
69

Ora Schueler-Furman and Nir London (eds.), Modeling Peptide-Protein Interactions: Methods and Protocols, Methods in Molecular
Biology, vol. 1561, DOI 10.1007/978-1-4939-6798-8_6, © Springer Science+Business Media LLC 2017

Chapter 6

Highly Flexible Protein-Peptide Docking Using CABS-Dock

Maciej Paweł Ciemny*, Mateusz Kurcinski*, Konrad Jakub Kozak,
Andrzej Kolinski, and Sebastian Kmiecik

Abstract

Protein-peptide molecular docking is a difficult modeling problem. It is even more challenging when
significant conformational changes that may occur during the binding process need to be predicted. In
this chapter, we demonstrate the capabilities and features of the CABS-dock server for flexible protein-
peptide docking. CABS-dock allows highly efficient modeling of full peptide flexibility and significant
flexibility of a protein receptor. During CABS-dock docking, the peptide folding and binding process is
explicitly simulated and no information about the peptide binding site or its structure is used. This
chapter presents a successful CABS-dock use for docking a potentially therapeutic peptide to a protein
target. Moreover, simulation contact maps, a new CABS-dock feature, are described and applied to the
docking test case. Finally, a tutorial for running CABS-dock from the command line or command line
scripts is provided. The CABS-dock web server is available from http://biocomp.chem.uw.edu.pl/
CABSdock/.

Key words Protein-peptide interactions, Molecular docking, CABS, Peptide binding, Peptide design,
Computational modeling

1  Introduction

Protein-peptide interactions play a predominant role in cell func-
tion and they can be found in a variety of signaling pathways
involved in cellular localization, immune response or protein
expression, and degradation. Because of their association with cel-
lular regulatory mechanisms, erroneous protein-peptide interac-
tions are speculated to be pathogenic in a number of diseases (e.g.,
cancer, autoimmune diseases). The possible applications in bio-
medical research (targeted drug design) make the understanding
of protein-peptide interactions a critical issue for further advances
in the field [1, 2]. Characterization of protein-peptide interactions
is difficult due to their large complexity and transient and dynamic

*Authors contributed equally with all other contributors.

http://biocomp.chem.uw.edu.pl/CABSdock/
http://biocomp.chem.uw.edu.pl/CABSdock/

70

nature. Despite extensive computational and experimental studies
in this area, peptide-mediated cellular regulation mechanisms have
not been fully described or understood.

Among computational approaches, molecular docking is com-
monly used to predict the structure of protein-peptide complexes.
Handling large conformational changes during docking is one of the
most challenging and important issues in the field [3, 4]. Modeling of
protein-peptide interactions usually follows two steps realized by sepa-
rate protocols: (1) prediction of binding site location on the protein
surface [5–8], and (2) local protein-peptide docking (i.e., modeling of
the peptide backbone in the binding site) [9–14]. The CABS-dock
method [15, 16] unifies these two steps into one efficient docking
simulation. In the CABS-dock single simulation run, a fully flexible
peptide explores the entire surface of a flexible protein receptor in
search for a binding site (no information about the binding site is
used). Such high modeling efficiency is achieved thanks to the simula-
tion engine based on the CABS prediction platform [17–19]. Alongside
with the Rosetta platform [20], CABS currently offers perhaps the
most efficient means for modeling significant conformational changes,
successfully tested in protein-peptide on-the-fly docking [21].

This chapter provides a tutorial for the CABS-dock server and
for its possible applications. Subheading 2 gives a short description
of the CABS-dock methodology, together with the information
and instructions required to successfully perform a CABS-dock
run. It is followed by Subheading 3 which serves as a step-by-step
guide with example docking results and analysis. A description of
simulation contact maps, the new CABS-dock feature, is also pro-
vided along with the examples of use. Subsequently, possible
schemes for incorporating CABS-dock in the multi-stage modeling
of protein-peptide interaction are given. Finally, a tutorial how to
use the CABS-dock server from the command line or command
line scripts is provided. Additional comments on the procedure or
method itself are provided in Subheading 4.

2  Materials

The CABS-dock web server (freely available at http://biocomp.
chem.uw.edu.pl/CABSdock/) provides an interface for the CABS-
dock method for protein-peptide docking together with up-to-date
documentation and benchmark examples [15]. Several illustrative
examples of CABS-dock applications have also been described in [16,
21]. Here only the basic CABS-dock features are outlined. The CABS-
dock server protocol is based on the CABS model [17–19, 22] for
coarse-grained simulations of protein dynamics and protein structure
prediction. The model employs a reduced representation of the
protein chain (see Fig. 1). The protein is represented with a set of
pseudo-atoms: each residue is described by beads corresponding to
the alpha carbon (CA), beta carbon (B), and side chain (S) (see Fig. 1).

2.1  CABS-Dock
Server Methodology

Maciej Paweł Ciemny et al.

http://biocomp.chem.uw.edu.pl/CABSdock/
http://biocomp.chem.uw.edu.pl/CABSdock/

71

To define the hydrogen bonds properly, an additional pseudo-atom
representing the geometric center of the virtual CA-CA bond is also
included. The knowledge-based force-field used for calculations was
derived from statistical potentials based on known protein structures.
Sampling of the conformation space is executed with a Replica
Exchange Monte Carlo protocol. The CABS-dock docking proce-
dure may be divided into four stages: (1) flexible docking based on
the CABS model resulting in 10,000 models, (2) initial filtering
resulting in 1000 models, (3) selection of 10 representative (top-
ranked) models using structural clustering, (4) all-atom model recon-
struction of ten top-ranked models combined with local optimization
of their structure. All those sets of models can be downloaded from
the server web site for their visualization or analysis.

A fully functional, up-to-date version of the CABS-dock method is
available as an automated server accessible via standard internet
browsers [15, 16]. No registration is required to use CABS-dock.
To run the automated docking procedure on the CABS-dock
server it is sufficient to provide:

	 1.	A 3D model of the protein receptor in the PDB format (the
protein model should be provided in the standard PDB for-
mat; if the protein receptor structure is stored in the PDB
databank, it is sufficient to provide its code only); for addi-
tional protein input hints see Note 1.

	 2.	A peptide sequence and, optionally, peptide secondary struc-
ture in the one letter code; for additional peptide input hints
see Note 2.

