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Chapter 6

Highly Flexible Protein-Peptide Docking Using CABS-Dock

Maciej Paweł Ciemny*, Mateusz Kurcinski*, Konrad Jakub Kozak, 
Andrzej Kolinski, and Sebastian Kmiecik

Abstract

Protein-peptide molecular docking is a difficult modeling problem. It is even more challenging when 
significant conformational changes that may occur during the binding process need to be predicted. In 
this chapter, we demonstrate the capabilities and features of the CABS-dock server for flexible protein-
peptide docking. CABS-dock allows highly efficient modeling of full peptide flexibility and significant 
flexibility of a protein receptor. During CABS-dock docking, the peptide folding and binding process is 
explicitly simulated and no information about the peptide binding site or its structure is used. This 
chapter presents a successful CABS-dock use for docking a potentially therapeutic peptide to a protein 
target. Moreover, simulation contact maps, a new CABS-dock feature, are described and applied to the 
docking test case. Finally, a tutorial for running CABS-dock from the command line or command line 
scripts is provided. The CABS-dock web server is available from http://biocomp.chem.uw.edu.pl/
CABSdock/.

Key words Protein-peptide interactions, Molecular docking, CABS, Peptide binding, Peptide design, 
Computational modeling

1  Introduction

Protein-peptide interactions play a predominant role in cell func-
tion and they can be found in a variety of signaling pathways 
involved in cellular localization, immune response or protein 
expression, and degradation. Because of their association with cel-
lular regulatory mechanisms, erroneous protein-peptide interac-
tions are speculated to be pathogenic in a number of diseases (e.g., 
cancer, autoimmune diseases). The possible applications in bio-
medical research (targeted drug design) make the understanding 
of protein-peptide interactions a critical issue for further advances 
in the field [1, 2]. Characterization of protein-peptide interactions 
is difficult due to their large complexity and transient and dynamic 
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nature. Despite extensive computational and experimental studies 
in this area, peptide-mediated cellular regulation mechanisms have 
not been fully described or understood.

Among computational approaches, molecular docking is com-
monly used to predict the structure of protein-peptide complexes. 
Handling large conformational changes during docking is one of the 
most challenging and important issues in the field [3, 4]. Modeling of 
protein-peptide interactions usually follows two steps realized by sepa-
rate protocols: (1) prediction of binding site location on the protein 
surface [5–8], and (2) local protein-peptide docking (i.e., modeling of 
the peptide backbone in the binding site) [9–14]. The CABS-dock 
method [15, 16] unifies these two steps into one efficient docking 
simulation. In the CABS-dock single simulation run, a fully flexible 
peptide explores the entire surface of a flexible protein receptor in 
search for a binding site (no information about the binding site is 
used). Such high modeling efficiency is achieved thanks to the simula-
tion engine based on the CABS prediction platform [17–19]. Alongside 
with the Rosetta platform [20], CABS currently offers perhaps the 
most efficient means for modeling significant conformational changes, 
successfully tested in protein-peptide on-the-fly docking [21].

This chapter provides a tutorial for the CABS-dock server and 
for its possible applications. Subheading 2 gives a short description 
of the CABS-dock methodology, together with the information 
and instructions required to successfully perform a CABS-dock 
run. It is followed by Subheading 3 which serves as a step-by-step 
guide with example docking results and analysis. A description of 
simulation contact maps, the new CABS-dock feature, is also pro-
vided along with the examples of use. Subsequently, possible 
schemes for incorporating CABS-dock in the multi-stage modeling 
of protein-peptide interaction are given. Finally, a tutorial how to 
use the CABS-dock server from the command line or command 
line scripts is provided. Additional comments on the procedure or 
method itself are provided in Subheading 4.

2  Materials

The CABS-dock web server (freely available at http://biocomp.
chem.uw.edu.pl/CABSdock/) provides an interface for the CABS-
dock method for protein-peptide docking together with up-to-date 
documentation and benchmark examples [15]. Several illustrative 
examples of CABS-dock applications have also been described in [16, 
21]. Here only the basic CABS-dock features are outlined. The CABS-
dock server protocol is based on the CABS model [17–19, 22] for 
coarse-grained simulations of protein dynamics and protein structure 
prediction. The model employs a reduced representation of the 
protein chain (see Fig. 1). The protein is represented with a set of 
pseudo-atoms: each residue is described by beads corresponding to 
the alpha carbon (CA), beta carbon (B), and side chain (S) (see Fig. 1).  

2.1  CABS-Dock 
Server Methodology
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To define the hydrogen bonds properly, an additional pseudo-atom 
representing the geometric center of the virtual CA-CA bond is also 
included. The knowledge-based force-field used for calculations was 
derived from statistical potentials based on known protein structures. 
Sampling of the conformation space is executed with a Replica 
Exchange Monte Carlo protocol. The CABS-dock docking proce-
dure may be divided into four stages: (1) flexible docking based on 
the CABS model resulting in 10,000 models, (2) initial filtering 
resulting in 1000 models, (3) selection of 10 representative (top-
ranked) models using structural clustering, (4) all-atom model recon-
struction of ten top-ranked models combined with local optimization 
of their structure. All those sets of models can be downloaded from 
the server web site for their visualization or analysis.

