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Chapter 16

Protocols for Efficient Simulations of Long-Time Protein 
Dynamics Using Coarse-Grained CABS Model

Michal Jamroz, Andrzej Kolinski, and Sebastian Kmiecik

Abstract

Coarse-grained (CG) modeling is a well-acknowledged simulation approach for getting insight into long- 
time scale protein folding events at reasonable computational cost. Depending on the design of a CG 
model, the simulation protocols vary from highly case-specific—requiring user-defined assumptions about 
the folding scenario—to more sophisticated blind prediction methods for which only a protein sequence is 
required. Here we describe the framework protocol for the simulations of long-term dynamics of globular 
proteins, with the use of the CABS CG protein model and sequence data. The simulations can start from 
a random or a selected (e.g., native) structure. The described protocol has been validated using experimen-
tal data for protein folding model systems—the prediction results agreed well with the experimental results.

Key words Folding pathway, Folding mechanism, Protein dynamics, Protein folding, Coarse-grained 
modeling

1 Introduction

Protein folding events occur over a wide range of time scales: from 
picosecond (small fluctuations) to millisecond or longer (signifi-
cant regrouping of thousands of atoms). No single experimental 
technique has yet presented a complete insight into the folding 
process due to the limitations in accessible time and resolution 
scales [1]. For small proteins, the 1 ms time scale has recently 
become accessible to atomic level molecular dynamics (MD) simu-
lations run on special-purpose supercomputers [2]. Given the 
ambiguity of the experimental data, the major role of simulation 
techniques is to provide detailed structural models suitable for the 
experiment interpretation [3, 4].

The purpose of the described CABS software package is to 
perform long-time simulations of protein molecules including de 
novo folding from a random structure, near-native dynamics, 
unfolding processes, and long-time dynamics of unfolded 
structures.
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The package simulation engine is the CABS protein model—a 
coarse-grained (CG) modeling tool—enabling an effective simula-
tion of protein dynamics (at a much reduced computational cost 
compared to the most established simulation approach: an all-atom 
MD) and de novo prediction of protein structures. In the CASP 
experiments, the CABS-based prediction approach allowed for 
realistic de novo predictions of new folds for small proteins and an 
accurate modeling of large structures using various partial restraints 
derived from detected homologies with known structures (the 
approach was ranked first or second depending on the scoring sys-
tem [5, 6]). The application of the CABS model to simulations of 
protein dynamics has been validated on experimental long-time 
scale (super-millisecond) data for protein folding model systems 
(perhaps the most extensively studied by experiment and theory): 
barnase [7], chymotrypsin inhibitor 2 [7], B1 domain of protein G 
[8], B domain of protein A [9, 10], and others [11]. The obtained 
simulation results concerning the folding mechanism or the dena-
tured state properties agreed well with experimental data and other 
simulation findings (the review and comparison of the experimen-
tal, the CABS-predicted, and other simulation data for three pro-
tein folding model systems are presented in ref. 1). Another 
validation study included the comparison of the CABS dynamics 
with the results of MD simulations [12]. The test demonstrated 
that the consensus view of protein dynamics from short (10 ns)-
time scale MD simulations (for different protein metafolds, using 
all-atom MD, explicit water, and four most popular force fields) is 
fairly consistent with the CABS dynamics. The CABS modeling 
approach has also been used in simulation studies of a chaperonin 
effect on folding mechanism (a simple chaperonin-like protocol 
was implemented within the CABS algorithm) [10].

Generally, in comparison with other simulation tools, the 
advantageous features of CABS include suitability for de novo pre-
diction of small proteins, low computational cost of simulating sig-
nificant conformational changes, and, in respect to other CG 
models, high resolution of coarse graining (physically realistic 
models can be obtained [9, 13]). The potential applications of the 
CABS model comprise structural characterizations of protein con-
formations along the folding pathway (denatured state ensembles, 
intermediates, and near-native ensembles) and thus the interpreta-
tion of the existing sparse experimental data. In all these prediction 
tasks, weak and/or fragmentary distance restraints (derived from 
sparse experimental data or from theoretical predictions of plausi-
ble structural biases) can be applied. Finally, the CABS-derived 
structures and trajectories can be used in multiscale modeling pro-
cedures, merging CG modeling with atomic level simulations (see 
the pipeline in Fig. 1).

Michal Jamroz et al.
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2 Materials

The required input data are protein sequence and assigned (or pre-
dicted) secondary structure. The optional input is starting struc-
ture data (in PDB format; required for unfolding studies or 
RMSD-to-native analysis).