The screenshots of the CABS-dock web server interface are
shown in Fig. 2. Docking results may be further improved by
providing additional information about the protein complex
(assigning regions of increased flexibility or excluded from docking,
see Note 3).

2.2  Running
the CABS-Dock Server

Fig. 1 Representation of protein and peptide chains in CABS-dock. CABS-dock uses all-atom and coarse-grained
modeling tools merged with procedures enabling transition between both resolutions. The figure shows compari-
son between all-atom (left) and CABS coarse-grained representation (right) for an example 4-residue peptide.
In the CABS model, a single residue is represented by two atoms (alpha and beta carbon, colored in black) and two
pseudo-atoms (side chain, colored in orange, and center of the peptide bond, colored in green)

Flexible Protein-Peptide Docking with CABS-Dock

72

3  Methods

This case study presents an example of CABS-dock docking
performed with default server settings. The docking uses the pro-
tein receptor structure: peroxisome proliferator-activated receptor
gamma (PPARγ) (PDB code of the unbound receptor form:
2HWQ) and the sequence of the peptide that contains the LXXLL
motif of a cofactor protein crucial for the biological action of

3.1  A Case Study
of Docking a Peptide
Containing the LXXLL
Motif to PPARγ

Fig. 2 Screenshots of the CABS-dock server. The figure shows the main page input panel (a) and example
output panels (b–d). The buttons to be selected to see these panels are marked by red rectangles and arrows

Maciej Paweł Ciemny et al.

73

PPARγs [23]. Such a complex has been hypothesized to be respon-
sible for the decoupling of insulin sensitization from adipogenesis
in type-2 diabetes patients. The hypothesis was positively validated
in vitro. A candidate for a partial PPARγ agonist was synthesized
and crystallized by Burgermeister et al. [24] (PDB code of the
complex: 2FVJ). The complex structure has been explored experi-
mentally because of its potential for developing new therapies with
fewer adverse effects on diabetes patients.

The “submit new job” form was completed in the following man-
ner to attempt docking the peptide to the protein receptor:

	 1.	Protein tab: “2HWQ:A” (this instructs the server to access the
“A” chain of the 2HWQ structure). For additional hints
regarding the input of a protein receptor structure, see Note 1.

	 2.	Peptide tab: HKLVQLLTTT (this is the one-letter code
sequence of the peptide containing the LXXLL docking motif
of the protein cofactor). For additional hints regarding the
input of a peptide sequence, see Note 2.

	 3.	Optional tab:
●● Project name: “2HWQ:A tutorial” (used to identify the

project in the server queue).
●● Peptide secondary structure: “CHHHHHHHCC”; this is

the experimentally derived preferred secondary structure
of the peptide. For additional hints see Note 2.

●● Additionally, an e-mail address may be provided. It will be
used to notify the user on project status.

The run is started with the “Submit” button. The server will
redirect the user to an auto-refreshing site with details on project
status. Alternatively, it is possible to run the docking from the ter-
minal command line using the following command (for further
details on command-line job submission, see Subheading 3.4):

curl -H "Content-Type: application/json" -X POST -d '
{"receptor_pdb_code":"2HWQ:A",
"ligand_seq":"HKLVQLLTTT","ligand_ss":"CHHHHHHHCC", "project_name":"2HWQ:A

tutorial", "email":"mail@host.com"}'
http://biocomp.chem.uw.edu.pl/CABSdock/REST/add_job/

The results of docking may be either interactively viewed on the
CABS-dock server or downloaded from the project site as a zipped
folder with all the resulting files, see Note 4. The basic output pro-
vided by the CABS-dock server interface consists of ten top-ranked
models (CABS-dock ranking is largely based on the outcome of
structural clustering, for details see [15, 16]). The ten top-ranked
models are also stored in the zipped folder (in the form of PDB
files named “model_(number).pdb”). The structures of models

3.1.1  Input and Job
Submission

3.1.2  Analysis of Results

Flexible Protein-Peptide Docking with CABS-Dock

74

resulting from the docking performed for this case study are
presented in Fig. 3 together with the crystallographic structure of
the protein (extracted from the 2FVJ PDB entry).

To analyze the quality of the resulting structures, calculation of
RMSD values can be performed using for example VMD software
[25]. A detailed tutorial for the VMD analysis of CABS-dock
results is provided in the supplementary data in [16]. Our analysis
below was performed using this tutorial to calculate RMSD values:
first for the ten top-ranked models, and second for the 10,000
models obtained in the CABS-dock simulation.

The RMSD values for the ten top-ranked models to the crystal
structure of the peptide (from the 2FVJ complex) are presented in
Table 1. The lowest RMSD value of 1.29 Å was obtained for the
model ranked as the sixth out of ten models (see Fig. 3). Obviously,
in the best case scenario the model with the lowest RMSD is ranked
first. However, this is rarely the case as ranking the models is a very

Fig. 3 Steps of the CABS-dock docking procedure illustrated by peptide-PPARγ docking. (a) Ten random peptide
structures placed in random positions around the PPARγ structure. (b) Ten thousand peptide structures generated
in the CABS-dock docking simulation. (c) Thousand models filtered from the previous set. (d) Ten top-ranked
models (according to the structural clustering analysis) resulting from the docking. The close-up frame shows
the best fitting model (RMSD value of 1.29 Å) out of the ten top-ranked models. The peptide models resulting
from docking are shown in orange, the crystallographic peptide structure is shown in yellow, and the protein
receptor is represented by its surface with elements of the secondary structure visible

Maciej Paweł Ciemny et al.

75

complex and yet unsolved problem (the scoring problem has been
discussed in ref. 16).

As briefly described in Subheading 3, CABS-dock flexible
docking produces a total of 10,000 models. For all these models
RMSD values can also be easily calculated and plotted, for example
against their CABS-energy values. Such analysis (showing for
example whether the top-ranked models are also the lowest-RMSD
models) is presented in Fig. 4. The lowest RMSD model from all
the 10,000 models has the accuracy of 1.00 Å and belongs to the
set of near-native low-energy models. As shown in Fig. 4, apart
from the low-energy and low-RMSD set of structures, there is also
another low-energy set with RMSD around 9 Å. These structures
also have their representatives in the set of ten top-ranked models
(i.e., models number 1, 4, and 5, see Table 1). The analysis of those
cases proves that they fit into the appropriate binding site of the
receptor. However, the peptide conformation differs from that of
the crystallographic structure. With models 1 and 4 the C and N
termini of the peptide are flipped, and in model 5 the peptide is
bent and does not form a helix.