A fully functional, up-to-date version of the CABS-dock method is 
available as an automated server accessible via standard internet 
browsers [15, 16]. No registration is required to use CABS-dock. 
To run the automated docking procedure on the CABS-dock 
server it is sufficient to provide:

	 1.	A 3D model of the protein receptor in the PDB format (the 
protein model should be provided in the standard PDB for-
mat; if the protein receptor structure is stored in the PDB 
databank, it is sufficient to provide its code only); for addi-
tional protein input hints see Note 1.

	 2.	A peptide sequence and, optionally, peptide secondary struc-
ture in the one letter code; for additional peptide input hints 
see Note 2.

The screenshots of the CABS-dock web server interface are 
shown in Fig.  2. Docking results may be further improved by 
providing additional information about the protein complex 
(assigning regions of increased flexibility or excluded from docking, 
see Note 3).

2.2  Running 
the CABS-Dock Server

Fig. 1 Representation of protein and peptide chains in CABS-dock. CABS-dock uses all-atom and coarse-grained 
modeling tools merged with procedures enabling transition between both resolutions. The figure shows compari-
son between all-atom (left) and CABS coarse-grained representation (right) for an example 4-residue peptide. 
In the CABS model, a single residue is represented by two atoms (alpha and beta carbon, colored in black) and two 
pseudo-atoms (side chain, colored in orange, and center of the peptide bond, colored in green)

Flexible Protein-Peptide Docking with CABS-Dock
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3  Methods

This case study presents an example of CABS-dock docking 
performed with default server settings. The docking uses the pro-
tein receptor structure: peroxisome proliferator-activated receptor 
gamma (PPARγ) (PDB code of the unbound receptor form: 
2HWQ) and the sequence of the peptide that contains the LXXLL 
motif of a cofactor protein crucial for the biological action of 

3.1  A Case Study 
of Docking a Peptide 
Containing the LXXLL 
Motif to PPARγ

Fig. 2 Screenshots of the CABS-dock server. The figure shows the main page input panel (a) and example 
output panels (b–d). The buttons to be selected to see these panels are marked by red rectangles and arrows
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PPARγs [23]. Such a complex has been hypothesized to be respon-
sible for the decoupling of insulin sensitization from adipogenesis 
in type-2 diabetes patients. The hypothesis was positively validated 
in vitro. A candidate for a partial PPARγ agonist was synthesized 
and crystallized by Burgermeister et  al. [24] (PDB code of the 
complex: 2FVJ). The complex structure has been explored experi-
mentally because of its potential for developing new therapies with 
fewer adverse effects on diabetes patients.

The “submit new job” form was completed in the following man-
ner to attempt docking the peptide to the protein receptor:

	 1.	Protein tab: “2HWQ:A” (this instructs the server to access the 
“A” chain of the 2HWQ structure). For additional hints 
regarding the input of a protein receptor structure, see Note 1.

	 2.	Peptide tab: HKLVQLLTTT (this is the one-letter code 
sequence of the peptide containing the LXXLL docking motif 
of the protein cofactor). For additional hints regarding the 
input of a peptide sequence, see Note 2.

	 3.	Optional tab:
●● Project name: “2HWQ:A tutorial” (used to identify the 

project in the server queue).
●● Peptide secondary structure: “CHHHHHHHCC”; this is 

the experimentally derived preferred secondary structure 
of the peptide. For additional hints see Note 2.

●● Additionally, an e-mail address may be provided. It will be 
used to notify the user on project status.

The run is started with the “Submit” button. The server will 
redirect the user to an auto-refreshing site with details on project 
status. Alternatively, it is possible to run the docking from the ter-
minal command line using the following command (for further 
details on command-line job submission, see Subheading 3.4):

curl -H "Content-Type: application/json" -X POST -d '
{"receptor_pdb_code":"2HWQ:A", 
"ligand_seq":"HKLVQLLTTT","ligand_ss":"CHHHHHHHCC", "project_name":"2HWQ:A 

tutorial", "email":"mail@host.com"}'
http://biocomp.chem.uw.edu.pl/CABSdock/REST/add_job/

The results of docking may be either interactively viewed on the 
CABS-dock server or downloaded from the project site as a zipped 
folder with all the resulting files, see Note 4. The basic output pro-
vided by the CABS-dock server interface consists of ten top-ranked 
models (CABS-dock ranking is largely based on the outcome of 
structural clustering, for details see [15, 16]). The ten top-ranked 
models are also stored in the zipped folder (in the form of PDB 
files named “model_(number).pdb”). The structures of models 

3.1.1  Input and Job 
Submission

3.1.2  Analysis of Results
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resulting from the docking performed for this case study are 
presented in Fig. 3 together with the crystallographic structure of 
the protein (extracted from the 2FVJ PDB entry).

To analyze the quality of the resulting structures, calculation of 
RMSD values can be performed using for example VMD software 
[25]. A detailed tutorial for the VMD analysis of CABS-dock 
results is provided in the supplementary data in [16]. Our analysis 
below was performed using this tutorial to calculate RMSD values: 
first for the ten top-ranked models, and second for the 10,000 
models obtained in the CABS-dock simulation.