For barnase, the example protein studied in the Methods sec-
tion, the following data have been used: sequence, structure 
(PDBID: 1BNR), and secondary structure assignment (by the 
DSSP method) [14]. For known protein structures, both PDB and 
DSSP files can be accessed from the PDB database (http://www.
rcsb.org/), e.g., the files for 1BNR can be obtained using the fol-
lowing links:

http://www.rcsb.org/pdb/files/1bnr.pdb.

http://www.rcsb.org/pdb/files/1bnr.dssp.

2.1 Input Data

Fig. 1 Multiscale characterization of protein dynamics pipeline with the use of 

the CABS model. The framework protocol for simulation and analysis described 

in this manuscript is marked with a dashed line

Protocols for Efficient Simulations of Long-Time Protein Dynamics…
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The required software modules are the CABS modeling package 
and the CABS Python wrapper (pyCABS) both available for down-
load from http://biocomp.chem.uw.edu.pl/pycabs. For running 
the pyCABS, Python interface and necessary Python modules 
(listed in Subheading 3) are needed. For additional download and 
setup details see Note 1.

The user should have basic skills in Python language scripting as 
well as a basic knowledge of structural bioinformatics (particularly 
in the foundations of protein folding problems and the use of pro-
tein structural data).

A computer running Linux/Unix with at least 3 GB of free hard- 
disk space for the output data. Since some of the protocols described 
here involve running multiple (up to one hundred) simulation 
runs, we recommend the usage of a multi-CPU workstation.

3 Methods

The details of the CABS protein model are described in ref. [15]. 
Below, step-by-step instructions are presented together with 
python script fragments (given in Courier New font style). The 
complete scripts are available from http://biocomp.chem.uw.edu.
pl/pycabs.

Download the required software (for download instructions  
see Note 1). Next, the necessary Python modules need to be 
imported. Create a file with the *.py extension (e.g., folding_
pathway.py) and type inside

#!/usr/bin/env python

import matplotlib as mmp

mmp.use('Agg')

import os, random, pylab, glob, pycabs, numpy as np, 

multiprocessing as mp

The first line is the information for the system which inter-
preter should be used for running the script. The next two lines 
define the environment for creation of contact maps and standard 
deviation plots. The last line invokes imports of the multiprocess-
ing module (for parallel execution of CABS software), pylab (for 
plotting the data), and pyCABS (for running CABS and processing 
CABS format files).

The following example describes how to run multiple simulations 
of protein folding dynamics, for the example protein barnase. The 
described simulation approach was used in the characterization of 
the barnase folding pathway in the work of Kmiecik and Kolinski [7]. 

2.2 Software

2.3 Skills

2.4 Hardware

3.1 Environment 

Preparation

3.2 Running 

Isothermal 

Simulations
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Note that the results may vary in quantitative details due to possi-
bly different simulation settings and/or later modifications of the 
CABS model.

It is recommended, but not required, to provide sequence 
and secondary structure information using the DSSP file format 
(for additional hints see Note 2):

sequence,secstr = pycabs.parseDSSPOutput("1bnr.dssp")

Alternatively, one can simply define it in sequence (protein 
sequence) and secstr (protein secondary structure) variables. 
The secondary structure should be defined for each amino acid in 
the three-letter code: H, a helix; E, an extended state; and C, a coil 
(less regular structures). In the case of secondary structure predic-
tions, overpredictions of the regular secondary structure (H or E) 
are more dangerous for the quality of the results than 
underpredictions.

In previous works, as the first step in the characterization of 
long-term dynamics we found it convenient to execute multiple 
isothermal simulation runs in different temperatures. In the CABS 
algorithm, the temperature is the parameter controlling the accep-
tance ratio for new conformations (through an asymmetric Monte 
Carlo scheme).

