added in the middle of a Cα-Cα vector for a
more accurate definition of hydrogen bonding interactions.

3.2 CABS

The coarse-grained representation of theCABSmodel [68] uses up to four interaction
centers per residue: Cα, Cβ, the center of mass of the side group and a virtual point
placed at the center of each peptide bond (see Fig. 2a). The Cα trace of the model
is restricted to an underlying cubic lattice with a spacing of 0.61 Å. In lattice units,
the distance between consecutive Cα atoms varies from 291/2 to 491/2. This implies
that the Cα-Cα distance is allowed to fluctuate between 3.29 and 4.27 Å. There are
800 possible orientations (lattice vectors) of the virtual Cα-Cα. Therefore, the model
essentially avoids any lattice-related artifacts. Cβ atoms and side chains are located
off-lattice, and their positions are calculated for each residue using the coordinates of
three consecutive Cα atoms as a reference frame. For each amino acid, two distinct
conformations are defined which mimic the averaged side chain position found in
helical and expanded conformations. The rotamer type is uniquely defined by the on-
lattice Cα trace; hence, a protein chain comprising N residues has 3 N independent
degrees of freedom.
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3.3 SICHO

The most unique feature of the Side Chain Only model [63, 72, 139] is the definition
of the polypeptide chain. Each residue is represented as a spherical united atomwhich
substitutes its side chain (see Fig. 2b). The united atoms are restricted to a cubic grid
with 1.45 Å spacing. The chain vectors representing virtual bonds between interac-
tion centers are of variable length, ranging from 91/2 to 301/2 lattice units. Unlike
other protein models, Cα atom positions are not independent degrees of freedom.
Conversely, they are uniquely defined in a local frame of three neighboring side
chains and are recalculated after any conformational change. The knowledge-based
force field is defined based on both Cα and side chain centers and includes a chain
stiffness potential, a secondary structure bias, short-range interactions, hydrogen-
bond interactions, and long-range interactions. Such deeply coarse-grained models

(a) (b)

(c) (d)

Fig. 2 Comparison of representations of four CG models
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are computationally very effective [130], and they can be effective in difficult tasks
of structure prediction and studies of large scale protein dynamics if the model
structures resolution allows for the atom-level reconstruction. Even lower resolution
realistic models of proteins can be designed if the crude structure representation can
be compensated by specific patterns of knowledge based statistical potentials [23].

3.4 Rosetta

Rosetta [113, 129] utilizes a library of short peptide fragments (typically 3 and 9
residue long) as a Monte Carlo moves set. In practice a fragment is defined by three
internal coordinates (ϕ, ψ and ω backbone dihedral angles) per residue. Each time a
fragment is inserted, a number of subsequent DOFs (9 or 18, for 3mers and 9mers,
respectively) are affected in the simulated polypeptide chain. The fragments them-
selves are extracted from known protein structures [40]. Such a sampling method
reduces the conformational space, changes the respective DOFs in a correlated man-
ner and introduces a strong bias toward protein-like geometries. Rosetta utilizes
two representations: a coarse-grained, termed “centroid” (shown in Fig. 2c) and an
all-atom one. In both representations the protein backbone is treated explicitly. In
the centroid mode, each side chain is represented by a united atom located at the
side-chain center of mass. In the high-resolution mode, atomic coordinates for all
side-chain atoms, including hydrogens, are utilized. Side chains are restricted to
discrete conformations as described by a backbone-dependent rotamer library. The
Rosetta energy function is different for the two representations and in both cases it
comprises numerous mean-field terms.