The RMSD values for the ten top-ranked models to the crystal 
structure of the peptide (from the 2FVJ complex) are presented in 
Table 1. The lowest RMSD value of 1.29 Å was obtained for the 
model ranked as the sixth out of ten models (see Fig. 3). Obviously, 
in the best case scenario the model with the lowest RMSD is ranked 
first. However, this is rarely the case as ranking the models is a very 

Fig. 3 Steps of the CABS-dock docking procedure illustrated by peptide-PPARγ docking. (a) Ten random peptide 
structures placed in random positions around the PPARγ structure. (b) Ten thousand peptide structures generated 
in the CABS-dock docking simulation. (c) Thousand models filtered from the previous set. (d) Ten top-ranked 
models (according to the structural clustering analysis) resulting from the docking. The close-up frame shows 
the best fitting model (RMSD value of 1.29 Å) out of the ten top-ranked models. The peptide models resulting 
from docking are shown in orange, the crystallographic peptide structure is shown in yellow, and the protein 
receptor is represented by its surface with elements of the secondary structure visible
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complex and yet unsolved problem (the scoring problem has been 
discussed in ref. 16).

As briefly described in Subheading  3, CABS-dock flexible 
docking produces a total of 10,000 models. For all these models 
RMSD values can also be easily calculated and plotted, for example 
against their CABS-energy values. Such analysis (showing for 
example whether the top-ranked models are also the lowest-RMSD 
models) is presented in Fig. 4. The lowest RMSD model from all 
the 10,000 models has the accuracy of 1.00 Å and belongs to the 
set of near-native low-energy models. As shown in Fig. 4, apart 
from the low-energy and low-RMSD set of structures, there is also 
another low-energy set with RMSD around 9 Å. These structures 
also have their representatives in the set of ten top-ranked models 
(i.e., models number 1, 4, and 5, see Table 1). The analysis of those 
cases proves that they fit into the appropriate binding site of the 
receptor. However, the peptide conformation differs from that of 
the crystallographic structure. With models 1 and 4 the C and N 
termini of the peptide are flipped, and in model 5 the peptide is 
bent and does not form a helix.

Please note that in this test case: (1) in several top-ranked 
models the actual binding site of the receptor protein was not 
found, and (2) the CABS-dock ranking procedure works relatively 
well (the lowest RMSD out of ten top scored models is only slightly 
higher than out of 10,000 models). Obviously, these two points 

Table 1  
The RMSD values of ten top-ranked models to the crystallographic 
structure

Index of top-ranked models RMSD value

1 9.705

2 3.444

3 3.801

4 9.987

5 9.242

6 1.290

7 3.610

8 1.778

9 31.353

10 26.036

The entry for the best fitting structure is marked in bold. The provided RMSD values 
are root mean square deviations calculated on the peptides after superposition of the 
receptor molecules

Flexible Protein-Peptide Docking with CABS-Dock
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may be not satisfied in other docking cases and the detailed statis-
tics of CABS-dock performance on a large benchmark data set is 
presented in detail in [15, 16]. Finally, it is important to note that 
the CABS-dock procedure is a Monte Carlo-based algorithm, 
which may lead to different results in different runs.

The CABS-dock server provides an additional tool for the analysis 
of docking simulations in the form of contact maps. These maps 
depict the frequencies at which a pair of receptor/peptide residues 
interacts during simulation. Such information may be utilized to 
investigate the binding mechanism and three-dimensional struc-
tures of intermediates that occur on complex formation (as pre-
sented in our study of the folding and binding of a disordered 
peptide [26]). It can also provide clues about potential mutation 
sites to alter the binding affinity of the peptide.

An archive with CABS-dock simulation contact maps (maps.
tar) can be downloaded as part of the ZIP file with the results 
(see Note 4). The contact maps are both given in the MAP file 
format (txt files, see Note 5) and PNG images. The file names cor-
respond to maps presenting contact frequencies of the following 
sets of models:

	 1.	cluster_(number)—models classified to a particular cluster in 
structural clustering. Cluster numbering corresponds to model 
numbering (i.e., model_6.pdb is a representative model of the 
models grouped into the sixth cluster. The clusters are ranked 
according to their CABS-score).

3.2  Simulation 
Contact Maps

3.2.1  Maps: An Overview

Fig. 4 CABS-energy and RMSD values for all (10,000) models obtained in 
peptide-PPARγ docking. The colors of the dots represent ten trajectories of a 
single docking simulation
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	 2.	 trajectory_(number)—trajectory models (each of the trajecto-
ries contains 1000 models). Each CABS-dock job contains ten 
trajectories.

	 3.	 top1000—top 1000 models selected after initial filtering.
	 4.	 trajectory_all—all models from the ten trajectories (10,000 

models in total).

In the PNG images, contact frequencies are denoted by colors 
(example maps are presented in Subheading 3.2.2 below). Residue 
numbers and chain identifiers are marked on map borders. All the 
maps were derived from the distances of gravity centers of the side 
chains (in the CABS CG representation) and the contact cutoff 
was set to 4.5 Å.

Because of their importance in further studies of the complex as well 
as potential significance in drug design, contact maps are one of the 
most informative results of the CABS-dock docking procedure. 
Most importantly, they may be used to predict residue-residue con-
tacts that are crucial for the interaction, which for example can be 
subsequently used in peptide design.