To run simulations in a parallel fashion (one simulation on one 
thread), create a function definition (runCABS) for the multipro-
cessing threadpool:

name = "barnase"

template = ["/where/is/my/barnase/1bnr.pdb"]

independent_runs = 5

temp_from = 1.5

temp_to = 3.8

temp_interval = 0.05

temperatures = np.arange(temp_from,temp_to,temp_interval)

def runCABS(temperature):

 global name, sequence,secstr,template,independent_runs

 here = os.getcwd()

 for i in range(independent_runs):

 temp = "%06.3f" %(temperature)

 dir_name= name+"_"+str(i)+"_T"+temp

 a = pycabs.CABS(sequence,secstr,template,dir_name)

 a.rng_seed = random.randint(1,10000)

 a.createLatticeReplicas(replicas=1)

 a.modeling(Ltemp=temperature,Htemp=temperature, 

phot=300,cycles=100,dynamics=True)

 os.chdir(here)

pool = mp.Pool()

pool.map(runCABS,temperatures)

Protocols for Efficient Simulations of Long-Time Protein Dynamics…
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The above code fragment contains a declaration of the 
 independent_runs variable, which tells the script to start five 
independent (with a different pseudo-random number generator 
seed) simulations for each temperature, starting from 1bnr.pdb 
(the native structure). It also contains the temperatures variable, 
which is a list of temperatures in the range of 1.5–3.8 and interval 
0.05. This gives a total number of (3.8–1.5)/0.05 × 5 = 230 inde-
pendent simulations (for additional details see Note 3). In order to 
start the simulations from extended random coil structures leave 
the template variable empty, i.e., template=[]. Doing so ensures 
that the simulation results are not biased from the starting struc-
ture. At elevated temperatures, due to the fast relaxation of the 
polypeptide chain, the simulation trajectory relatively quickly 
becomes independent from the starting structure.

The following parameters define the simulation length:

cycles—defines the number of CABS MC macrocycles [15] and 
determines the trajectory length (a number of trajectory snap-
shots is equal to cycles multiplied by 20, e.g., for cycles = 100 
the resulting trajectory will have 2,000 snapshots).

phot—determines simulation length between the recorded 
snapshots.

The CABS-generated trajectories are produced in different 
output formats and representations: TRAF file (contains trajectory 
models in an alpha-carbon representation) and TRASG (contains 
trajectory models in a center-of-side-chain-mass representation). 
Both files are reformatted to a more popular PDB format. 
Additionally, each working directory contains an ENERGY file 
with CABS energy values for each model in a trajectory.

The CABS model (and the pyCABS module), developed pri-
marily for protein structure prediction, enables application of dis-
tance restraints (derived from sparse experimental data or from 
theoretical predictions of plausible structural biases). For example 
instructions on running comparative modeling (with the use of 
structural template(s)), de novo modeling (template free), and 
modeling with the use of external distance constraints, see Note 4.

Below are the instructions for the calculation of average CABS energy 
and standard deviation of energy values for the obtained trajectories. 
Both measures plotted in the function of temperature give an insight 
into the overall characteristics of the CABS energy landscape.

The standard deviation of energy (E) in function of temperature 
(T) is defined as
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where N is the number of observables, and ET  is the mean in the 
given T.

3.3 Calculating 

Simulation Statistics
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To compute average energy and its standard deviation for each 
simulation, run the following code (e_path must be constructed 
identically to the dir_name variable in the runCABS procedure):

stdd = np.empty([independent_runs,len(temperatures)])

avgene = np.empty([independent_runs,len(temperatures)])

for j in range(independent_runs):

 for i in range(len(temperatures)):

 temp = "%06.3f" %(temperatures[i])

 e_path = os.path.join(name+'_'+str(j)+'_T'+temp,'ENERGY')

 stdd[j][i] = np.std(energy)

 avgene[j][i] = np.mean(energy)

Adding the following commands

mean_sigma = np.mean(stdd,axis = 0)

stddev_sigma = np.std(stdd,axis = 0)

mean_ene = np.mean(avgene,axis = 0)

stddev_ene = np.std(avgene,axis = 0)

invokes computation of the average values from five independent 
simulations for each T value (see Fig. 2).

To plot average CABS energy and standard deviation of energy 
values for the obtained trajectories (a single point denotes a single 
trajectory), users can apply the pylab module as in the code below

pylab.ylabel(r'Standard deviation of energy')

pylab.xlabel(r'Temperature, $T$')

pylab.xlim(temp_from,temp_to)

for i in range(independent_runs):

    pylab.plot(temperatures, stdd[i], '.')

pylab.errorbar(temperatures,mean_sigma,yerr=stddev_sigma,fmt='o-')

pylab.close()

and analogously for the average energy plot (by changing mean_
sigma to mean_ene, stddev_sigma to stddev_ene and 
stdd to avgene). The standard deviation of energy is written to 
stdE_barnase.png (upper panel in Fig. 2). The average energy 
plot is shown at the bottom of Fig. 2 (additional plotting options 
are given in Note 5).