3.5 UNRES

In the UNited RESidue model [90] the protein backbone is reduced to a sequence
of Cα atoms and a united peptide group (p) connected by virtual bonds (Fig. 2d).
United side-chains are attached to the α-carbons (SG). In the most recent version of
UNRES, the positions of these atoms are defined by internal Cartesian coordinates
(vectors of the virtual bonds). Previously, planar and torsion angles were used as a set
of generalized coordinates [91]. UNRES employs a physics-based mean-field force
field for simulations of protein structure and dynamics. The energy function defini-
tion and conformational space sampling methods have evolved over time. Initially
the effective energy function was described as a restricted free energy (RFE) func-
tion or the potential of mean force (PMF) of polypeptide chains in water. Currently,
it is defined as an approximate cumulant expansion of restricted free temperature-
dependent energywhose calibration is based on protein-folding thermodynamic data.
UNRES is the only coarse-grained force field which explicitly depends on tempera-
ture and can compute thermodynamic quantities of protein folding.
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In UNRES the conformational space search was initially based on the global
optimization of the potential-energy function to find the lowest-energy conforma-
tion. It was performed by stochastic Monte Carlo-based algorithms, namely Monte
Carlo plus Energy Minimization (MCM) [89] and hybrid approaches, such as Con-
formational Space Annealing (CSA) [85] which turned out to be the most effective.
Later, UNRES was extended to mesoscopic Molecular Dynamics (MD) to study
pathways and kinetics of the protein folding process. This implementation of MD
reformulates the conformational sampling as a search for the most probable confor-
mational ensembles with the lowest free energy at temperatures below the folding
transition temperature. The UNRES extension of MD can also be used to simu-
late multichain proteins. To improve the conformational space search, UNRES can
use Replica Exchange Molecular Dynamics (REMD) and Replica Exchange Monte
Carlo (REMC) sampling.

The UNRES coarse-grained model has been successfully applied to the protein
structure prediction problem [76, 78, 105] to study folding trajectories [118] and to
investigate folding process thermodynamics [77, 152].

4 Reconstruction of an All-Atom Representation,
Post-processing and Analysis

A coarse grained computational model provides description of the modeled structure
at a limited resolution. To infer the biological function of the investigated system
or to use the produced model in virtual docking procedures, it is crucial to obtain
its atomistic representation. Figure 3 shows a common, two-step all-atom chain
reconstruction approach that consists of (i) generation of backbone coordinates and
(ii) reconstruction of residue side chains.

The first group of the backbone reconstruction methods [37, 46, 96, 115] relies
on an assembly of fragments derived from Protein Data Bank [7]. In this approach,
the most probable fragments are selected using energy-based, homology-based or
geometric criteria. Such algorithms can be fast and accurate. However, they have to

Fig. 3 Illustration of a two-step procedure of all-atom representation reconstruction
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maintain large and up-to-date collections of fragments. The second group ofmethods
utilizes averaged knowledge about backbone geometry. The computations are per-
formed based on the statistics of backbone atompositions derived from representative
known protein structures.

Methods for side chain position prediction [46, 75, 115] are based on sampling
the conformational space by a rotamer library. This involves statistical clustering
of observed side chain conformations in known structures. Other algorithms use
conformer libraries which contain samples of side chains from known protein struc-
tures. In both approaches a scoring function is required to evaluate the quality of the
sampled conformations.

The reconstruction to an all-atom representation from a reduced CG representa-
tion of the protein is an important part of structure modeling pipelines. Such all-atom
models may be directly used for further refinement with molecular mechanics pro-
grams [36] and are essential for later structural studies. Most of the post-processing
applications, such as structure quality assessment, protein-protein interaction pre-
diction, protein function analysis or ligand docking, require an all-atom model of
the protein [121, 143]. There are many tools available for such model conversion [2,
10, 43, 52, 53, 108], but only a small number of them is commonly used. Below, we
describe selected servers and applications freely accessible for use online. The time
in which all computations are performed by these methods is a matter of seconds to
minutes.

4.1 BBQ

The Backbone Building from Quadrilaterals program [37] is a stand-alone appli-
cation for protein backbone reconstruction from the α-carbon trace. It is available
for download from the BioShell website (bioshell.pl). The method uses statistics of
backbone atoms positions extracted from a non-redundant database of protein chains
to determine backbone coordinates. In this approach, the Cα trace is divided into four
residue fragments—quadrilaterals. The quadrilateral conformation is described by
three internal coordinates: distances between the four Cα atoms. The coordinates for
all four-residue sets of a protein trace are discretized with a mesh size of 0.2 Å. These
three distances define a three-dimensional grid in which the average positions of C,
O, and N atoms are measured in a local Cartesian coordinate system. The protein
sequence is not taken into account in the reconstruction process. The BBQ package
was designed to be a fast, robust and as accurate as possible tool for backbone atom
reconstruction.

bioshell.pl
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4.2 SABBAC

This online service provides Structural Alphabet-based protein BackBone recon-
struction from Alpha-Carbon trace [96]. It is based on a specific approach to protein
structure fragment selection and assembly.

