
235

Daisuke Kihara (ed.), Protein Structure Prediction, Methods in Molecular Biology, vol. 1137,
DOI 10.1007/978-1-4939-0366-5_16, © Springer Science+Business Media New York 2014

Chapter 16

Protocols for Efficient Simulations of Long-Time Protein
Dynamics Using Coarse-Grained CABS Model

Michal Jamroz, Andrzej Kolinski, and Sebastian Kmiecik

Abstract

Coarse-grained (CG) modeling is a well-acknowledged simulation approach for getting insight into long-
time scale protein folding events at reasonable computational cost. Depending on the design of a CG
model, the simulation protocols vary from highly case-specific—requiring user-defined assumptions about
the folding scenario—to more sophisticated blind prediction methods for which only a protein sequence is
required. Here we describe the framework protocol for the simulations of long-term dynamics of globular
proteins, with the use of the CABS CG protein model and sequence data. The simulations can start from
a random or a selected (e.g., native) structure. The described protocol has been validated using experimen-
tal data for protein folding model systems—the prediction results agreed well with the experimental results.

Key words Folding pathway, Folding mechanism, Protein dynamics, Protein folding, Coarse-grained
modeling

1 Introduction

Protein folding events occur over a wide range of time scales: from
picosecond (small fluctuations) to millisecond or longer (signifi-
cant regrouping of thousands of atoms). No single experimental
technique has yet presented a complete insight into the folding
process due to the limitations in accessible time and resolution
scales [1]. For small proteins, the 1 ms time scale has recently
become accessible to atomic level molecular dynamics (MD) simu-
lations run on special-purpose supercomputers [2]. Given the
ambiguity of the experimental data, the major role of simulation
techniques is to provide detailed structural models suitable for the
experiment interpretation [3, 4].

The purpose of the described CABS software package is to
perform long-time simulations of protein molecules including de
novo folding from a random structure, near-native dynamics,
unfolding processes, and long-time dynamics of unfolded
structures.

236

The package simulation engine is the CABS protein model—a
coarse-grained (CG) modeling tool—enabling an effective simula-
tion of protein dynamics (at a much reduced computational cost
compared to the most established simulation approach: an all-atom
MD) and de novo prediction of protein structures. In the CASP
experiments, the CABS-based prediction approach allowed for
realistic de novo predictions of new folds for small proteins and an
accurate modeling of large structures using various partial restraints
derived from detected homologies with known structures (the
approach was ranked first or second depending on the scoring sys-
tem [5, 6]). The application of the CABS model to simulations of
protein dynamics has been validated on experimental long-time
scale (super-millisecond) data for protein folding model systems
(perhaps the most extensively studied by experiment and theory):
barnase [7], chymotrypsin inhibitor 2 [7], B1 domain of protein G
[8], B domain of protein A [9, 10], and others [11]. The obtained
simulation results concerning the folding mechanism or the dena-
tured state properties agreed well with experimental data and other
simulation findings (the review and comparison of the experimen-
tal, the CABS-predicted, and other simulation data for three pro-
tein folding model systems are presented in ref. 1). Another
validation study included the comparison of the CABS dynamics
with the results of MD simulations [12]. The test demonstrated
that the consensus view of protein dynamics from short (10 ns)-
time scale MD simulations (for different protein metafolds, using
all-atom MD, explicit water, and four most popular force fields) is
fairly consistent with the CABS dynamics. The CABS modeling
approach has also been used in simulation studies of a chaperonin
effect on folding mechanism (a simple chaperonin-like protocol
was implemented within the CABS algorithm) [10].