According to experimental studies of the PPARγ-SRC-1 (a 
coactivator protein with the LXXLL motif) complex [27], the 
interaction site on the receptor protein is formed by the following 
residues: L468, L318, T297, Q314, L311, V315, K301, and 
E471. The docking LXXLL motif, which was experimentally deter-
mined to interact with PPARγs [23], is represented by residues 3–7 
of the peptide used in the docking.

The contact maps for all the models (10,000 models in total, 
from the ten trajectories) and cluster number 6 (the representative 
of this cluster is the lowest RMSD model from the top scored 
models) are presented in Fig. 5. The maps show that the peptide 
residues comprising the motif, and the receptor residues creating 
native contacts in the crystallographic structure form the most per-
sistent contacts during the CABS-dock docking simulation. The 
map prepared for all the simulation models (Fig. 5a) shows that 
most of the (final) contacts are in the expected contact area.

Another informative way to visualize the engagement of par-
ticular residues in protein-peptide interaction during docking 
simulation is to prepare a histogram of residue contacts. The his-
togram can be prepared by summing up contact frequencies from 
the maps (available in MAP txt files) over the peptide residues. 
Two histograms for PPARγ receptor residues for all the models 
and cluster number 6 models are presented in Fig. 6. The peaks 
found on both histograms correspond to residues crucial for the 
modeled interaction which form the interaction site of the receptor. 
The histogram for all the structures (Fig. 6a) contains “background” 
noise resulting from peptide sampling of the receptor surface in 
search for the best binding position. Some of those interactions 
are more persistent (e.g., residue 259) and may take part in 

3.2.2  Example Maps 
for Docking a Peptide 
Containing the LXXLL Motif 
to PPARγ
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Fig. 5 Protein-peptide contact maps from peptide-PPARγ docking. (a) Contact map for all 10,000 models. 
(b) Contact map for the models from cluster number 6 whose representative was the model best fitting the 
experimental structure. The columns represent amino acids of the receptor, and the rows are amino acids of 
the peptide. The residues reported in the literature to form the interaction site of the complex are marked in 
green. Contact frequencies are marked according to the color maps below each of the maps. The maps were 
divided into four elements for clarity of presentation
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intermediate complex formation while most of them are likely to 
be accidental. Although not all of the expected contacts were 
present in the resulting structures, it is clear that the most impor-
tant interactions are well preserved and visible in the models. It is 
also possible that further all-atom refinement of the complex 
structure may lead to enhancement of the interaction site details 
that are not clear in the CG representation (see Subheading 3.3 
below).

Finally, note that the contact map analysis of the folding and 
binding of a disordered peptide (simulated using CABS-dock 
methodology) has also been presented in [26].

Fig. 6 Histograms of protein-peptide contacts from peptide-PPARγ docking. 
The normalized histograms show frequencies of contact for each of the receptor 
residues with the peptide: (a) for all 10,000 models, (b) for the models from 
cluster 6 whose representative was the best fitting model. The green markers 
represent residues that were reported in the literature to form a pocket for the 
LXXLL-peptide motif on the surface of PPARγ

Flexible Protein-Peptide Docking with CABS-Dock



80

It is expected that computational techniques will play an important 
role in the rational design of peptide therapeutics [3]. Peptides 
make very promising candidates for drugs as they can adopt mul-
tiple shapes and various chemical features through careful design. 
Moreover, the design and synthesis of peptide drugs is relatively 
simple, so large libraries of peptides may be easily scanned to look 
for optimal peptide design.

The CABS-dock server may be used as an initial docking tool in 
a multistage docking procedure. Perhaps the most straightforward 
CABS-dock application is to use it as a tool for determining the 
initial structure(s) of a protein-peptide complex that may be used as 
an input for further refinement by local docking methods [9–14]. 
As shown before on a large protein-peptide benchmark dataset [15, 
16], for the majority of cases CABS-dock produced models with 
high or medium accuracy (for example sufficient for structure refine-
ment by Rosetta FlexPepDock [10, 12]). Another conclusion from 
the benchmark analysis was that CABS-dock accuracy can be signifi-
cantly improved by its combination with exact scoring methods. By 
default, top-ranked models produced in the CABS-dock procedure 
are reconstructed to all-atom representation and refined using 
MODELLER [28] procedures and ranked by the DOPE score 
[29]. Since the reconstruction and the final all-atom refinement 
may significantly alter the quality of models, other techniques (bet-
ter suited for the reconstruction and optimization of CABS-dock 
coarse-grained models) may be highly useful.

Future CABS-dock improvements also include its integration 
with methods for the prediction of peptide binding-sites [5–8] or 
extending the CABS-dock functionality to user-guided docking 
(by providing a possibility of pointing residues that belong to the 
binding site). Narrowing the conformation space to the selected 
neighborhood should result in the better sampling of near-native 
states, and thus in increasing the chances for building high accu-
racy models. Virtually any structural information may be utilized 
by CABS-dock as distance restraints or filters. Therefore, CABS-
dock is well suited to be integrated as an efficient sampling tool 
with computational pipelines for modeling protein-peptide inter-
actions, including methods for de novo peptide design [30, 31] or 
template-based docking [32].