Average contact maps (average for the entire isothermal trajectory 
or trajectory fragment of interest) provide a very informative 
insight into complex intramolecular interactions of highly diverse 
protein ensembles.

3.4 Plotting 

Simulation Statistics

3.5 Generating 

Contact Maps
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Fig. 2 CABS energy standard deviation (above) and CABS energy (below) as a func-

tion of temperature (T) for barnase (similar results were presented in ref. [7]). 

Variously colored small points represent individual isothermal simulations, while 

larger yellow points represent average value from five independent simulations in 

the given T value. The transition temperature (Tt) is identified by a steep drop of the 

energy and the peak of the energy standard deviation (heat capacity), here when 

T = 2.9. Tt cannot be strictly identified with the transition state of protein folding. 

Sometimes, as for chymotrypsin inhibitor (see ref. [7]), conformations observed at 

Tt may be relatively unstructured, with some features of a molten globule state. For 

a more exact estimation of the Tt value one can repeat the computations in a 

smaller range of temperatures, with a smaller temp_interval value

Michal Jamroz et al.
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#!/usr/bin/env python

import matplotlib as mmp

mmp.use('Agg')

import pycabs,os,numpy as np

name = "barnase"

max_sd_temperature=2.9

independent_runs=5

trajectory = []

for j in range(independent_runs):

 temp = "%06.3f" %(max_sd_temperature)

 e_path = os.path.join(name+'_'+str(j)+'_T'+temp,'TRASG')

 trajectory += pycabs.loadSGCoordinates(e_path)[1000:]

The above code fragment loads the second half of trajectories 
in the center-of-side-chain-mass trace format from five indepen-
dent simulations in the temperature 2.9. To calculate an average 
contact map (the contact map definition is given in Note 6) with 
the cutoff of 7.0 Å use

contact = pycabs.contact_map(trajectory,7.0)

and to write it to a file, use the pylab module (for the map coloring 
hint see Note 7):

xlim,ylim,cm

xlabel("Residue index")

ylabel("Residue index")

xlim(0,len(contact))

ylim(0,len(contact))

for k in range(len(contact)-3):

for l in range(3):

contact[k+l][k+l] = contact[k+l][k] = contact[k]

[k+l] = contact[k][k]=0

pcolor(contact, cmap=cm.gnuplot2_r,vmax=0.6)

cb = colorbar()

cb.set_label("Fraction of contacts")

The example contact map, created as described above, is pre-
sented in Fig. 3.

Note that for generating contact map figures, instead of using 
the pylab module, one can use any specialized software for this 
purpose, e.g., Gnuplot program (for plotting instructions in 
Gnuplot see Note 8).

The resulted trajectories can be filtered and structurally analyzed 
using simple filters (for example CABS energy and RMSD-to- 
native cutoffs). More sophisticated structural analysis is perhaps 
most commonly performed with the use of clustering analysis [16] 
(like in the characterization of near-native ensemble in ref. [8] or 
transition state ensemble in ref. [9]) or principal component 
 analysis [17].

3.6 Selection  

of Models of Interest 

Using RMSD-to-Native 

and CABS Energy 

Measures
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The simple filtering options are accessible from the provided 
modules. To filter out models dissimilar by RMSD to the native 
structure, one can use

#!/usr/bin/env python

import pycabs,os,numpy as np

name = "barnase"

rmsd_cutoff = 7.5

max_sd_temperature=2.9

independent_runs=5

trajectory = []

for j in range(independent_runs):

 temp = "%06.3f" %(max_sd_temperature)

 e_path = os.path.join(name+'_'+str(j)+'_T'+temp,'TRAF')

 for model in pycabs.loadTRAFCoordinates(e_path):

 if pycabs.rmsd(native,model) < rmsd_cutoff:

 trajectory += model

Note that each simulation directory contains an ENERGY file 
with the energy of each trajectory model. By reading it to memory 
( )) the user can 
filter out models with a particular energy cutoff.

Fig. 3 Contact map for the intermediate (between fully denatured and near- 

native) state of barnase (similar results were presented in ref. [7]). The colors 

indicate the frequency of contacts. Short-range contacts are omitted for clarity

Michal Jamroz et al.
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Selected individual models or consecutive trajectory fragments can 
be rebuilt to an all-atom representation. The task of reconstruction 
from alpha carbon trace is typically solved by a two-step procedure 
[9, 18]: backbone reconstruction from alpha carbon trace [19] fol-
lowed by side-chain reconstruction [20] based on the position of 
backbone atoms. Note that models from the CABS method (in alpha 
carbon trace representation), as well as from the other CG modeling 
tools, are not free from unphysical local distortions. Therefore, 
building physically sound models from reduced models usually 
requires specialized reconstruction and refinement procedures [18].