The Cα trace is encoded in the HiddenMarkovModel-derived structural alphabet
which describes conformations of four-residue long fragments [14]. Then, candidate
fragments at each position of the structure are chosen from sets of coordinates pre-
computed in a local reference frame. A full-protein backbone reconstruction is done
by joining fragments using a greedy algorithm and searching for the best combination
of fragments compatible with the Cα trace. The energy criterion is used to determine
the optimality of the combination of fragments.

The SABBAC service has been proven to be fast owing to its fragment library
of reduced size. It can be accessed at http://bioserv.rpbs.jussieu.fr/SABBAC.html.
During computation, side chains can also be added to the model using Scite [30]
which is conveniently combined with SABBAC service.

4.3 SCWRL4

The SCWRL4 algorithm [75] is a method that reconstructs sidechains, based on an
input all-atom protein backbone. For each residue type, the input rotamer library
provides statistics such as rotamer frequencies and average dihedral angles. Firstly,
the input backbone coordinates are checked and side-chain coordinates are built
for all rotamers and subrotamers (conformations with dihedral angles±one stan-
dard deviation from the library). Then, self and pairwise energies are computed and
rotamers with high self-energy are removed from the reconstruction. To represent the
side-chain placement problem, SCWRL4 uses an interaction graph, where vertices
represent residues and edges indicate nonzero interactions between them. A Dead
End Elimination method is used to find the best rotamer assignment. SCWRL4 is
available at http://dunbrack.fccc.edu/scwrl4/.

4.4 MaxSprout

This automatic database procedure [46] for generating the all-atom representation of
a protein requires the input Cα trace and amino acid sequence. The computations are
split into two basic steps: backbone reconstruction using the Cα trace and side-chain
coordinates prediction using the reconstructed backbone.

During backbone construction, a protein structure database is scanned for frag-
ments that locally fit the alpha carbon trace and candidates for a complete overlap-
ping cover of the chain are matched. The optimal continuous path is then found by a

http://bioserv.rpbs.jussieu.fr/SABBAC.html
http://dunbrack.fccc.edu/scwrl4/
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dynamic programming algorithmwhichminimizes themismatch at protein fragment
joints. Final backbone coordinates are taken from fragments superposed on the Cα

trace.
Side chain construction starts by generating sets of plausible coordinates from

a library of frequently occurring rotamers based on backbone coordinates. Sub-
sequently, all the rotamer-rotamer interaction energies are calculated. To minimize
intramolecular energy by an optimized choice of the rotamer, a simple and fastMonte
Carlo procedure with simulated annealing is used. When the lowest energy config-
uration is found, the program returns the coordinates of all-atom representation of
the protein. The MaxSprout algorithm is available on-line at http://www.ebi.ac.uk/
Tools/maxsprout/.

4.5 PULCHRA

PULCHRA (“Protein Chain Reconstruction Algorithm”) [115] is a standalone pro-
gram for the reconstruction of full-atom protein models from input α-carbon trace
and amino acid sequence. The backbone reconstruction step in this approach is very
similar to BBQ as both PULCHRA and BBQ implement the same algorithm. BBQ
uses the backbone and side chain rotamer libraries, which have been generated from
representative protein crystallographic structures.

The side-chain reconstruction procedure uses the same set of distances and coor-
dinates as the backbone reconstruction method. There is a list of possible side-chain
conformationswhich is sorted by the decreasing probability of occurrence in the PDB
database, for each combination of calculated distances. The procedure places side-
chain heavy atoms on the backbone and optimizes their positions to avoid clashes. In
the final step, hydrogen atoms can optionally be added to the full-atom representa-
tion. PULCHRA is freely available for download at http://cssb.biology.gatech.edu/
PULCHRA.

5 Combining CG Models with Comparative Modeling
Methods

For very small proteins, CGmethods of structure predictionmay provide satisfactory
models. However, for the great majority of targets it is necessary to use additional
sources of information. The databases of known protein structures are themost easily
available among them—e.g., the Protein Data Bank (PDB) [114].

As during the evolution protein structure has become much more strongly con-
served than sequence [47], the most straightforward approaches use comparison of
sequences of known protein structures (templates) with the query sequence. How-
ever, the inability to detect sequence similarity with any of the known structures does

http://www.ebi.ac.uk/Tools/maxsprout/
http://cssb.biology.gatech.edu/PULCHRA
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not exclude the existence of a good template. The solution in such cases can be so-
called threading methods which compare predicted structural features (for example
the secondary structure, burial) of the target and the template [36, 122, 128]. Regard-
less which approach is chosen to detect homology, the aim of this method is to create
an alignment, which highlights the similarities between the query and templates.