Generally, in comparison with other simulation tools, the
advantageous features of CABS include suitability for de novo pre-
diction of small proteins, low computational cost of simulating sig-
nificant conformational changes, and, in respect to other CG
models, high resolution of coarse graining (physically realistic
models can be obtained [9, 13]). The potential applications of the
CABS model comprise structural characterizations of protein con-
formations along the folding pathway (denatured state ensembles,
intermediates, and near-native ensembles) and thus the interpreta-
tion of the existing sparse experimental data. In all these prediction
tasks, weak and/or fragmentary distance restraints (derived from
sparse experimental data or from theoretical predictions of plausi-
ble structural biases) can be applied. Finally, the CABS-derived
structures and trajectories can be used in multiscale modeling pro-
cedures, merging CG modeling with atomic level simulations (see
the pipeline in Fig. 1).

Michal Jamroz et al.

237

2 Materials

The required input data are protein sequence and assigned (or pre-
dicted) secondary structure. The optional input is starting struc-
ture data (in PDB format; required for unfolding studies or
RMSD-to-native analysis).

For barnase, the example protein studied in the Methods sec-
tion, the following data have been used: sequence, structure
(PDBID: 1BNR), and secondary structure assignment (by the
DSSP method) [14]. For known protein structures, both PDB and
DSSP files can be accessed from the PDB database (http://www.
rcsb.org/), e.g., the files for 1BNR can be obtained using the fol-
lowing links:

http://www.rcsb.org/pdb/files/1bnr.pdb.

http://www.rcsb.org/pdb/files/1bnr.dssp.

2.1 Input Data

Fig. 1 Multiscale characterization of protein dynamics pipeline with the use of

the CABS model. The framework protocol for simulation and analysis described

in this manuscript is marked with a dashed line

Protocols for Efficient Simulations of Long-Time Protein Dynamics…

238

The required software modules are the CABS modeling package
and the CABS Python wrapper (pyCABS) both available for down-
load from http://biocomp.chem.uw.edu.pl/pycabs. For running
the pyCABS, Python interface and necessary Python modules
(listed in Subheading 3) are needed. For additional download and
setup details see Note 1.

The user should have basic skills in Python language scripting as
well as a basic knowledge of structural bioinformatics (particularly
in the foundations of protein folding problems and the use of pro-
tein structural data).

A computer running Linux/Unix with at least 3 GB of free hard-
disk space for the output data. Since some of the protocols described
here involve running multiple (up to one hundred) simulation
runs, we recommend the usage of a multi-CPU workstation.

3 Methods

The details of the CABS protein model are described in ref. [15].
Below, step-by-step instructions are presented together with
python script fragments (given in Courier New font style). The
complete scripts are available from http://biocomp.chem.uw.edu.
pl/pycabs.

Download the required software (for download instructions
see Note 1). Next, the necessary Python modules need to be
imported. Create a file with the *.py extension (e.g., folding_
pathway.py) and type inside

#!/usr/bin/env python

import matplotlib as mmp

mmp.use('Agg')

import os, random, pylab, glob, pycabs, numpy as np,

multiprocessing as mp

The first line is the information for the system which inter-
preter should be used for running the script. The next two lines
define the environment for creation of contact maps and standard
deviation plots. The last line invokes imports of the multiprocess-
ing module (for parallel execution of CABS software), pylab (for
plotting the data), and pyCABS (for running CABS and processing
CABS format files).

The following example describes how to run multiple simulations
of protein folding dynamics, for the example protein barnase. The
described simulation approach was used in the characterization of
the barnase folding pathway in the work of Kmiecik and Kolinski [7].

2.2 Software

2.3 Skills

2.4 Hardware

3.1 Environment

Preparation

3.2 Running

Isothermal

Simulations

Michal Jamroz et al.

239

Note that the results may vary in quantitative details due to possi-
bly different simulation settings and/or later modifications of the
CABS model.

It is recommended, but not required, to provide sequence
and secondary structure information using the DSSP file format
(for additional hints see Note 2):

sequence,secstr = pycabs.parseDSSPOutput("1bnr.dssp")

Alternatively, one can simply define it in sequence (protein
sequence) and secstr (protein secondary structure) variables.
The secondary structure should be defined for each amino acid in
the three-letter code: H, a helix; E, an extended state; and C, a coil
(less regular structures). In the case of secondary structure predic-
tions, overpredictions of the regular secondary structure (H or E)
are more dangerous for the quality of the results than
underpredictions.