Please note that in this test case: (1) in several top-ranked
models the actual binding site of the receptor protein was not
found, and (2) the CABS-dock ranking procedure works relatively
well (the lowest RMSD out of ten top scored models is only slightly
higher than out of 10,000 models). Obviously, these two points

Table 1
The RMSD values of ten top-ranked models to the crystallographic
structure

Index of top-ranked models RMSD value

1 9.705

2 3.444

3 3.801

4 9.987

5 9.242

6 1.290

7 3.610

8 1.778

9 31.353

10 26.036

The entry for the best fitting structure is marked in bold. The provided RMSD values
are root mean square deviations calculated on the peptides after superposition of the
receptor molecules

Flexible Protein-Peptide Docking with CABS-Dock

76

may be not satisfied in other docking cases and the detailed statis-
tics of CABS-dock performance on a large benchmark data set is
presented in detail in [15, 16]. Finally, it is important to note that
the CABS-dock procedure is a Monte Carlo-based algorithm,
which may lead to different results in different runs.

The CABS-dock server provides an additional tool for the analysis
of docking simulations in the form of contact maps. These maps
depict the frequencies at which a pair of receptor/peptide residues
interacts during simulation. Such information may be utilized to
investigate the binding mechanism and three-dimensional struc-
tures of intermediates that occur on complex formation (as pre-
sented in our study of the folding and binding of a disordered
peptide [26]). It can also provide clues about potential mutation
sites to alter the binding affinity of the peptide.

An archive with CABS-dock simulation contact maps (maps.
tar) can be downloaded as part of the ZIP file with the results
(see Note 4). The contact maps are both given in the MAP file
format (txt files, see Note 5) and PNG images. The file names cor-
respond to maps presenting contact frequencies of the following
sets of models:

	 1.	cluster_(number)—models classified to a particular cluster in
structural clustering. Cluster numbering corresponds to model
numbering (i.e., model_6.pdb is a representative model of the
models grouped into the sixth cluster. The clusters are ranked
according to their CABS-score).

3.2  Simulation
Contact Maps

3.2.1  Maps: An Overview

Fig. 4 CABS-energy and RMSD values for all (10,000) models obtained in
peptide-PPARγ docking. The colors of the dots represent ten trajectories of a
single docking simulation

Maciej Paweł Ciemny et al.

77

	 2.	 trajectory_(number)—trajectory models (each of the trajecto-
ries contains 1000 models). Each CABS-dock job contains ten
trajectories.

	 3.	 top1000—top 1000 models selected after initial filtering.
	 4.	 trajectory_all—all models from the ten trajectories (10,000

models in total).

In the PNG images, contact frequencies are denoted by colors
(example maps are presented in Subheading 3.2.2 below). Residue
numbers and chain identifiers are marked on map borders. All the
maps were derived from the distances of gravity centers of the side
chains (in the CABS CG representation) and the contact cutoff
was set to 4.5 Å.

Because of their importance in further studies of the complex as well
as potential significance in drug design, contact maps are one of the
most informative results of the CABS-dock docking procedure.
Most importantly, they may be used to predict residue-residue con-
tacts that are crucial for the interaction, which for example can be
subsequently used in peptide design.

According to experimental studies of the PPARγ-SRC-1 (a
coactivator protein with the LXXLL motif) complex [27], the
interaction site on the receptor protein is formed by the following
residues: L468, L318, T297, Q314, L311, V315, K301, and
E471. The docking LXXLL motif, which was experimentally deter-
mined to interact with PPARγs [23], is represented by residues 3–7
of the peptide used in the docking.

The contact maps for all the models (10,000 models in total,
from the ten trajectories) and cluster number 6 (the representative
of this cluster is the lowest RMSD model from the top scored
models) are presented in Fig. 5. The maps show that the peptide
residues comprising the motif, and the receptor residues creating
native contacts in the crystallographic structure form the most per-
sistent contacts during the CABS-dock docking simulation. The
map prepared for all the simulation models (Fig. 5a) shows that
most of the (final) contacts are in the expected contact area.

Another informative way to visualize the engagement of par-
ticular residues in protein-peptide interaction during docking
simulation is to prepare a histogram of residue contacts. The his-
togram can be prepared by summing up contact frequencies from
the maps (available in MAP txt files) over the peptide residues.
Two histograms for PPARγ receptor residues for all the models
and cluster number 6 models are presented in Fig. 6. The peaks
found on both histograms correspond to residues crucial for the
modeled interaction which form the interaction site of the receptor.
The histogram for all the structures (Fig. 6a) contains “background”
noise resulting from peptide sampling of the receptor surface in
search for the best binding position. Some of those interactions
are more persistent (e.g., residue 259) and may take part in

3.2.2  Example Maps
for Docking a Peptide
Containing the LXXLL Motif
to PPARγ

Flexible Protein-Peptide Docking with CABS-Dock

Fig. 5 Protein-peptide contact maps from peptide-PPARγ docking. (a) Contact map for all 10,000 models.
(b) Contact map for the models from cluster number 6 whose representative was the model best fitting the
experimental structure. The columns represent amino acids of the receptor, and the rows are amino acids of
the peptide. The residues reported in the literature to form the interaction site of the complex are marked in
green. Contact frequencies are marked according to the color maps below each of the maps. The maps were
divided into four elements for clarity of presentation

79

intermediate complex formation while most of them are likely to
be accidental. Although not all of the expected contacts were
present in the resulting structures, it is clear that the most impor-
tant interactions are well preserved and visible in the models. It is
also possible that further all-atom refinement of the complex
structure may lead to enhancement of the interaction site details
that are not clear in the CG representation (see Subheading 3.3
below).

Finally, note that the contact map analysis of the folding and
binding of a disordered peptide (simulated using CABS-dock
methodology) has also been presented in [26].

Fig. 6 Histograms of protein-peptide contacts from peptide-PPARγ docking.
The normalized histograms show frequencies of contact for each of the receptor
residues with the peptide: (a) for all 10,000 models, (b) for the models from
cluster 6 whose representative was the best fitting model. The green markers
represent residues that were reported in the literature to form a pocket for the
LXXLL-peptide motif on the surface of PPARγ

Flexible Protein-Peptide Docking with CABS-Dock

80

It is expected that computational techniques will play an important
role in the rational design of peptide therapeutics [3]. Peptides
make very promising candidates for drugs as they can adopt mul-
tiple shapes and various chemical features through careful design.
Moreover, the design and synthesis of peptide drugs is relatively
simple, so large libraries of peptides may be easily scanned to look
for optimal peptide design.