Obviously, the level of similarity affects the correctness of template selection and
the quality of the alignments. For easy cases (high similarity), classical approaches
such asPsiBlast [4] almost always provide sufficiently accurate alignment. Therefore,
it is relatively easy to build a good model for the query. However, even in those
cases CG methods can be useful for the local sampling of some regions, such as
loops, which are not defined by the alignment. The difficulty of the problem rapidly
increases with the decreasing level of similarity, not only due to the ambiguity of
the alignments, but also because of differences in the geometry of correctly aligned
regions or suboptimal template selection. One of the most effective approaches to
those problems is the incorporationofCGmodels.Belowwepresent certain strategies
that incorporate the information obtained with comparative modeling into the CG-
based protocols.

5.1 Reduction of the Sampled Conformational Space

In one of the most straightforward approaches, the query chain is allowed to move in
a tube formed by a chain of spheres surrounding the template structure [70]. In this
method, the query chain is confined within the tube by imposing energetic penalties
for any excursion outside. Thus, the disadvantage of this approach is the limited
degree of possible improvement of the initial model.

The answer to this limitationwas the application of amore complex set of restraints
within GENECOMP [60], a method in which the energy function is constructed in
a way which allows two-residue shifts of the target chain along the template. This
feature enables changing the initial alignment, and thus correction of possible errors.
Additionally, the GENECOMP restraining scheme includes two types of restraints:
(i) based on the predicted contacts in the target and (ii) target distances predicted
from the fragment threading procedure.

In the more recent studies, the pairwise distances observed in the templates are a
source for deriving restraints for the CABS modeling tool [68]. For the number of
templates given by comparative modeling procedures, distances between all pairs of
Cα atoms are calculated and the minimum and maximum distances between equiv-
alent pairs of residues are taken as limits of the restraint. The restraints are included
in the CABS energy function as trapezoid-shaped potential wells, where the gradi-
ent of the lateral sides depends on the weight of the restraint. The spatial restraints
significantly reduce conformational space, which decreases computation time and
increases the probability of obtaining a successful model (see Fig. 4a).
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Fig. 4 Sample strategies of combining comparative modeling methods with CG models. a T0592
target from CASP9, templates (in gray) define conformational space sampled with CABS. The final
model (navy) is more similar (in terms of GDT_TS) to the native (green) than any of the templates.
b The idea of TRACER. Template scaffold is represented as spheres, query Cα trace as red lines.
Query residues within the gray sphere satisfy the free criteria of the query-template pseudo energy,
while those within the navy sphere satisfy the additional secondary structure identity criterion (see
the text for details)

5.2 Application of the Probability Density Function

A more sophisticated technique was originally used in the Modeller method [117].
In this approach, spatial restraints are defined in terms of a probability density func-
tion (PDF). The PDF used for restraining a certain feature x (distance or angle, for
instance) can be written as P (x|A, B … C). This formula gives a probability density
for x when A, B … C are known. For instance, in Rosetta [134], the feature which
is restrained is the distance between pairs of Cα atoms (r) and PDF is given as a
Gaussian and defined as P(r|G, L, B, D), where G, L, B and D are predictor variables
(see Table 2).

As we know, Gaussian can be defined by two parameters: mean and standard
deviation. The latter was calculated using a non-redundant database of nearly 8,000
known protein structures. The HHSearch algorithm [128] was employed to align all
pairs of proteins. The standard deviations of r were computed for 10,000 combina-
tions of different G, L, B, D based on differences in the equivalent atoms distances in
the aligned structures and put into the four-dimensional table spanned by the values
of the predictor variables.

Such a table of standard deviations enables prediction of restraints for a query
sequence aligned with the template. For each pair of Cα atoms (apart from those
closer than 10 Å or separated by less the 10 residues along the query sequence) the
values of four predicting variables are calculated. Then, pairwise distance Gaussian
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Table 2 Predictor variables used for deriving restraints for the ROSETTA modeling tool

Feature Value

G Global alignment quality −log(E) where E is HHsearch e-value

L Residue-pair alignment quality Blosum62 [44] score

B Burial in the template structure Number of Cβ’s within 8 Å of the
template residue Cβ

D Average distance to an alignment gap Distances in a number of residues from
the aligned pair to the nearest gap in the
sequence alignment

L, B and D are averaged over the pairs of aligned residues, G is constant for the given alignment

restraints are assigned: the mean is given by a distance between the equivalent atoms
in the template structure, and the standard deviation is taken from the table according
to the calculated predictor variables.