In previous works, as the first step in the characterization of
long-term dynamics we found it convenient to execute multiple
isothermal simulation runs in different temperatures. In the CABS
algorithm, the temperature is the parameter controlling the accep-
tance ratio for new conformations (through an asymmetric Monte
Carlo scheme).

To run simulations in a parallel fashion (one simulation on one
thread), create a function definition (runCABS) for the multipro-
cessing threadpool:

name = "barnase"

template = ["/where/is/my/barnase/1bnr.pdb"]

independent_runs = 5

temp_from = 1.5

temp_to = 3.8

temp_interval = 0.05

temperatures = np.arange(temp_from,temp_to,temp_interval)

def runCABS(temperature):

 global name, sequence,secstr,template,independent_runs

 here = os.getcwd()

 for i in range(independent_runs):

 temp = "%06.3f" %(temperature)

 dir_name= name+"_"+str(i)+"_T"+temp

 a = pycabs.CABS(sequence,secstr,template,dir_name)

 a.rng_seed = random.randint(1,10000)

 a.createLatticeReplicas(replicas=1)

 a.modeling(Ltemp=temperature,Htemp=temperature,

phot=300,cycles=100,dynamics=True)

 os.chdir(here)

pool = mp.Pool()

pool.map(runCABS,temperatures)

Protocols for Efficient Simulations of Long-Time Protein Dynamics…

240

The above code fragment contains a declaration of the
 independent_runs variable, which tells the script to start five
independent (with a different pseudo-random number generator
seed) simulations for each temperature, starting from 1bnr.pdb
(the native structure). It also contains the temperatures variable,
which is a list of temperatures in the range of 1.5–3.8 and interval
0.05. This gives a total number of (3.8–1.5)/0.05 × 5 = 230 inde-
pendent simulations (for additional details see Note 3). In order to
start the simulations from extended random coil structures leave
the template variable empty, i.e., template=[]. Doing so ensures
that the simulation results are not biased from the starting struc-
ture. At elevated temperatures, due to the fast relaxation of the
polypeptide chain, the simulation trajectory relatively quickly
becomes independent from the starting structure.

The following parameters define the simulation length:

cycles—defines the number of CABS MC macrocycles [15] and
determines the trajectory length (a number of trajectory snap-
shots is equal to cycles multiplied by 20, e.g., for cycles = 100
the resulting trajectory will have 2,000 snapshots).

phot—determines simulation length between the recorded
snapshots.

The CABS-generated trajectories are produced in different
output formats and representations: TRAF file (contains trajectory
models in an alpha-carbon representation) and TRASG (contains
trajectory models in a center-of-side-chain-mass representation).
Both files are reformatted to a more popular PDB format.
Additionally, each working directory contains an ENERGY file
with CABS energy values for each model in a trajectory.

The CABS model (and the pyCABS module), developed pri-
marily for protein structure prediction, enables application of dis-
tance restraints (derived from sparse experimental data or from
theoretical predictions of plausible structural biases). For example
instructions on running comparative modeling (with the use of
structural template(s)), de novo modeling (template free), and
modeling with the use of external distance constraints, see Note 4.

Below are the instructions for the calculation of average CABS energy
and standard deviation of energy values for the obtained trajectories.
Both measures plotted in the function of temperature give an insight
into the overall characteristics of the CABS energy landscape.

The standard deviation of energy (E) in function of temperature
(T) is defined as

s T
N

E E
i

N

i

T T() = -()
=

å
1

1

2

where N is the number of observables, and ET is the mean in the
given T.

3.3 Calculating

Simulation Statistics

Michal Jamroz et al.