The CABS-dock server may be used as an initial docking tool in
a multistage docking procedure. Perhaps the most straightforward
CABS-dock application is to use it as a tool for determining the
initial structure(s) of a protein-peptide complex that may be used as
an input for further refinement by local docking methods [9–14].
As shown before on a large protein-peptide benchmark dataset [15,
16], for the majority of cases CABS-dock produced models with
high or medium accuracy (for example sufficient for structure refine-
ment by Rosetta FlexPepDock [10, 12]). Another conclusion from
the benchmark analysis was that CABS-dock accuracy can be signifi-
cantly improved by its combination with exact scoring methods. By
default, top-ranked models produced in the CABS-dock procedure
are reconstructed to all-atom representation and refined using
MODELLER [28] procedures and ranked by the DOPE score
[29]. Since the reconstruction and the final all-atom refinement
may significantly alter the quality of models, other techniques (bet-
ter suited for the reconstruction and optimization of CABS-dock
coarse-grained models) may be highly useful.

Future CABS-dock improvements also include its integration
with methods for the prediction of peptide binding-sites [5–8] or
extending the CABS-dock functionality to user-guided docking
(by providing a possibility of pointing residues that belong to the
binding site). Narrowing the conformation space to the selected
neighborhood should result in the better sampling of near-native
states, and thus in increasing the chances for building high accu-
racy models. Virtually any structural information may be utilized
by CABS-dock as distance restraints or filters. Therefore, CABS-
dock is well suited to be integrated as an efficient sampling tool
with computational pipelines for modeling protein-peptide inter-
actions, including methods for de novo peptide design [30, 31] or
template-based docking [32].

Finally, CABS-dock could be used in hierarchical protein-
protein docking protocols composed of three modeling steps:

	 1.	Reduction of the protein-protein docking problem to protein-
peptide docking. This starts from the arbitrary selection of
the receptor protein and bound protein, followed by the
identification of “hot segment(s)” of the bound protein, i.e.,
a short epitope that contributes the most to the protein-pro-
tein interaction [33, 34].

	 2.	CABS-dock docking of “hot segment(s)” [33, 34], i.e.,
peptide(s).

3.3  CABS-Dock:
Possible Applications
and Future Advances

Maciej Paweł Ciemny et al.

81

	 3.	Reconstruction and adjustment of the remaining receptor
structure to the docked peptide-like fragment.

Peptide-like “hot segment(s)” can be of various length and can
represent more than one fragment of the original structure, pro-
vided that they can be realistically replaced by a continuous peptide
chain. In the context of the potential application of CABS-dock in
protein-protein docking described above, one can also easily design
a simple sequential procedure for the efficient modeling of amyloid
aggregation.

Except for using the web interface (available at http://biocomp.
chem.uw.edu.pl/CABSdock/), the CABS-dock server can also be
operated from the command line or scripts using REST-full ser-
vice. This option is recommended for handling multiple jobs by
users experienced in Bash and python scripting.

To submit a job for a chosen protein, e.g., 2GB1, and a peptide
sequence, e.g., SFDG, with default parameters, the following com-
mand or python script should be run:

●● command line:

curl -H "Content-Type: application/json" -X POST -d
'{"receptor_pdb_code":"2GB1", "ligand_seq":"SFGD"}'
http://biocomp.chem.uw.edu.pl/CABSdock/REST/add_job/

●● python script:

import requests
import json
url = ' http://biocomp.chem.uw.edu.pl/CABSdock/
REST/add_job/'
data = {

"receptor_pdb_code": "2GB1",
"ligand_seq": "SFGD",

}
response = requests.post(url, data=data)

The PDB file corresponding to "receptor_pdb_code" will be
automatically downloaded from the PDB database. On success, a
job identifier assigned to the submitted job “jid” will be returned.
Jid will be used as a query for the job status and results later on.
Otherwise, for example if the pdb code does not exist or input data
do not fulfill requirements, error will be signaled.

Instead of the PDB code, a PDB file can be attached to the query
in the following ways:

●● command line:

curl -X POST -F data='{"ligand_seq":"SFGD"}' -F
file=@path_to_pdb_file.pdb
http://biocomp.chem.uw.edu.pl/CABSdock/REST/add_job/

3.4  Running
CABS-Dock
from the Command
Line

3.4.1  Submitting a Job
with the PDB Code
of a Protein Receptor

3.4.2  Submitting a Job
with a User-Provided PDB
File

Flexible Protein-Peptide Docking with CABS-Dock

http://biocomp.chem.uw.edu.pl/CABSdock/
http://biocomp.chem.uw.edu.pl/CABSdock/

82

●● python script:

import requests
import json
url = ' http://biocomp.chem.uw.edu.pl/CABSdock/
REST/add_job/'
files = {'file': open('path_to_pdb_file.pdb')}
data = {

"ligand_seq": "SFGD",
}
response = requests.post(url, files=files, data=data)

To override default parameters, additional options may be
posted, i.e.,

●● command line:

curl -H "Content-Type: application/json" -X POST -d
'{"receptor_pdb_code":"2IV9",
"ligand_seq":"SFGD","project_name":"my_project1",
"email":"mail@host.com",
"ligand_ss":"CCHHC",
"simulation_cycles":"100", "show_job":True,
"excluded_regions":[{"start":"100","end":"340","chain
":"A"}],
"flexible_regions":[{"start":"101","end":"202","chain":
"B","flexibility":"full"}]}'
http://biocomp.chem.uw.edu.pl/CABSdock/REST/add_job/

●● python script:

import requests
import json
url = ' http://biocomp.chem.uw.edu.pl/CABSdock/
REST/add_job/'
files = {'file': open('your_PDB_file.pdb')}
#or use PDB code in var data
data = {

"receptor_pdb_code": "2IV9",
#or use PDB file in var files
"ligand_seq": "SFGD",
"email": "mail@host.com",
"show": True,
"project_name":"my_project1",
"excluded_regions":[

{
"start": "1000",
"end": "2000",
"chain": "A"

}
],
"flexible_regions":[

{
"start": "101",
"end": "202",
"chain": "A",
"flexibility": "full"

},

3.4.3  Overriding Default
Parameters

Maciej Paweł Ciemny et al.