Finally, CABS-dock could be used in hierarchical protein-
protein docking protocols composed of three modeling steps:

	 1.	Reduction of the protein-protein docking problem to protein-
peptide docking. This starts from the arbitrary selection of 
the receptor protein and bound protein, followed by the 
identification of “hot segment(s)” of the bound protein, i.e., 
a short epitope that contributes the most to the protein-pro-
tein interaction [33, 34].

	 2.	CABS-dock docking of “hot segment(s)” [33, 34], i.e., 
peptide(s).

3.3  CABS-Dock: 
Possible Applications 
and Future Advances
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	 3.	Reconstruction and adjustment of the remaining receptor 
structure to the docked peptide-like fragment.

Peptide-like “hot segment(s)” can be of various length and can 
represent more than one fragment of the original structure, pro-
vided that they can be realistically replaced by a continuous peptide 
chain. In the context of the potential application of CABS-dock in 
protein-protein docking described above, one can also easily design 
a simple sequential procedure for the efficient modeling of amyloid 
aggregation.

Except for using the web interface (available at http://biocomp.
chem.uw.edu.pl/CABSdock/), the CABS-dock server can also be 
operated from the command line or scripts using REST-full ser-
vice. This option is recommended for handling multiple jobs by 
users experienced in Bash and python scripting.

To submit a job for a chosen protein, e.g., 2GB1, and a peptide 
sequence, e.g., SFDG, with default parameters, the following com-
mand or python script should be run:

●● command line:

curl -H "Content-Type: application/json" -X POST -d 
'{"receptor_pdb_code":"2GB1", "ligand_seq":"SFGD"}' 
http://biocomp.chem.uw.edu.pl/CABSdock/REST/add_job/

●● python script:

import requests 
import json 
url = ' http://biocomp.chem.uw.edu.pl/CABSdock/
REST/add_job/' 
data = { 

"receptor_pdb_code": "2GB1", 
"ligand_seq": "SFGD", 

} 
response = requests.post(url, data=data)

The PDB file corresponding to "receptor_pdb_code" will be 
automatically downloaded from the PDB database. On success, a 
job identifier assigned to the submitted job “jid” will be returned. 
Jid will be used as a query for the job status and results later on. 
Otherwise, for example if the pdb code does not exist or input data 
do not fulfill requirements, error will be signaled.

Instead of the PDB code, a PDB file can be attached to the query 
in the following ways:

●● command line:

curl -X POST -F data='{"ligand_seq":"SFGD"}' -F  
file=@path_to_pdb_file.pdb  
http://biocomp.chem.uw.edu.pl/CABSdock/REST/add_job/

3.4  Running 
CABS-Dock 
from the Command 
Line

3.4.1  Submitting a Job 
with the PDB Code 
of a Protein Receptor

3.4.2  Submitting a Job 
with a User-Provided PDB 
File

Flexible Protein-Peptide Docking with CABS-Dock
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●● python script:

import requests 
import json 
url = ' http://biocomp.chem.uw.edu.pl/CABSdock/
REST/add_job/' 
files = {'file': open('path_to_pdb_file.pdb')} 
data = { 

"ligand_seq": "SFGD", 
} 
response = requests.post(url, files=files, data=data)

To override default parameters, additional options may be 
posted, i.e.,

●● command line:

curl -H "Content-Type: application/json" -X POST -d 
'{"receptor_pdb_code":"2IV9", 
"ligand_seq":"SFGD","project_name":"my_project1", 
"email":"mail@host.com", 
"ligand_ss":"CCHHC", 
"simulation_cycles":"100", "show_job":True, 
"excluded_regions":[{"start":"100","end":"340","chain 
":"A"}], 
"flexible_regions":[{"start":"101","end":"202","chain": 
"B","flexibility":"full"}]}' 
http://biocomp.chem.uw.edu.pl/CABSdock/REST/add_job/

●● python script:

import requests 
import json 
url = ' http://biocomp.chem.uw.edu.pl/CABSdock/
REST/add_job/' 
files = {'file': open('your_PDB_file.pdb')}
#or use PDB code in var data 
data = { 

"receptor_pdb_code": "2IV9",
#or use PDB file in var files 
"ligand_seq": "SFGD", 
"email": "mail@host.com", 
"show": True, 
"project_name":"my_project1", 
"excluded_regions":[ 

{ 
"start": "1000", 
"end": "2000", 
"chain": "A" 

} 
], 
"flexible_regions":[ 

{ 
"start": "101", 
"end": "202", 
"chain": "A", 
"flexibility": "full" 

}, 

3.4.3  Overriding Default 
Parameters
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{ 
"start": "300", 
"end": "370", 
"chain": "B", 
"flexibility": "moderate" 

}, 
] 

} 
#request with file 
response = requests.post(url, files=files, data=data)
#request without file
#response = requests.post(url, data=data)

	 1.	project_name—name of the project used for job identification, 
i.e., in the queue.

	 2.	email—email used to inform the user about job progress.
	 3.	 ligand_ss—ligand secondary structure.
	 4.	simulation_cycles—number of simulation cycles: the default is 

100 and the maximum is 200.
	 5.	show_job—boolean value (True or False) indicating whether 

to show a job on the queue page.
	 6.	excluded_regions—array of excluded regions. Each excluded 

region represents a selected receptor residue that is unlikely to 
interact with the peptide and should contain the following 
fields: start position, end position, and chain

	 7.	flexible_regions—array of flexible regions. The flexibility of the 
region is changed by removing distance restraints that keep the 
receptor structure in a near native conformation. Each element 
of the array contains start position, end position, chain, and 
flexibility. Flexibility can be either full or moderate.