It is also possible to combine prediction from the multiple templates as weighted
mixture of the Gaussians. Such restraints can be combined with the Rosetta energy
function by adding a component equal to

∑
i, j − ln(P(di, j )) where summation is

done over pairs of residues, and P(di, j ) is the probability of the distance di, j given
by the calculated PDF.

5.3 Unification of Comparative Modeling Methods with CG
Models

In the above-mentioned strategies homology inference data (usually in the form of
distance restraints) are used as input for CG methods. TRACER [69, 136] is an
approach which unifies those two steps. The method uses CABS representation of
the protein conformational space and its force field. The most important extension
of the model is incorporation of the α-carbon trace template, represented as a fuzzy
three-dimensional scaffold with assigned multi-featured properties (Fig. 3b). The
query chain is forced to “align” with the template by an additional query-template
similarity pseudo energy component introduced to the CABS energy function. This
component is a sum over pairs of residues of the query chain and the template that
are not further apart than a certain cut-off. The value of query-template similarity
pseudo energy for the ith query residue and the jth template residue depends on:

amino acid similarity (quarter of the negative value of the BLOSUM62 substitution
matrix [44]; cut-off: 4 Å)
similarity of hydrophobic/hydrophilic features (quarter of the negative value of the
product of Kyte-Dollitle indexes [83]; cut-off: 4 Å)
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similarity of the orientation and directions of the chains in the vicinity of the ith and
jth residue. (−1 if the angle between the flanking Cα-Cα vector is smaller than 90°;
cut-off: 4 Å)
identity of the secondary structures (helical or extended) of fragments consisting ith
and jth residues (−1 if identical; cut-off: 2.5 Å)

As in the CABS model, the conformational space is sampled by the REMC
scheme. The conformational updates include those originally applied in CABSmod-
ifications of small fragments (2–4 pseudo-bonds of the Cα trace) and, additionally,
rearrangements of larger parts of the chain consisting of up to 22 residues. These
larger-scale modifications enable effective sampling of the scaffold, which corre-
sponds to changing the alignments between the query and the template.

TRACER significantly extends the application of comparativemodelingmethods,
especially to regions of very low or even undetectable sequence identity. However,
the major drawback of the current version of TRACER, in comparison to some other
methods described in this section, is inability to use more than one template.

6 Evaluation of CG Models in CASP9

CASP (Critical Assessment of Techniques for Protein Structure Prediction) [104] is
a unique opportunity to evaluate the performance of computational methods in pro-
tein structure prediction. CASP is a blind experiment, since the target structures are
not published until the end of the prediction period. Therefore, it is possible to fairly
assess and compare different predictionmethods under the same conditions. Themost
successful groups, which took part in the CASP9 experiment, employed multistage
methodologies, which typically utilize several independent methods, such as: con-
sensus homology detecting tools, modeling methods, quality assessment procedures,
optimization and refinement methods. For example, the top ranked group in CASP9,
MUFOLD [148], used techniques such as consensus constraints-based model con-
struction and theMulti Dimensional Scaling Technique—amachine learningmethod
for quality assessment—and, finally, model refinement by the combination of model
and template information.

On the other hand, if one uses the number of the best models to rank the meth-
ods (among all predictions submitted to the CASP9 as the top model—each group
may send up to 5 models), the best four methods are based on CG modeling tools
described before in Sects. 1, 2 and 3 of this chapter (see Table 3). Below we attempt
to briefly evaluate the CG-based methods performance dependence on the difficulty
of the targets. Figure 5 shows the comparison of single-method groups presented
in Table 3 (except for PRLMS which also utilizes a non-CG Modeller method)
taking into account target annotation into categories: FM (Free Modeling), TBM
(Template-Based Modeling) and FM/TBM. In the FM category the leading groups
(ZHANG_AB_INITIO, BAKER) use fragment-assembling approaches (Rosetta,
QUARK). In the intermediate difficulty category, FM/TBM, the LTB (CABS) group
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Table 3 Top groups in CASP9 in terms of the number of models with the highest GDT_TS score
submitted to CASP9 as first models

Group name
(number)

Method Number of
models with the
highest
GDT_TS

Mean GDT_TS
for all
server/human
targets

Rank in CASP9

PRMLS (65) Rosetta/Modeller 7 54.10 12

LTB (400) CABS 5 51.86 28

BAKER (172) Rosetta 5 51.77 29

ZHANG_AB_INITIO
(418)

QUARK 4 52.95 18

FM FM/TBM TBM

BAKER
LTB
ZHANG_AB_INITIO

Category

ΔG
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T
_T

S
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Fig. 5 Differences for three difficulty categories between mean GDT_TS for a particular group
and the mean GDT_TS for models submitted to CASP9 by all groups

significantly outperforms two other methods; however, it is necessary to note that
this category contains only three targets.