83

{
"start": "300",
"end": "370",
"chain": "B",
"flexibility": "moderate"

},
]

}
#request with file
response = requests.post(url, files=files, data=data)
#request without file
#response = requests.post(url, data=data)

	 1.	project_name—name of the project used for job identification,
i.e., in the queue.

	 2.	email—email used to inform the user about job progress.
	 3.	 ligand_ss—ligand secondary structure.
	 4.	simulation_cycles—number of simulation cycles: the default is

100 and the maximum is 200.
	 5.	show_job—boolean value (True or False) indicating whether

to show a job on the queue page.
	 6.	excluded_regions—array of excluded regions. Each excluded

region represents a selected receptor residue that is unlikely to
interact with the peptide and should contain the following
fields: start position, end position, and chain

	 7.	flexible_regions—array of flexible regions. The flexibility of the
region is changed by removing distance restraints that keep the
receptor structure in a near native conformation. Each element
of the array contains start position, end position, chain, and
flexibility. Flexibility can be either full or moderate.

To check the status of a job, a job identifier (“jid”) should be
provided:

●● command line:

curl -I
�"http://biocomp.chem.uw.edu.pl/CABSdock/REST/
status/somejobidentifier"

●● python script:

import requests
import json
�url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/
status/somejobidentifier'
response = requests.post(url)
As a result, one of the following statuses will be returned:

●● done—job is finished and the results are ready.
●● pending/running/pre_quere—job is in progress.
●● error—the job identifier does not exist.

Additional Parameters
Include

3.4.4  Getting Job Status

Flexible Protein-Peptide Docking with CABS-Dock

84

More detailed information about the job can be obtained by
running:

●● command line:

curl -I
�"http://biocomp.chem.uw.edu.pl/CABSdock/REST/job_
info/somejobidentifier"

●● python script:

import requests
import json
�url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/
job_info/somejobidentifier'
response = requests.post(url)

Additional information includes job configuration that was
provided on submission and more details about the status. The fol-
lowing fields will be listed in the result:

	 1.	del—job results will be kept on the server until this date.
	 2.	excluded—list of excluded regions sent on job submission.
	 3.	flexible—list of flexible regions sent on job submission.
	 4.	 ligand_sequence—ligand sequence sent on job submission.
	 5.	 ligand_ss—ligand secondary structure sent on job

submission.
	 6.	project_name—name assigned to the project on job submission.
	 7.	receptor_sequence—receptor sequence sent on job submission.
	 8.	ss_psipred—secondary structure predicted by psipred.
	 9.	status—one of the possible job statuses as described in the sec-

tion Getting job status.
	10.	status_change—time of last status change.

Essential information for each model includes:

	 1.	Average RMSD.
	 2.	Max RMSD.
	 3.	Cluster density.
	 4.	Number of elements.
	 5.	Model data.
	 6.	Information about submitted data.

See the next chapter for more information.

3.4.5  Getting Job
Results: Essential
Information

Maciej Paweł Ciemny et al.

85

To obtain essential information, the job identifier (“jid”) must
be provided:

●● command line:

curl -i
�"http://biocomp.chem.uw.edu.pl/CABSdock/REST/get_
job/somejobidentifier"

We strongly recommend that curl with compression should
be sent:

curl -i -H 'Accept-Encoding: gzip,deflate'
�"http://biocomp.chem.uw.edu.pl/CABSdock/REST/get_
job/somejobidentifier"

●● python script:

import requests
import json
�url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/
get_job/somejobidentifier'
response = requests.post(url)

Optional parameters for filtering the results can be attached to
the query. The parameters must specify the attribute used for filtering
(“value”) and the allowed range of values for the attribute (“min”
and “max”). The following attributes can be used for filtering:

	 1.	density—cluster density.
	 2.	rmsd—average RMSD.
	 3.	maxrmsd—maximum RMSD.
	 4.	counts—number of elements in a cluster.

Exemplary use of filtering:

●● command line:

curl -i -X POST -d '{"filter":"density","min":
"10","max":"20"}'
"http://biocomp.chem.uw.edu.pl/CABSdock/REST/
get_job/somejobidentifier"

●● python script:

import requests
import json
�url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/
get_job/somejobidentifier'
data = {

"value":"rmsd",
"min":"5",
"max":"12"
}

response = requests.post(url, data=data)

Flexible Protein-Peptide Docking with CABS-Dock

86

All information for each model includes:

	1.	 Average RMSD.
	2.	 Max RMSD.
	3.	 Cluster density.
	4.	 Number of elements.
	5.	 Model data.
	6.	 Information about submitted data.

and additionally:
	1.	 Cluster data.

To get cluster data or trajectory data, see the next sections.
To obtain all information, the job identifier (“jid”) must be

provided:

●● command line:

curl -i
"http://biocomp.chem.uw.edu.pl/CABSdock/
REST/get_job_all/somejobidentifier"

We strongly recommend that curl with compression should be
sent:

curl -i -H 'Accept-Encoding: gzip,deflate'
"http://biocomp.chem.uw.edu.pl/CABSdock/REST/
get_job_all/somejobidentifier"

●● python script:

import requests
import json
�url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/
get_job_all/somejobidentifier'
response = requests.post(url)

Additional filtering can be applied to the query as described in
the previous section.

To get information about a chosen cluster, the job identifier
together with the cluster number corresponding to the model
number should be submitted:

●● command line:

curl -i
�"http://biocomp.chem.uw.edu.pl/CABSdock/REST/get_
cluster/somejobidentifier/clusterNumber"

We strongly recommend that curl with compression should be
sent:

curl -i -H 'Accept-Encoding: gzip,deflate'
�"http://biocomp.chem.uw.edu.pl/CABSdock/REST/get_
cluster/somejobidentifier/clusterNumber"

3.4.6  Getting Job
Results: All Information

3.4.7  Getting Cluster
Information

Maciej Paweł Ciemny et al.

87

●● python script:

import requests
import json
�url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/
get_cluster/somejobidentifier/clusterNumber'
response = requests.post(url)

The cluster number must be in the range [1, 10]. As a result,
cluster data and additional information about the cluster (average
and maximum RMSD, cluster density, and number of elements)
will be returned.