To check the status of a job, a job identifier (“jid”) should be 
provided:

●● command line:

curl -I 
�"http://biocomp.chem.uw.edu.pl/CABSdock/REST/ 
status/somejobidentifier"

●● python script:

import requests 
import json 
�url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/
status/somejobidentifier'
response = requests.post(url)
As a result, one of the following statuses will be returned:

●● done—job is finished and the results are ready.
●● pending/running/pre_quere—job is in progress.
●● error—the job identifier does not exist.

Additional Parameters 
Include

3.4.4  Getting Job Status
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More detailed information about the job can be obtained by 
running:

●● command line:

curl -I 
�"http://biocomp.chem.uw.edu.pl/CABSdock/REST/job_
info/somejobidentifier"

●● python script:

import requests 
import json 
�url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/
job_info/somejobidentifier' 
response = requests.post(url)

Additional information includes job configuration that was 
provided on submission and more details about the status. The fol-
lowing fields will be listed in the result:

	 1.	del—job results will be kept on the server until this date.
	 2.	excluded—list of excluded regions sent on job submission.
	 3.	flexible—list of flexible regions sent on job submission.
	 4.	 ligand_sequence—ligand sequence sent on job submission.
	 5.	 ligand_ss—ligand secondary structure sent on job 

submission.
	 6.	project_name—name assigned to the project on job submission.
	 7.	receptor_sequence—receptor sequence sent on job submission.
	 8.	ss_psipred—secondary structure predicted by psipred.
	 9.	status—one of the possible job statuses as described in the sec-

tion Getting job status.
	10.	status_change—time of last status change.

Essential information for each model includes:

	 1.	Average RMSD.
	 2.	Max RMSD.
	 3.	Cluster density.
	 4.	Number of elements.
	 5.	Model data.
	 6.	Information about submitted data.

See the next chapter for more information.

3.4.5  Getting Job 
Results: Essential 
Information
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To obtain essential information, the job identifier (“jid”) must 
be provided:

●● command line:

curl -i 
�"http://biocomp.chem.uw.edu.pl/CABSdock/REST/get_
job/somejobidentifier"

We strongly recommend that curl with compression should 
be sent:

curl -i -H 'Accept-Encoding: gzip,deflate' 
�"http://biocomp.chem.uw.edu.pl/CABSdock/REST/get_
job/somejobidentifier"

●● python script:

import requests 
import json 
�url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/
get_job/somejobidentifier' 
response = requests.post(url)

Optional parameters for filtering the results can be attached to 
the query. The parameters must specify the attribute used for filtering 
(“value”) and the allowed range of values for the attribute (“min” 
and “max”). The following attributes can be used for filtering:

	 1.	density—cluster density.
	 2.	rmsd—average RMSD.
	 3.	maxrmsd—maximum RMSD.
	 4.	counts—number of elements in a cluster.

Exemplary use of filtering:

●● command line:

curl -i -X POST -d '{"filter":"density","min":
"10","max":"20"}' 
"http://biocomp.chem.uw.edu.pl/CABSdock/REST/
get_job/somejobidentifier"

●● python script:

import requests 
import json 
�url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/
get_job/somejobidentifier'
data = { 

"value":"rmsd", 
"min":"5", 
"max":"12" 
} 

response = requests.post(url, data=data)
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All information for each model includes:

	1.	 Average RMSD.
	2.	 Max RMSD.
	3.	 Cluster density.
	4.	 Number of elements.
	5.	 Model data.
	6.	 Information about submitted data.

and additionally:
	1.	 Cluster data.

To get cluster data or trajectory data, see the next sections.
To obtain all information, the job identifier (“jid”) must be 

provided:

●● command line:

curl -i 
"http://biocomp.chem.uw.edu.pl/CABSdock/
REST/get_job_all/somejobidentifier"

We strongly recommend that curl with compression should be 
sent:

curl -i -H 'Accept-Encoding: gzip,deflate' 
"http://biocomp.chem.uw.edu.pl/CABSdock/REST/ 
get_job_all/somejobidentifier"

●● python script:

import requests 
import json 
�url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/
get_job_all/somejobidentifier' 
response = requests.post(url)

Additional filtering can be applied to the query as described in 
the previous section.

To get information about a chosen cluster, the job identifier 
together with the cluster number corresponding to the model 
number should be submitted:

●● command line:

curl -i 
�"http://biocomp.chem.uw.edu.pl/CABSdock/REST/get_
cluster/somejobidentifier/clusterNumber"

We strongly recommend that curl with compression should be 
sent:

curl -i -H 'Accept-Encoding: gzip,deflate' 
�"http://biocomp.chem.uw.edu.pl/CABSdock/REST/get_
cluster/somejobidentifier/clusterNumber"

3.4.6  Getting Job 
Results: All Information

3.4.7  Getting Cluster 
Information
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●● python script:

import requests 
import json 
�url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/
get_cluster/somejobidentifier/clusterNumber' 
response = requests.post(url)

The cluster number must be in the range [1, 10]. As a result, 
cluster data and additional information about the cluster (average 
and maximum RMSD, cluster density, and number of elements) 
will be returned.