241

To compute average energy and its standard deviation for each
simulation, run the following code (e_path must be constructed
identically to the dir_name variable in the runCABS procedure):

stdd = np.empty([independent_runs,len(temperatures)])

avgene = np.empty([independent_runs,len(temperatures)])

for j in range(independent_runs):

 for i in range(len(temperatures)):

 temp = "%06.3f" %(temperatures[i])

 e_path = os.path.join(name+'_'+str(j)+'_T'+temp,'ENERGY')

 stdd[j][i] = np.std(energy)

 avgene[j][i] = np.mean(energy)

Adding the following commands

mean_sigma = np.mean(stdd,axis = 0)

stddev_sigma = np.std(stdd,axis = 0)

mean_ene = np.mean(avgene,axis = 0)

stddev_ene = np.std(avgene,axis = 0)

invokes computation of the average values from five independent
simulations for each T value (see Fig. 2).

To plot average CABS energy and standard deviation of energy
values for the obtained trajectories (a single point denotes a single
trajectory), users can apply the pylab module as in the code below

pylab.ylabel(r'Standard deviation of energy')

pylab.xlabel(r'Temperature, T')

pylab.xlim(temp_from,temp_to)

for i in range(independent_runs):

 pylab.plot(temperatures, stdd[i], '.')

pylab.errorbar(temperatures,mean_sigma,yerr=stddev_sigma,fmt='o-')

pylab.close()

and analogously for the average energy plot (by changing mean_
sigma to mean_ene, stddev_sigma to stddev_ene and
stdd to avgene). The standard deviation of energy is written to
stdE_barnase.png (upper panel in Fig. 2). The average energy
plot is shown at the bottom of Fig. 2 (additional plotting options
are given in Note 5).

Average contact maps (average for the entire isothermal trajectory
or trajectory fragment of interest) provide a very informative
insight into complex intramolecular interactions of highly diverse
protein ensembles.

3.4 Plotting

Simulation Statistics

3.5 Generating

Contact Maps

Protocols for Efficient Simulations of Long-Time Protein Dynamics…

242

Fig. 2 CABS energy standard deviation (above) and CABS energy (below) as a func-

tion of temperature (T) for barnase (similar results were presented in ref. [7]).

Variously colored small points represent individual isothermal simulations, while

larger yellow points represent average value from five independent simulations in

the given T value. The transition temperature (Tt) is identified by a steep drop of the

energy and the peak of the energy standard deviation (heat capacity), here when

T = 2.9. Tt cannot be strictly identified with the transition state of protein folding.

Sometimes, as for chymotrypsin inhibitor (see ref. [7]), conformations observed at

Tt may be relatively unstructured, with some features of a molten globule state. For

a more exact estimation of the Tt value one can repeat the computations in a

smaller range of temperatures, with a smaller temp_interval value

Michal Jamroz et al.

243

#!/usr/bin/env python

import matplotlib as mmp

mmp.use('Agg')

import pycabs,os,numpy as np

name = "barnase"

max_sd_temperature=2.9

independent_runs=5

trajectory = []

for j in range(independent_runs):

 temp = "%06.3f" %(max_sd_temperature)

 e_path = os.path.join(name+'_'+str(j)+'_T'+temp,'TRASG')

 trajectory += pycabs.loadSGCoordinates(e_path)[1000:]

The above code fragment loads the second half of trajectories
in the center-of-side-chain-mass trace format from five indepen-
dent simulations in the temperature 2.9. To calculate an average
contact map (the contact map definition is given in Note 6) with
the cutoff of 7.0 Å use

contact = pycabs.contact_map(trajectory,7.0)

and to write it to a file, use the pylab module (for the map coloring
hint see Note 7):

xlim,ylim,cm

xlabel("Residue index")

ylabel("Residue index")

xlim(0,len(contact))

ylim(0,len(contact))

for k in range(len(contact)-3):

for l in range(3):

contact[k+l][k+l] = contact[k+l][k] = contact[k]

[k+l] = contact[k][k]=0

pcolor(contact, cmap=cm.gnuplot2_r,vmax=0.6)

cb = colorbar()

cb.set_label("Fraction of contacts")

The example contact map, created as described above, is pre-
sented in Fig. 3.