Trajectory data can be obtained by sending a query with the
attached job identifier and model number in the range [1, 10]:

●● command line:

curl -i
�"http://biocomp.chem.uw.edu.pl/CABSdock/REST/get_
trajectory/somejobidentifier/modelNumber"

We strongly recommend that curl with compression should
be sent:

curl -i -H 'Accept-Encoding: gzip,deflate'
�"http://biocomp.chem.uw.edu.pl/CABSdock/REST/get_
trajectory/somejobidentifier/modelNumber"

●● python script:

import requests
import json
�url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/get_
trajectory/somejobidentifier/modelNumber'
response = requests.post(url)

Additionally, a section of the trajectory model can be selected by:

●● command line:

curl -i
�"http://biocomp.chem.uw.edu.pl/CABSdock/REST/get_
selected_trajectory/somejobidentifier/modelNumber/
start/end"

●● python script:

import requests
import json
�url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/
get_selected_trajectory/somejobidentifier/modelNum-
ber/start/end'
response = requests.post(url)

3.4.8  Getting Trajectory
Information

Flexible Protein-Peptide Docking with CABS-Dock

88

Example 1 (default settings)
The first example shows how to submit a job with the following

data:

●● Peptide sequence: SSRFESLFAG.
●● Peptide secondary structure: CHHHHHHHHC.
●● Receptor input structure: PDB ID, 2 AM9, crystal structure of

the human androgen receptor in the unbound form.

and the default CABS-dock server settings.

●● command line:

curl -H "Content-Type: application/json" -X POST -d
�'{"receptor_pdb_code":"2 AM9", "ligand_seq":"SSRFESLFAG",
"ligand_ss":"CHHHHHHHHC"}'
�"http://biocomp.chem.uw.edu.pl/CABSdock/REST/add_
job/"

●● python script:

import requests
import json
�url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/
add_job/'
data = {

"receptor_pdb_code": "2 AM9"
"ligand_seq": "SSRFESLFAG",
"ligand_ss": "CHHHHHHHHC"

}
response = requests.post(url, data=data)

Example 2 (increasing the flexibility of selected receptor
fragments)

The second example shows how to increase the flexibility of
selected receptor fragments.

For each selected residue, one of two settings of flexibility (mod-
erate or full) can be set. Technically, this is achieved by changing the
default distance restraints used to keep the receptor structure near to
the input conformation. The assignment of moderate flexibility
decreases the strength of restrains, while full flexibility assignment
removes all the restraints imposed on the selected residue.

Data used in the example:

	 1.	Peptide sequence: HPQFEK.
	 2.	Peptide secondary structure: CHHHCC.
	 3.	Receptor input structure: PDB ID: 2RTM, crystal structure of

biotin binding protein in the unbound form.

Additional options:

	 1.	Using the CABS-dock “Mark flexible regions” option, ten
residues (45–54) forming the flexible loop are selected and the
fully flexible setting is assigned to those residues.

3.4.9  Examples

Maciej Paweł Ciemny et al.

89

Important: Numbering in the PDB format must be used.

●● command line:

curl -H "Content-Type: application/json" -X POST -d
'{"receptor_pdb_code":"2RTM", "ligand_seq":"HPQFEK",
"ligand_ss":"CHHHCC", "flexible_regions":[{"start"
:"45","end":"54","chain": "A","flexibility":"full"}]}'
http://biocomp.chem.uw.edu.pl/CABSdock/REST/add_job/

●● python script:

import requests
import json
url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/
add_job/'
data = {

"receptor_pdb_code": "2RTM"
"ligand_seq": "HPQFEK",
"ligand_ss": "CHHHCC"
"flexible_regions":[

{
"start": "45",
"end": "54",
"chain": "A",
"flexibility": "full"

}
]

}
response = requests.post(url, data=data)
print response.text

Example 3 (excluding binding modes from docking search)
The third example focuses on excluding binding modes form

docking search. In the default mode, CABS-dock allows peptides
to explore the entire receptor surface. However, in certain model-
ing cases it is known that some parts of the protein are not acces-
sible (for example due to binding to other proteins) and therefore
it could be useful to exclude these regions from the search.

Data used in the example:

	 1.	Peptide sequence: PQQATDD.
	 2.	Peptide secondary structure: CEECCCC.
	 3.	Receptor input structure: PDB ID: 1CZY:C, tumor necrosis

factor receptor associated protein 2 in the unbound form.

Additional options:

	 1.	1CZY protein is a trimer and 1CZY:C forms contacts with
1CZY:A (according to the http://ligin.weizmann.ac.il/cma/
server for the analysis of protein-protein interfaces). Therefore,
the residues in the C chain (the input protein) listed above
which are responsible for contacts with A and B chains can be

Flexible Protein-Peptide Docking with CABS-Dock

http://ligin.weizmann.ac.il/cma/

90

excluded from the docking search using the CABS-dock
“Exclude regions” option.

●● command line:

�curl -H "Content-Type: application/json" -X POST -d
�'{"receptor_pdb_code":"1CZY:C", "ligand_seq":"PQQATDD",
"ligand_ss":"CEECCCC", "excluded_regions":[
{"start":"334","end":"335","chain":"C"},
{"start":"338","end":"338","chain":"C"},
{"start":"341","end":"342","chain":"C"},
{"start":"345","end":"345","chain":"C"},
{"start":"350","end":"350","chain":"C"},
{"start":"385","end":"386","chain":"C"},
{"start":"416","end":"418","chain":"C"},
{"start":"420","end":"421","chain":"C"},
{"start":"458","end":"458","chain":"C"}]}'
�http://biocomp.chem.uw.edu.pl/CABSdock/REST/add_job/

●● python script:

import requests
import json
url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/
add_job/'
files = {'file': open('your_PDB_file.pdb')}
#or use PDB code in var data
data = {

"receptor_pdb_code": "1CZY:C"
"ligand_seq": "PQQATDD",
"ligand_ss": "CEECCCC"
"excluded_regions":[

{
"start": "334",
"end": "335",
"chain": "C",

},
{

"start": "338",
"end": "338",
"chain": "C",

},
{

"start": "341",
"end": "342",
"chain": "C",

},
{

"start": "345",
"end": "345",
"chain": "C",

},
{

"start": "350",
"end": "350",
"chain": "C",

},

Maciej Paweł Ciemny et al.