4 Notes

 1. All necessary applications can be downloaded from the follow-
ing sources: Python (http://www.python.org), Pylab (http://
www.scipy.org/PyLab), CABS/pycabs (http://biocomp.
chem.uw.edu.pl), and GNUplot (http://www.gnuplot.info). 
All programs (except pyCABS and CABS) are available in most 
of the Linux distribution repositories.

If one wants to compile the CABS software, use g77 –O2 

dynamics.f and move the "cabs_dynamics" file to the FF 
directory of pyCABS module.

After downloading the pyCABS package, uncompress it into 
the working directory and modify the pycabs.py file by set-
ting path to the FF directory. This can be done by changing the 
self.FF variable in the __init__method of the CABS class.

 2. One can utilize secondary structure prediction software and 
write a predicted secondary structure (each residue in one-
letter code: H—helix, E—extended, C—coil) in the secstr 
variable. Note that the Protein Data Bank does not contain 
DSSP files for all deposited proteins.

 3. This task has taken about 28 h on 24 Intel® E5649 threads. 
That range of temperatures is typical for barnase; for other 
proteins it could be different. In order to roughly estimate the 
appropriate range, an initial simulation run can be performed 
with less computationally expensive operands: temp_ 

interval=1 and independent_runs=1. Note that pool = 
mp.Pool() uses all available CPUs by default, but the user can 
limit it, e.g., pool = mp.Pool(4), to utilize only four CPUs.

 4. Example instructions for running: comparative modeling 
(with the use of structural template(s)), de novo modeling 
(template free), and modeling with the use of external distance 
constraints.

3.7 Reconstruction 

to All-Atom 

Representation
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The following is an example script for protein structure 
 prediction by comparative modeling (with the use of second-
ary structure prediction (in the Porter method [21] format 
file) and three templates (e.g., from Pcons Structure Prediction 
Meta Server: pcons.net): t1.pdb, t2.pdb, t3.pdb). Residues in 
the template structure files have to be numbered according to 
the target sequence alignment:

#!/usr/bin/env python

import pycabs

sequence,sec_str = pycabs.parsePorterOutput("/absolute/

path/to/porter.ss")

working_dir = "prediction" # name of project

templates = ["/abs/path/to/t1.pdb","/abs/path/to/

t2.pdb","/abs/path/to/t3.pdb"]

a = pycabs.CABS(sequence,sec_str,templates,working_dir)

a.generateConstraints()

a.createLatticeReplicas(replicas = 10) # create start 

models from templates

a.modeling(Htemp = 2.0,Ltemp = 1.0,cycles = 20,phot = 100)

The script presented above: (1) parses the secondary struc-
ture prediction file (one can directly define sequence and 
 secondary structure in sequence and sec_str variables, 
respectively); (2) creates distance constraints from templates; 
(3) creates 10 starting structures projected on the CABS lat-
tice (iteratively from each template), which can be viewed in 
PDB file format in the "prediction" directory; and (4) runs 
CABS simulation with REMC and simulated annealing in the 
temperature range from 2.0 to 1.0 (typical values for compara-
tive modeling).

In order to run de novo modeling (without the use of 
 templates/constraints) one needs to (1) specify the sequence 
and sec_str variables, (2) leave the templates empty (i.e., 
templates = []) and comment out the a.generate- 
Constraints() line, and (3) run CABS simulation with 
REMC and simulated annealing in the temperature range 
from 3.5 to 1.0, cycles = 100, phot = 100, and repli-
cas = 30, which are typical settings for de novo modeling. 
Note that de novo modeling is an extremely difficult modeling 
task and the difficulty increases with the protein length. Thus, 
the procedure may be suitable for small proteins preferably not 
longer than 120 residues.