Note that for generating contact map figures, instead of using
the pylab module, one can use any specialized software for this
purpose, e.g., Gnuplot program (for plotting instructions in
Gnuplot see Note 8).

The resulted trajectories can be filtered and structurally analyzed
using simple filters (for example CABS energy and RMSD-to-
native cutoffs). More sophisticated structural analysis is perhaps
most commonly performed with the use of clustering analysis [16]
(like in the characterization of near-native ensemble in ref. [8] or
transition state ensemble in ref. [9]) or principal component
 analysis [17].

3.6 Selection

of Models of Interest

Using RMSD-to-Native

and CABS Energy

Measures

Protocols for Efficient Simulations of Long-Time Protein Dynamics…

244

The simple filtering options are accessible from the provided
modules. To filter out models dissimilar by RMSD to the native
structure, one can use

#!/usr/bin/env python

import pycabs,os,numpy as np

name = "barnase"

rmsd_cutoff = 7.5

max_sd_temperature=2.9

independent_runs=5

trajectory = []

for j in range(independent_runs):

 temp = "%06.3f" %(max_sd_temperature)

 e_path = os.path.join(name+'_'+str(j)+'_T'+temp,'TRAF')

 for model in pycabs.loadTRAFCoordinates(e_path):

 if pycabs.rmsd(native,model) < rmsd_cutoff:

 trajectory += model

Note that each simulation directory contains an ENERGY file
with the energy of each trajectory model. By reading it to memory
()) the user can
filter out models with a particular energy cutoff.

Fig. 3 Contact map for the intermediate (between fully denatured and near-

native) state of barnase (similar results were presented in ref. [7]). The colors

indicate the frequency of contacts. Short-range contacts are omitted for clarity

Michal Jamroz et al.

245

Selected individual models or consecutive trajectory fragments can
be rebuilt to an all-atom representation. The task of reconstruction
from alpha carbon trace is typically solved by a two-step procedure
[9, 18]: backbone reconstruction from alpha carbon trace [19] fol-
lowed by side-chain reconstruction [20] based on the position of
backbone atoms. Note that models from the CABS method (in alpha
carbon trace representation), as well as from the other CG modeling
tools, are not free from unphysical local distortions. Therefore,
building physically sound models from reduced models usually
requires specialized reconstruction and refinement procedures [18].

4 Notes

 1. All necessary applications can be downloaded from the follow-
ing sources: Python (http://www.python.org), Pylab (http://
www.scipy.org/PyLab), CABS/pycabs (http://biocomp.
chem.uw.edu.pl), and GNUplot (http://www.gnuplot.info).
All programs (except pyCABS and CABS) are available in most
of the Linux distribution repositories.

If one wants to compile the CABS software, use g77 –O2

dynamics.f and move the "cabs_dynamics" file to the FF
directory of pyCABS module.

After downloading the pyCABS package, uncompress it into
the working directory and modify the pycabs.py file by set-
ting path to the FF directory. This can be done by changing the
self.FF variable in the __init__method of the CABS class.

 2. One can utilize secondary structure prediction software and
write a predicted secondary structure (each residue in one-
letter code: H—helix, E—extended, C—coil) in the secstr
variable. Note that the Protein Data Bank does not contain
DSSP files for all deposited proteins.

 3. This task has taken about 28 h on 24 Intel® E5649 threads.
That range of temperatures is typical for barnase; for other
proteins it could be different. In order to roughly estimate the
appropriate range, an initial simulation run can be performed
with less computationally expensive operands: temp_

interval=1 and independent_runs=1. Note that pool =
mp.Pool() uses all available CPUs by default, but the user can
limit it, e.g., pool = mp.Pool(4), to utilize only four CPUs.