91

{
"start": "385",
"end": "386",
"chain": "C",

},
{

"start": "416",
"end": "418",
"chain": "C",

},
{

"start": "420",
"end": "421",
"chain": "C",

},
{

"start": "458",
"end": "458",
"chain": "C",

}
]
}

response = requests.post(url, data=data)

4  Notes

	 1.	The CABS-dock server requires a user-provided protein recep-
tor structure in the PDB format or the PDB code of the recep-
tor (the file will be automatically downloaded to the server
from the PDB database). The chain of the protein receptor
must be shorter than 500 amino acids. The backbone must be
complete; however side chain atoms may be missing. Any non-
standard amino acids in the protein receptor will be changed to
their standard counterparts.

	 2.	The peptide sequence input must be 4–30 amino acids in length
and consist of standard amino acids only. It is also possible to
provide the secondary structure of the peptide in the standard
one-letter code (C—coil, H—helix, E—extended) using the
“Optional” tab (if not, the secondary structure will be predicted
with PsiPred). The structure may be experimentally derived or
based on any sequence-based prediction method. Please note
that “overprediction” of regular structures (H, E) was shown to
be more likely to give incorrect results of docking than their
underprediction. If the secondary structure is not known, it is
better to supply it as a list of “C” (coil assignments). More
information on how the secondary structure information is
used in the simulations is provided in reference [35].

	 3.	On top of standard input settings the CABS-dock server pro-
vides an advanced input panel that enables additional features to
tailor simulation conditions to the user’s needs. These features

Flexible Protein-Peptide Docking with CABS-Dock

92

include: (a) Custom adjusted run time: the user is allowed to
lengthen the simulation run time, which may save time in case of
small complexes or lead to better results for large complexes,
where the standard setting may be insufficient to cover the whole
conformational space. (b) Selection of flexible regions of the
receptor: the user may mark some of the residues of the receptor
to be granted more conformational flexibility than in the stan-
dard settings. By default receptor residues are flexible, but lim-
ited to only near-native conformations, which is suitable for
most docking applications. Additional flexibility may be adjusted
to semi- or full flexible to model more accurately regions believed
to change their conformation on peptide binding. (c) Exclusion
from sampling the receptor regions unlikely to be involved in
peptide binding: the user may select some of the receptor resi-
dues believed not to take part in peptide binding. This feature is
useful when the receptor molecule contains more than one
binding spot and only one needs to be investigated (i.e., in
receptors containing dimerization sites) or when part of the
receptor is inaccessible to the peptide in vivo (i.e., receptors
embedded in the membrane). Illustrative examples of using
these advanced features are provided in [16].

	 4.	All CABS-dock results can be downloaded in a single ZIP
archive file available from the “Docking predictions results”
tab. The ZIP archive file contains the simulation trajectories,
clusters of models, and the top-ranked models (representatives
of the clusters). All the provided structures are in PDB format
files and the top-ranked models are provided in all-atom reso-
lution. The trajectories and cluster model coordinates are pro-
vided in C-alpha representation only. The ZIP archive also
contains simulation contact maps (discussed in Subheading 3.2).

	 5.	The contact maps are stored as PNG figures and MAP files. The
MAP file is a text file (txt) that consists of three columns: the
first two list the residues of the protein receptor and the
peptide, respectively. In each row, the third column gives the
frequency of the contact between the residues in the first two
columns. An example fragment of a MAP file format is pre-
sented below:
…
A224  C7  0.0117647
A224  C8  0.0117647
A224  C9  0
A225  C1  0
A225  C10  0.0117647
A225  C2  0
A225  C3  0
A225  C4  0

Maciej Paweł Ciemny et al.

93

A225  C5  0
A225  C6  0
A225  C7  0.0117647
…

Each of the residues in the receptor protein is paired with
each residue of the peptide, so the number of rows in the file is
(number of protein residues) × (number of peptide residues).

Acknowledgments

The authors acknowledge support from the National Science
Center grant [MAESTRO 2014/14/A/ST6/00088].

References

	 1.	Tsomaia N (2015) Peptide therapeutics: tar-
geting the undruggable space. Eur J Med
Chem 94:459–470

	 2.	Fosgerau K, Hoffmann T (2015) Peptide ther-
apeutics: current status and future directions.
Drug Discov Today 20:122–128

	 3.	Diller DJ, Swanson J, Bayden AS, Jarosinski M,
Audie J (2015) Rational, computer-enabled
peptide drug design: principles, methods,
applications and future directions. Future Med
Chem 7:2173–2193

	 4.	London N, Raveh B, Schueler-Furman O
(2013) Peptide docking and structure-based
characterization of peptide binding: from
knowledge to know-how. Curr Opin Struct
Biol 23:894–902

	 5.	Yan C, Zou X (2015) Predicting peptide binding
sites on protein surfaces by clustering chemical
interactions. J Comput Chem 36:49–61

	 6.	Verschueren E, Vanhee P, Rousseau F,
Schymkowitz J, Serrano L (2013) Protein-
peptide complex prediction through fragment
interaction patterns. Structure 21:789–797

	 7.	Saladin A, Rey J, Thevenet P, Zacharias M,
Moroy G, Tuffery P (2014) PEP-SiteFinder: a
tool for the blind identification of peptide
binding sites on protein surfaces. Nucleic Acids
Res 42:W221–W226

	 8.	Lavi A, Ngan CH, Movshovitz-Attias D,
Bohnuud T, Yueh C, Beglov D, Schueler-
Furman O, Kozakov D (2013) Detection of
peptide-binding sites on protein surfaces: the
first step toward the modeling and targeting of
peptide-mediated interactions. Proteins 81:
2096–2105

	 9.	Antes I (2010) DynaDock: a new molecular
dynamics-based algorithm for protein-peptide

docking including receptor flexibility. Proteins
78:1084–1104

	10.	London N, Raveh B, Cohen E, Fathi G,
Schueler-Furman O (2011) Rosetta
FlexPepDock web server—high resolution
modeling of peptide-protein interactions.
Nucleic Acids Res 39:W249–W253

	11.	Trellet M, Melquiond AS, Bonvin AM (2013)
A unified conformational selection and induced
fit approach to protein-peptide docking. PLoS
One 8, e58769

	12.	Raveh B, London N, Zimmerman L, Schueler-
Furman O (2011) Rosetta FlexPepDock ab-
initio: simultaneous folding, docking and
refinement of peptides onto their receptors.
PLoS One 6, e18934