The statistics of the TBM category show that using CG methods in easy cases
of comparative modeling is not the best choice. In this category the highest mean
quality of the targets was achieved by the ZHANG_AB_INITIO group, which used
models provided earlier from automated prediction servers instead of usingQUARK.
However, it does not mean that CG methods cannot provide successful models. For
instance, all the five targets, for which the best model was submitted by the LTB
group, belong to the TBM category. The lower mean quality of the models is the
effect of the low consistency of prediction quality.

CASP is a biannual experiment initiated over 20 years ago. One of the most
intriguing questions regarding this undertaking is the progress in the field. Unfortu-
nately, the evaluation of the progress is not an easy task due to the differences in the
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difficulty of the targets in various CASP editions. However, a general tendency can
be observed that after dramatic improvements in early editions, in the last ones the
progress is modest [79].

The latest CASP experiments confirm this relatively slow, however permanent
progress in theoretical structure prediction [26, 55, 56, 103]. Combinations of coarse-
grained modeling strategies with careful bioinformatics analysis of sequence simi-
larities and final selection/refinement prove to be the most efficient [54, 133, 146,
149].

7 Example Case: CG Prediction of Loop Conformations

The so-called loop closure problemhas been a focus of research from the earliest days
of computational protein modeling [32, 33, 144]. The prediction of loop structure is
often the most difficult challenge in comparative modeling efforts [36]. The accuracy
of homology models is usually the lowest in loop regions. Since loop regions often
exhibit very low sequence conservation, they have to be modeled without a structural
template. In that case, simple homology modeling methods cannot be used. To illus-
trate some of the applications of the CG approach to protein structure prediction,
we briefly review recent modeling efforts using the CABS CG model toward the
accurate prediction of protein loops conformation.

In the benchmark study of loop modeling methods [49] the performance of the
following tools was compared: MODELLER, ROSETTA, CABS and a combination
of MODELLER with CABS. MODELLER [25] is commonly considered a standard
comparative modeling package. It employs explicitly designed loop modeling strate-
gies relying on the optimization-based approach (conjugate gradients and molecu-
lar dynamics with simulated annealing). ROSETTA and CABS, in turn, employ a
knowledge-based driven search of the discretized conformational space. Thesemeth-
ods were tested on a large set of loops of various lengths (4–25 residues). The tests
showed that classical modeling with MODELLER gives more accurate predictions
for short loops, while CG de novo modeling by CABS performs better for longer
loops. In the cases of long gaps in protein structures (~20 residues), loops were pre-
dicted by CABS with medium or medium-low resolution (RMSD on the level of
2–6 Å from the native). Results of similar quality were obtained for the structure
prediction of three extracellular loops of 13 G-protein coupled receptors (GPCRs)
by a de novo CABS procedure [59, 61]. This modelling task was particularly chal-
lenging for the de novo blind prediction method, as all three extracellular loops were
fully flexible during the prediction procedure. Still, the best resulting conformations
showed RMSD values lower than 3 Å from the experimental structure (see Fig. 6).
Previous benchmark studies, aimed at the prediction of missing protein structure
fragments, also indicated that the CG models (an early version of CABS and two
other tools based on similar principles) performed relatively well in the range of large
fragments [11].
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Fig. 6 Structure prediction of GPCR loops using the de novo CABS method [59]. The picture
shows the best models for second extracellular loop (EL2) in muscarinic acetylcholine receptor M2
(CHRM2), neurotensin receptor type 1 (NTSR1) and mu-type opioid receptor (OPMR1). The pre-
dicted loops are shown in red (EL2) and green (EL1 and EL3), the reference loops (crystallographic
structure) and the adjacent intracellular receptor structures in silver. The resulting conformations
of the longest EL2 exhibited the following RMSD values from the experimental conformation:
2.65 Å for CHRM2 (15 residue long), 2.99 Å for NTSR1 (21 residues) and 1.92 Å for OPMR1 (17
residues)

As shown by Jamroz and Kolinski [49] CG models can be effectively used for
the prediction of loop structures in combination with other techniques. Namely,
top ranked models generated by MODELLER were used as multiple templates for
CABS modeling. As a result of such a hybrid procedure, the predicted models were
on average more accurate than those from the single individual methods.