 4. Example instructions for running: comparative modeling
(with the use of structural template(s)), de novo modeling
(template free), and modeling with the use of external distance
constraints.

3.7 Reconstruction

to All-Atom

Representation

Protocols for Efficient Simulations of Long-Time Protein Dynamics…

246

The following is an example script for protein structure
 prediction by comparative modeling (with the use of second-
ary structure prediction (in the Porter method [21] format
file) and three templates (e.g., from Pcons Structure Prediction
Meta Server: pcons.net): t1.pdb, t2.pdb, t3.pdb). Residues in
the template structure files have to be numbered according to
the target sequence alignment:

#!/usr/bin/env python

import pycabs

sequence,sec_str = pycabs.parsePorterOutput("/absolute/

path/to/porter.ss")

working_dir = "prediction" # name of project

templates = ["/abs/path/to/t1.pdb","/abs/path/to/

t2.pdb","/abs/path/to/t3.pdb"]

a = pycabs.CABS(sequence,sec_str,templates,working_dir)

a.generateConstraints()

a.createLatticeReplicas(replicas = 10) # create start

models from templates

a.modeling(Htemp = 2.0,Ltemp = 1.0,cycles = 20,phot = 100)

The script presented above: (1) parses the secondary struc-
ture prediction file (one can directly define sequence and
 secondary structure in sequence and sec_str variables,
respectively); (2) creates distance constraints from templates;
(3) creates 10 starting structures projected on the CABS lat-
tice (iteratively from each template), which can be viewed in
PDB file format in the "prediction" directory; and (4) runs
CABS simulation with REMC and simulated annealing in the
temperature range from 2.0 to 1.0 (typical values for compara-
tive modeling).

In order to run de novo modeling (without the use of
 templates/constraints) one needs to (1) specify the sequence
and sec_str variables, (2) leave the templates empty (i.e.,
templates = []) and comment out the a.generate-
Constraints() line, and (3) run CABS simulation with
REMC and simulated annealing in the temperature range
from 3.5 to 1.0, cycles = 100, phot = 100, and repli-
cas = 30, which are typical settings for de novo modeling.
Note that de novo modeling is an extremely difficult modeling
task and the difficulty increases with the protein length. Thus,
the procedure may be suitable for small proteins preferably not
longer than 120 residues.

In order to introduce some external distance constraints
(derived from sparse experimental data or from theoretical pre-
dictions of plausible structural biases), one can manually add
the distances data before running the modeling procedure:

misc = []

misc.append((1, 40, 15.4, 16.6, 0.5))

a.generateConstraints(exclude_residues = range(1,1000),

other_constraints = misc)

Michal Jamroz et al.

247

The code fragment presented above (1) excludes all auto-
matically generated constraints (exclude_residues for resi-
dues 1–999) and (2) adds user-provided constraint between
the alpha carbon atoms of the residues No. 1 and No. 40 with
the constraint range between 15.4 and 16.6 Å (the constraint
range is a preferred distance between the selected alpha car-
bons) and the constraint force equal to 0.5. The variable misc
is in the format of a list of tuples (residue_i_index,
residue_j_index, lower_distance, upper_distance,

force). If one needs to change the global force constraint, it
is possible to do so by providing a new value for constraints_
force (default 1.0) in the modeling method, i.e.,

a.modeling(Htemp = 2.0,Ltemp = 1.0,cycles = 20,phot = 100,

constraints_force = 2.0)

If the script is successfully terminated, the prediction results
can be found in the “prediction” directory (TRAF.pdb file).

 5. At the script level, one can define output plot parameters, e.g.,
label sizes, colors, and resolution (more visualization examples
can be found at http://matplotlib.org).