In order to introduce some external distance constraints 
(derived from sparse experimental data or from theoretical pre-
dictions of plausible structural biases), one can manually add 
the distances data before running the modeling procedure:

misc = []

misc.append((1, 40, 15.4, 16.6, 0.5))

a.generateConstraints(exclude_residues = range(1,1000), 

other_constraints = misc)

Michal Jamroz et al.
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The code fragment presented above (1) excludes all auto-
matically generated constraints (exclude_residues for resi-
dues 1–999) and (2) adds user-provided constraint between 
the alpha carbon atoms of the residues No. 1 and No. 40 with 
the constraint range between 15.4 and 16.6 Å (the constraint 
range is a preferred distance between the selected alpha car-
bons) and the constraint force equal to 0.5. The variable misc 
is in the format of a list of tuples (residue_i_index, 
residue_j_index, lower_distance, upper_distance, 

force). If one needs to change the global force constraint, it 
is possible to do so by providing a new value for constraints_
force (default 1.0) in the modeling method, i.e.,

a.modeling(Htemp = 2.0,Ltemp = 1.0,cycles = 20,phot = 100, 

constraints_force = 2.0)

If the script is successfully terminated, the prediction results 
can be found in the “prediction” directory (TRAF.pdb file).

 5. At the script level, one can define output plot parameters, e.g., 
label sizes, colors, and resolution (more visualization examples 
can be found at http://matplotlib.org).

 6. Contact map C is a N × N matrix defined as

 

C i j C j i
if d x x cutoff

otherwise

i j
, ,

,
( ) = ( ) = ( ) <ì

í
ï

îï

1

0
 

where xi is the position of the x-th atom (here the center of a 
mass of a side group of an i-th residue).

 7. The Pcolor function of the pylab module has a vmax param-
eter which defines the maximum value of the colorbar scale. 
Manipulating the vmax value may be helpful for a proper visu-
alization of contacts of interest.

 8. Instead of using the pylab module, one can write text data to 
the output file. To write the contact array into a file formatted 
for GNUplot, write a file with three columns (i-th residue, j-th 
residue, contact fraction value) and leave a blank row each 
time before the i-th column changes its value:

fw = open("contact_map.dat","w")

for i in range(len(contact)):

    for j in range(len(contact)):

[j]))

fw.close()

Note that in the example above, the script writes residue  
indexes starting from 1 (in pylab fragment it creates plots starting 
from 0).
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Finally, plot contact_map.dat in GNUplot (and write to 
the postscript file with a font size suitable for presentation):

set terminal unknown

plot 'contact_map.dat' using 1:2:3

set xrange[GPVAL_DATA_X_MIN:GPVAL_DATA_X_MAX]

set yrange[GPVAL_DATA_Y_MIN:GPVAL_DATA_Y_MAX]

set terminal postscript eps enhanced color "Helvetica" 14

set output 'contact_map.eps'

set size ratio 1

unset key

set xlabel 'Residue index'

set ylabel 'Residue index'

set cbrange[:0.8]

set palette negative

plot 'contact_map.dat' with image

The first four lines of these GNUplot commands are respon-
sible for the calculation of max/min values of axis data (1 to 
chain length); set cbrange[:0.8] sets the colorbar scale in 
the range of 0.0–0.8.

5 Case Studies

Below are brief descriptions of several applications of the CABS 
model, together with the post-processing analysis applied to the 
characterization of protein folding.

A staggering number of different protein conformations sam-
pled during de novo simulations require post-processing strategies 
that reduce the vast conformational complexity into easy to under-
stand and interpret data. The complex nature of intramolecular 
interactions of highly diverse ensembles can be relatively simply 
described by average contact maps (average for the entire isother-
mal trajectory or trajectory fragment of interest). As shown in the 
folding mechanism studies, the characterization of the appropriate 
protein ensembles in the form of the averaged residue contact 
maps (derived from the trajectories in CG representation), matched 
very well with the experimental data from protein engineering (phi 
value analysis) [7–10]. The relative contact frequencies from the 
CABS simulations were also shown to be in semiquantitative agree-
ment with experimental data (phi value analysis, hydrogen- 
exchange protection factors) [8, 10, 11] and other theoretical 
predictions [8, 12]. In the case of the B1 domain of protein G 
folding studies [8], quantitative analysis of the clusters of the most 
persistent native long-range side-chain contacts and their evolve-
ment from highly denaturing to native conditions allowed for a 
detailed (residue–residue contact level) description of the folding 
events. Apart from the contact-level description of the highly 
diverse ensembles, some persistent conformers appearing along the 

Michal Jamroz et al.
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folding route can be structurally characterized through clustering 
analysis (as shown for the ensembles of the transition state of the B 
domain of protein A [9], and the native-like globule of the B1 
domain of protein G [8]).
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