Trajectory data can be obtained by sending a query with the 
attached job identifier and model number in the range [1, 10]:

●● command line:

curl -i 
�"http://biocomp.chem.uw.edu.pl/CABSdock/REST/get_
trajectory/somejobidentifier/modelNumber"

We strongly recommend that curl with compression should 
be sent:

curl -i -H 'Accept-Encoding: gzip,deflate' 
�"http://biocomp.chem.uw.edu.pl/CABSdock/REST/get_
trajectory/somejobidentifier/modelNumber"

●● python script:

import requests 
import json 
�url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/get_
trajectory/somejobidentifier/modelNumber' 
response = requests.post(url)

Additionally, a section of the trajectory model can be selected by:

●● command line:

curl -i 
�"http://biocomp.chem.uw.edu.pl/CABSdock/REST/get_
selected_trajectory/somejobidentifier/modelNumber/
start/end"

●● python script:

import requests 
import json 
�url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/
get_selected_trajectory/somejobidentifier/modelNum-
ber/start/end' 
response = requests.post(url)

3.4.8  Getting Trajectory 
Information
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Example 1 (default settings)
The first example shows how to submit a job with the following 

data:

●● Peptide sequence: SSRFESLFAG.
●● Peptide secondary structure: CHHHHHHHHC.
●● Receptor input structure: PDB ID, 2 AM9, crystal structure of 

the human androgen receptor in the unbound form.

and the default CABS-dock server settings.

●● command line:

curl -H "Content-Type: application/json" -X POST -d 
�'{"receptor_pdb_code":"2 AM9", "ligand_seq":"SSRFESLFAG", 
"ligand_ss":"CHHHHHHHHC"}' 
�"http://biocomp.chem.uw.edu.pl/CABSdock/REST/add_
job/"

●● python script:

import requests 
import json 
�url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/
add_job/' 
data = { 

"receptor_pdb_code": "2 AM9" 
"ligand_seq": "SSRFESLFAG", 
"ligand_ss": "CHHHHHHHHC" 

} 
response = requests.post(url, data=data)

Example 2 (increasing the flexibility of selected receptor 
fragments)

The second example shows how to increase the flexibility of 
selected receptor fragments.

For each selected residue, one of two settings of flexibility (mod-
erate or full) can be set. Technically, this is achieved by changing the 
default distance restraints used to keep the receptor structure near to 
the input conformation. The assignment of moderate flexibility 
decreases the strength of restrains, while full flexibility assignment 
removes all the restraints imposed on the selected residue.

Data used in the example:

	 1.	Peptide sequence: HPQFEK.
	 2.	Peptide secondary structure: CHHHCC.
	 3.	Receptor input structure: PDB ID: 2RTM, crystal structure of 

biotin binding protein in the unbound form.

Additional options:

	 1.	Using the CABS-dock “Mark flexible regions” option, ten 
residues (45–54) forming the flexible loop are selected and the 
fully flexible setting is assigned to those residues.

3.4.9  Examples
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Important: Numbering in the PDB format must be used.

●● command line:

curl -H "Content-Type: application/json" -X POST -d 
'{"receptor_pdb_code":"2RTM", "ligand_seq":"HPQFEK", 
"ligand_ss":"CHHHCC", "flexible_regions":[{"start"
:"45","end":"54","chain": "A","flexibility":"full"}]}'
http://biocomp.chem.uw.edu.pl/CABSdock/REST/add_job/

●● python script:

import requests 
import json  
url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/
add_job/' 
data = { 

"receptor_pdb_code": "2RTM" 
"ligand_seq": "HPQFEK", 
"ligand_ss": "CHHHCC" 
"flexible_regions":[ 

{ 
"start": "45", 
"end": "54", 
"chain": "A", 
"flexibility": "full" 

} 
] 

} 
response = requests.post(url, data=data) 
print response.text

Example 3 (excluding binding modes from docking search)
The third example focuses on excluding binding modes form 

docking search. In the default mode, CABS-dock allows peptides 
to explore the entire receptor surface. However, in certain model-
ing cases it is known that some parts of the protein are not acces-
sible (for example due to binding to other proteins) and therefore 
it could be useful to exclude these regions from the search.

Data used in the example:

	 1.	Peptide sequence: PQQATDD.
	 2.	Peptide secondary structure: CEECCCC.
	 3.	Receptor input structure: PDB ID: 1CZY:C, tumor necrosis 

factor receptor associated protein 2 in the unbound form.

Additional options:

	 1.	1CZY protein is a trimer and 1CZY:C forms contacts with 
1CZY:A (according to the http://ligin.weizmann.ac.il/cma/ 
server for the analysis of protein-protein interfaces). Therefore, 
the residues in the C chain (the input protein) listed above 
which are responsible for contacts with A and B chains can be 
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excluded from the docking search using the CABS-dock 
“Exclude regions” option.