 6. Contact map C is a N × N matrix defined as

C i j C j i
if d x x cutoff

otherwise

i j
, ,

,
() = () = () <ì

í
ï

îï

1

0

where xi is the position of the x-th atom (here the center of a
mass of a side group of an i-th residue).

 7. The Pcolor function of the pylab module has a vmax param-
eter which defines the maximum value of the colorbar scale.
Manipulating the vmax value may be helpful for a proper visu-
alization of contacts of interest.

 8. Instead of using the pylab module, one can write text data to
the output file. To write the contact array into a file formatted
for GNUplot, write a file with three columns (i-th residue, j-th
residue, contact fraction value) and leave a blank row each
time before the i-th column changes its value:

fw = open("contact_map.dat","w")

for i in range(len(contact)):

 for j in range(len(contact)):

[j]))

fw.close()

Note that in the example above, the script writes residue
indexes starting from 1 (in pylab fragment it creates plots starting
from 0).

Protocols for Efficient Simulations of Long-Time Protein Dynamics…

248

Finally, plot contact_map.dat in GNUplot (and write to
the postscript file with a font size suitable for presentation):

set terminal unknown

plot 'contact_map.dat' using 1:2:3

set xrange[GPVAL_DATA_X_MIN:GPVAL_DATA_X_MAX]

set yrange[GPVAL_DATA_Y_MIN:GPVAL_DATA_Y_MAX]

set terminal postscript eps enhanced color "Helvetica" 14

set output 'contact_map.eps'

set size ratio 1

unset key

set xlabel 'Residue index'

set ylabel 'Residue index'

set cbrange[:0.8]

set palette negative

plot 'contact_map.dat' with image

The first four lines of these GNUplot commands are respon-
sible for the calculation of max/min values of axis data (1 to
chain length); set cbrange[:0.8] sets the colorbar scale in
the range of 0.0–0.8.

5 Case Studies

Below are brief descriptions of several applications of the CABS
model, together with the post-processing analysis applied to the
characterization of protein folding.

A staggering number of different protein conformations sam-
pled during de novo simulations require post-processing strategies
that reduce the vast conformational complexity into easy to under-
stand and interpret data. The complex nature of intramolecular
interactions of highly diverse ensembles can be relatively simply
described by average contact maps (average for the entire isother-
mal trajectory or trajectory fragment of interest). As shown in the
folding mechanism studies, the characterization of the appropriate
protein ensembles in the form of the averaged residue contact
maps (derived from the trajectories in CG representation), matched
very well with the experimental data from protein engineering (phi
value analysis) [7–10]. The relative contact frequencies from the
CABS simulations were also shown to be in semiquantitative agree-
ment with experimental data (phi value analysis, hydrogen-
exchange protection factors) [8, 10, 11] and other theoretical
predictions [8, 12]. In the case of the B1 domain of protein G
folding studies [8], quantitative analysis of the clusters of the most
persistent native long-range side-chain contacts and their evolve-
ment from highly denaturing to native conditions allowed for a
detailed (residue–residue contact level) description of the folding
events. Apart from the contact-level description of the highly
diverse ensembles, some persistent conformers appearing along the

Michal Jamroz et al.

249

folding route can be structurally characterized through clustering
analysis (as shown for the ensembles of the transition state of the B
domain of protein A [9], and the native-like globule of the B1
domain of protein G [8]).

Acknowledgments

The authors acknowledge support from a TEAM project
(TEAM/2011-7/6) co-financed by the EU European Regional
Development Fund operated within the Innovative Economy
Operational Program and from Polish National Science Center
(Grant No. NN301071140) and from Polish Ministry of Science
and Higher Education (Grant No. IP2011 024371).