	13.	Trellet M, Melquiond AS, Bonvin AM (2015)
Information-driven modeling of protein-
peptide complexes. Methods Mol Biol
1268:221–239

	14.	Donsky E, Wolfson HJ (2011) PepCrawler: a fast
RRT-based algorithm for high-resolution refine-
ment and binding affinity estimation of peptide
inhibitors. Bioinformatics 27:2836–2842

	15.	Kurcinski M, Jamroz M, Blaszczyk M, Kolinski
A, Kmiecik S (2015) CABS-dock web server
for the flexible docking of peptides to proteins
without prior knowledge of the binding site.
Nucleic Acids Res 43:W419–W424

	16.	Blaszczyk M, Kurcinski M, Kouza M, Wieteska
L, Debinski A, Kolinski A, Kmiecik S (2015)
Modeling of protein-peptide interactions
using the CABS-dock web server for binding
site search and flexible docking. Methods
93:72–83

	17.	Jamroz M, Kolinski A, Kmiecik S (2013)
CABS-flex: server for fast simulation of protein

Flexible Protein-Peptide Docking with CABS-Dock

94

structure fluctuations. Nucleic Acids Res
41:W427–W431

	18.	Blaszczyk M, Jamroz M, Kmiecik S, Kolinski A
(2013) CABS-fold: server for the de novo and
consensus-based prediction of protein struc-
ture. Nucleic Acids Res 41:W406–W411

	19.	Jamroz M, Kolinski A, Kmiecik S (2014)
Protocols for efficient simulations of long-time
protein dynamics using coarse-grained CABS
model. Methods Mol Biol 1137:235–250

	20.	Das R, Baker D (2008) Macromolecular
modeling with rosetta. Annu Rev Biochem 77:
363–382

	21.	Ciemny MP, Debinski A, Paczkowska M,
Kolinski A, Kurcinski M, Kmiecik S (2016)
Protein-peptide molecular docking with large-
scale conformational changes: the p53-MDM2
interaction. Sci Rep 6:37532

	22.	Kmiecik S, Gront D, Kolinski M, Wieteska L,
Dawid AE, Kolinski A (2016) Coarse-grained
protein models and their applications. Chem
Rev 116:7898–7936

	23.	Heery DM, Kalkhoven E, Hoare S, Parker MG
(1997) A signature motif in transcriptional
co-activators mediates binding to nuclear
receptors. Nature 387:733–736

	24.	Burgermeister E, Schnoebelen A, Flament A,
Benz J, Stihle M, Gsell B, Rufer A, Ruf A, Kuhn
B, Marki HP, Mizrahi J, Sebokova E, Niesor E,
Meyer M (2006) A novel partial agonist of per-
oxisome proliferator-activated receptor-gamma
(PPARgamma) recruits PPARgamma-
coactivator-1alpha, prevents triglyceride accumu-
lation, and potentiates insulin signaling in vitro.
Mol Endocrinol 20:809–830

	25.	Hsin J, Arkhipov A, Yin Y, Stone JE, Schulten
K (2008) Using VMD: an introductory tuto-
rial. Curr Protoc Bioinformatics 5:57

	26.	Kurcinski M, Kolinski A, Kmiecik S (2014)
Mechanism of folding and binding of an intrin-
sically disordered protein as revealed by ab ini-

tio simulations. J Chem Theory Comput
10:2224–2231

	27.	Nolte RT, Wisely GB, Westin S, Cobb JE,
Lambert MH, Kurokawa R, Rosenfeld MG,
Willson TM, Glass CK, Milburn MV (1998)
Ligand binding and co-activator assembly of
the peroxisome proliferator-activated receptor-
gamma. Nature 395:137–143

	28.	Eswar N, Webb B, Marti-Renom MA,
Madhusudhan MS, Eramian D, Shen M-Y,
Pieper U, Sali A (2007) Comparative protein
structure modeling using MODELLER. Curr
Protoc Protein Sci 2:1–31

	29.	Shen MY, Sali A (2006) Statistical potential
for assessment and prediction of protein struc-
tures. Protein Sci 15:2507–2524

	30.	Unal EB, Gursoy A, Erman B (2010) VitAL:
Viterbi algorithm for de novo peptide design.
PLoS One 5, e10926

	31.	Bhattacherjee A, Wallin S (2013) Exploring
protein-peptide binding specificity through
computational peptide screening. PLoS
Comput Biol 9, e1003277

	32.	Lee H, Heo L, Lee MS, Seok C (2015)
GalaxyPepDock: a protein-peptide docking tool
based on interaction similarity and energy optimi-
zation. Nucleic Acids Res 43:W431–W435

	33.	London N, Raveh B, Schueler-Furman O
(2013) Druggable protein-protein interac-
tions—from hot spots to hot segments. Curr
Opin Chem Biol 17:952–959

	34.	London N, Raveh B, Movshovitz-Attias D,
Schueler-Furman O (2010) Can self-inhibitory
peptides be derived from the interfaces of
globular protein-protein interactions? Proteins
78:3140–3149

	35.	Kmiecik S, Kolinski A (2017) One-dimensional
structural properties of proteins in the coarse-
grained CABS model. In: Prediction of protein
secondary structure. Springer, New York,
pp 83–113

Maciej Paweł Ciemny et al.

	Chapter 6: Highly Flexible Protein-Peptide Docking Using CABS-Dock
	1 Introduction
	2 Materials
	2.1 CABS-Dock Server Methodology
	2.2 Running the CABS-­Dock Server

	3 Methods
	3.1 A Case Study of Docking a Peptide Containing the LXXLL Motif to PPARγ
	3.1.1 Input and Job Submission
	3.1.2 Analysis of Results

	3.2 Simulation Contact Maps
	3.2.1 Maps: An Overview
	3.2.2 Example Maps for Docking a Peptide Containing the LXXLL Motif to PPARγ

	3.3 CABS-Dock: Possible Applications and Future Advances
	3.4 Running CABS-Dock from the Command Line
	3.4.1 Submitting a Job with the PDB Code of a Protein Receptor
	3.4.2 Submitting a Job with a User-­Provided PDB File
	3.4.3 Overriding Default Parameters
	Additional Parameters Include

	3.4.4 Getting Job Status
	3.4.5 Getting Job Results: Essential Information
	3.4.6 Getting Job Results: All Information
	3.4.7 Getting Cluster Information
	3.4.8 Getting Trajectory Information
	3.4.9 Examples

	4 Notes
	References