●● command line:

�curl -H "Content-Type: application/json" -X POST -d 
�'{"receptor_pdb_code":"1CZY:C", "ligand_seq":"PQQATDD", 
"ligand_ss":"CEECCCC", "excluded_regions":[ 
{"start":"334","end":"335","chain":"C"}, 
{"start":"338","end":"338","chain":"C"}, 
{"start":"341","end":"342","chain":"C"}, 
{"start":"345","end":"345","chain":"C"}, 
{"start":"350","end":"350","chain":"C"}, 
{"start":"385","end":"386","chain":"C"}, 
{"start":"416","end":"418","chain":"C"}, 
{"start":"420","end":"421","chain":"C"}, 
{"start":"458","end":"458","chain":"C"} ]}' 
�http://biocomp.chem.uw.edu.pl/CABSdock/REST/add_job/

●● python script:

import requests 
import json  
url = 'http://biocomp.chem.uw.edu.pl/CABSdock/REST/
add_job/' 
files = {'file': open('your_PDB_file.pdb')} 
#or use PDB code in var data 
data = { 

"receptor_pdb_code": "1CZY:C" 
"ligand_seq": "PQQATDD", 
"ligand_ss": "CEECCCC" 
"excluded_regions":[ 

{ 
"start": "334", 
"end": "335", 
"chain": "C", 

}, 
{ 

"start": "338", 
"end": "338", 
"chain": "C", 

}, 
{ 

"start": "341", 
"end": "342", 
"chain": "C", 

}, 
{ 

"start": "345", 
"end": "345", 
"chain": "C", 

}, 
{ 

"start": "350", 
"end": "350", 
"chain": "C", 

}, 
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{ 
"start": "385", 
"end": "386", 
"chain": "C", 

}, 
{ 

"start": "416", 
"end": "418", 
"chain": "C", 

}, 
{ 

"start": "420", 
"end": "421", 
"chain": "C", 

}, 
{ 

"start": "458", 
"end": "458", 
"chain": "C", 

} 
] 
}  

response = requests.post(url, data=data)

4  Notes

	 1.	The CABS-dock server requires a user-provided protein recep-
tor structure in the PDB format or the PDB code of the recep-
tor (the file will be automatically downloaded to the server 
from the PDB database). The chain of the protein receptor 
must be shorter than 500 amino acids. The backbone must be 
complete; however side chain atoms may be missing. Any non-
standard amino acids in the protein receptor will be changed to 
their standard counterparts.

	 2.	The peptide sequence input must be 4–30 amino acids in length 
and consist of standard amino acids only. It is also possible to 
provide the secondary structure of the peptide in the standard 
one-letter code (C—coil, H—helix, E—extended) using the 
“Optional” tab (if not, the secondary structure will be predicted 
with PsiPred). The structure may be experimentally derived or 
based on any sequence-based prediction method. Please note 
that “overprediction” of regular structures (H, E) was shown to 
be more likely to give incorrect results of docking than their 
underprediction. If the secondary structure is not known, it is 
better to supply it as a list of “C” (coil assignments). More 
information on how the secondary structure information is 
used in the simulations is provided in reference [35].

	 3.	On top of standard input settings the CABS-dock server pro-
vides an advanced input panel that enables additional features to 
tailor simulation conditions to the user’s needs. These features 
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include: (a) Custom adjusted run time: the user is allowed to 
lengthen the simulation run time, which may save time in case of 
small complexes or lead to better results for large complexes, 
where the standard setting may be insufficient to cover the whole 
conformational space. (b) Selection of flexible regions of the 
receptor: the user may mark some of the residues of the receptor 
to be granted more conformational flexibility than in the stan-
dard settings. By default receptor residues are flexible, but lim-
ited to only near-native conformations, which is suitable for 
most docking applications. Additional flexibility may be adjusted 
to semi- or full flexible to model more accurately regions believed 
to change their conformation on peptide binding. (c) Exclusion 
from sampling the receptor regions unlikely to be involved in 
peptide binding: the user may select some of the receptor resi-
dues believed not to take part in peptide binding. This feature is 
useful when the receptor molecule contains more than one 
binding spot and only one needs to be investigated (i.e., in 
receptors containing dimerization sites) or when part of the 
receptor is inaccessible to the peptide in  vivo (i.e., receptors 
embedded in the membrane). Illustrative examples of using 
these advanced features are provided in [16].

	 4.	All CABS-dock results can be downloaded in a single ZIP 
archive file available from the “Docking predictions results” 
tab. The ZIP archive file contains the simulation trajectories, 
clusters of models, and the top-ranked models (representatives 
of the clusters). All the provided structures are in PDB format 
files and the top-ranked models are provided in all-atom reso-
lution. The trajectories and cluster model coordinates are pro-
vided in C-alpha representation only. The ZIP archive also 
contains simulation contact maps (discussed in Subheading 3.2).

	 5.	The contact maps are stored as PNG figures and MAP files. The 
MAP file is a text file (txt) that consists of three columns: the 
first two list the residues of the protein receptor and the 
peptide, respectively. In each row, the third column gives the 
frequency of the contact between the residues in the first two 
columns. An example fragment of a MAP file format is pre-
sented below:
…
A224  C7  0.0117647
A224  C8  0.0117647
A224  C9  0
A225  C1  0
A225  C10  0.0117647
A225  C2  0
A225  C3  0
A225  C4  0
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A225  C5  0
A225  C6  0
A225  C7  0.0117647
…

Each of the residues in the receptor protein is paired with 
each residue of the peptide, so the number of rows in the file is 
(number of protein residues) × (number of peptide residues).
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