References

 1. Kmiecik S, Jamroz M, Kolinski A (2011)
Multiscale approach to protein folding
dynamics. In: Kolinski A (ed) Multiscale
approaches to protein modeling. Springer,
New York, pp 281–294

 2. Lindorff-Larsen K, Piana S, Dror RO, Shaw
DE (2011) How fast-folding proteins fold.
Science 334:517–520

 3. Schaeffer RD, Fersht A, Daggett V (2008)
Combining experiment and simulation in pro-
tein folding: closing the gap for small model
systems. Curr Opin Struct Biol 18:4–9

 4. Rizzuti B, Daggett V (2013) Using simula-
tions to provide the framework for experimen-
tal protein folding studies. Arch Biochem
Biophys 531(1–2):128–135

 5. Kolinski A, Bujnicki JM (2005) Generalized
protein structure prediction based on combi-
nation of fold-recognition with de novo fold-
ing and evaluation of models. Proteins
61(Suppl 7):84–90

 6. Debe DA, Danzer JF, Goddard WA, Poleksic
A (2006) STRUCTFAST: protein sequence
remote homology detection and alignment
using novel dynamic programming and profile-
profile scoring. Proteins 64:960–967

 7. Kmiecik S, Kolinski A (2007) Characterization
of protein-folding pathways by reduced-space
modeling. Proc Natl Acad Sci USA 104:
12330–12335

 8. Kmiecik S, Kolinski A (2008) Folding pathway
of the B1 domain of protein G explored by
multiscale modeling. Biophys J 94:726–736

 9. Kmiecik S, Gront D, Kouza M, Kolinski A
(2012) From coarse-grained to atomic-level
characterization of protein dynamics: transi-
tion state for the folding of B domain of pro-
tein A. J Phys Chem B 116:7026–7032

 10. Kmiecik S, Kolinski A (2011) Simulation of
chaperonin effect on protein folding: a shift
from nucleation-condensation to framework
mechanism. J Am Chem Soc
133:10283–10289

 11. Kmiecik S, Kurcinski M, Rutkowska A, Gront
D, Kolinski A (2006) Denatured proteins and
early folding intermediates simulated in a
reduced conformational space. Acta Biochim
Pol 53:131–144

 12. Jamroz M, Orozco M, Kolinski A, Kmiecik S
(2013) Consistent view of protein fluctua-
tions from all-atom molecular dynamics and
coarse- grained dynamics with knowledge-
based force- field. J Chem Theory Comput
9:119–125

 13. Kmiecik S, Gront D, Kolinski A (2007)
Towards the high-resolution protein structure
prediction. Fast refinement of reduced models
with all-atom force field. BMC Struct Biol
7:43

 14. Kabsch W, Sander C (1983) Dictionary of pro-
tein secondary structure: pattern recognition
of hydrogen-bonded and geometrical features.
Biopolymers 22:2577–2637

 15. Kolinski A (2004) Protein modeling and struc-
ture prediction with a reduced representation.
Acta Biochim Pol 51:349–371

Protocols for Efficient Simulations of Long-Time Protein Dynamics…

250

 16. Jamroz M, Kolinski A (2013) ClusCo: cluster-
ing and comparison of protein models. BMC
Bioinformatics 14:62

 17. Maisuradze GG, Liwo A, Scheraga HA (2009)
Principal component analysis for protein fold-
ing dynamics. J Mol Biol 385:312–329

 18. Xu D, Zhang Y (2011) Improving the physical
realism and structural accuracy of protein
models by a two-step atomic-level energy min-
imization. Biophys J 101:2525–2534

 19. Gront D, Kmiecik S, Kolinski A (2007)
Backbone building from quadrilaterals: a

fast and accurate algorithm for protein back-
bone reconstruction from alpha carbon
coordinates. J Comput Chem 28:
1593–1597

 20. Krivov GG, Shapovalov MV, Dunbrack RL
Jr (2009) Improved prediction of protein
 side- chain conformations with SCWRL4.
Proteins 77:778–795

 21. Pollastri G, McLysaght A (2005) Porter: a
new, accurate server for protein secondary
structure prediction. Bioinformatics
21:1719–1720

Michal Jamroz et al.