8 Example Case: CG Molecular Docking of Peptides
to Proteins Receptors

Molecular docking is a challenging problem of structural biology and medicine [18,
29]. The subtle energetic effects usually play the main role in docking small ligands
to protein or biomolecular complexes. In these cases, a straightforward application
of CGmodels may be difficult or not practical. Docking of large molecules, however,
in which the conformational effects are the most important, seems to be a perfect
task for CG and/or multiscale modeling strategies. A good example is the flexible
and unrestrained docking of peptides to protein receptors. It was possible to allow for
significant fluctuations of protein structures, unlimited flexibility of peptide ligands
and unrestrained search for docking sites by employing the CABS-based modeling
scheme [9, 17, 16, 81, 141]. The CABS-dock protocol is both very efficient and
allows for higher flexibility of entire modeled structures than other available tools
[84, 95, 112, 120, 119, 135]. The CABS-dock method generates moderate resolution
protein-peptide structures for significant fraction of test cases [81]. The resulting
lower resolution, coarse-grained structures can be easily refined by classical MD
simulations or local docking methods. An example of peptide docking using CABS-
dock is illustrated in Fig. 7.
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Fig. 7 The figure presents the results of docking nuclear receptor coactivator 1 (sequence:
HKLVQLLTTT) to peroxisome proliferator-activated receptor gamma (PDB code 2FVJ:A) without
using prior knowledge about the binding site. The docking was performed with CABS-dockmethod
[81]. Panel a shows 1000 lowest energy models (light blue, best model RMSD to native pose is
1.43 A) while panel b shows the top scored model (dark blue, RMSD to native pose is 3.46 A)
together with the experimental structure of bound peptide (light blue) in the close up frame (native
complex PDB code: 2FVJ). The protein receptor is presented in surface representation

Protein-peptide docking strategies can also serve as powerful supporting tools
for protein-protein docking. Providing a contacting structural fragment from one
of the complex components can be predicted with a reasonable fidelity, it may be
extracted as a “peptide” fragment. This short linear interacting motif may be docked
to the second complex component with protein-peptide docking tools. In some of the
modeling cases, this fragmentary template may be successfully used to reconstruct
the entire complex [15]. This strategy for hierarchical protein-protein docking is
now being intensively studied [109], since protein-protein docking can be of great
importance for new directions in drug design [123].

9 Conclusions and Perspectives

One of the main purposes of this chapter was to demonstrate that the most inter-
esting CG models are based on quite complex sets of assumptions, such as protein
representation, force field, coordination system and sampling scheme. Obviously,
the accuracy of particular assumptions of CG protein models defines the range of
applicability ofmodeling procedures. It seems to be reasonable to state that the future
development of CGmodels will focus on amore accurate reconstruction of real phys-
ical effects. Increasing computational power should lead to a considerable decrease



Protein Structure Prediction Using Coarse-Grained Models 51

in the assumed simplifications of the existing models, and, therefore, provide a more
accurate description of the observed physics of biomacromolecules.

Another promising direction of the development of CGmodels is a more effective
combination of existing CG methods with comparative modeling approaches [58,
116, 147]. Perhaps, the term “unification” would be more accurate as we believe
that the incorporation of comparative modeling methods should go further than mere
utilization of information provided by stand-alone comparative modeling tools. Such
a precursor approach has been shown in Sect. 5.3.

Finally,we expect that the development of integrative approacheswhich use exper-
imental data from various sources together with different computational techniques,
as well CG models, will be critical. The most recent (and spectacular) examples of
the integrative structure determination include the use of Cryo-Electron Microscopy
(cryo-EM) in combination with CG modeling techniques. One of the biggest advan-
tage of Cryo-EM experiments is the fact that, contrary to the popular X-ray crystal-
lography, specimens can be observed in their native environment, which enables the
exploration of conformational states. The main problem for Cryo-EM maps is their
low resolution which can be solved by the application of CG computational tech-
niques for fitting high-resolution protein structures [150]. Probably, such integrative
approaches will become widespread in the near future.
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