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Abstract. Simulations of protein dynamics may work on different levels of mole-

cular detail. The levels of simplification (coarse-graining) can range from very low 

to atomic resolution and may concern different simulation aspects (including pro-

tein representation, interaction schemes or models of molecular motion). So-called 

coarse-grained (CG) models offer many advantages, unreachable by classical simu-

lation tools, as demonstrated in numerous studies of protein dynamics. Followed by 

a brief introduction, we present example applications of CG models for efficient 

predictions of biophysical mechanisms. We discuss the following topics: mechan-

isms of chaperonin action, mechanical properties of proteins, membrane proteins, 

protein–protein interactions and intrinsically unfolded proteins. Presently, these 

areas represent emerging application fields of CG simulation models. 

Abbreviations: CG, coarse-grained; MD, Molecular Dynamics; MC, Monte  

Carlo. 

1 Introduction 

The steady increase in computational power constantly sets new limits in simula-

tions of biomolecular dynamics (Vendruscolo and Dobson 2011). Nevertheless, 

the majority of biologically relevant protein dynamic processes remain beyond the 

reach of atomistic Molecular Dynamics (MD), the classical simulation tool 
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(Kmiecik et al. 2011). In such cases, the introduction of properly designed  

simplifications that capture relevant physical features can be the only option, or 

incomparably cheaper than atomistic MD, to better understand macromolecular 

processes. 

A variety of purely theoretical models for analyzing the dynamic properties of 

proteins have been proposed (Munoz et al. 1998; Wolynes et al. 1995). Neverthe-

less they appeared to be rather limited in their predictions. This is due to the com-

plicated nature of proteins and rules governing their structure. Compared to purely 

analytical methods, the molecular simulation approach is better suited to handling 

protein complexity. Presently, molecular simulations represent a powerful and the 

most widely used theoretical approach for the understanding of protein dynamics. 

1.1 CG Simulation Models 

The most direct computational approach to protein dynamics prediction is simula-

tion of a dynamic system of interest. A simplified simulation model of proteins is 

probably the earliest example of CG approach in structural biology, developed in 

the mid-1970s (Levitt and Warshel 1975). Since that time the field has grown 

tremendously, branching out in many variants of protein representation, interac-

tion potentials and sampling models (Figure 1). Interestingly, recent estimates 

indicate a significant increase in the number of studies that rely on CG simulations 

(based on publication statistics over the last decade) (Takada 2012). This signifi-

cant rise is perhaps related to a growing number of experimentally solved struc-

tures of large biomolecules (or their complexes), too large to be reasonably  

addressed by all-atom simulations. 

A number of mean-resolution CG models have been developed for protein 

structure prediction (Kolinski and Skolnick 2004). Some of them enable efficient 

simulation of dynamic processes. A typical example is the CABS model (Kolinski 

2004), which acronym stands for the united atoms representing a single residue in 

a protein chain (CA -alpha carbon of the main chain, cB -beta carbon, and S -the 

center of side group). Thus, in the CABS model, a single amino acid is 

represented by 2-4 (depending on the side-chain size) interaction centers, and one 

of them (C-alpha) is placed into a high-resolution lattice. The interaction scheme 

is based on mean-force potentials derived by the statistical analysis of known pro-

tein structures. In spite of the fact that the interaction scheme is obtained only 

from known crystallographic structures related to completely random protein 

chains, protein dynamics processes (folding, unfolding, diffusion, etc.) simulated 

by the CABS method are qualitatively correct (Kmiecik et al. 2007; Kmiecik and 

Kolinski 2008, 2011; Kmiecik et al. 2012). These qualitatively correct results, not 

trivial to obtain, show that interaction patterns of unfolded (or partially unfolded) 

proteins are quite similar to the interactions seen in fully folded structures. The 

lattice representation of CABS proteins significantly increases the speed of con-

formational updates. Simulation processes are controlled by the Monte Carlo 

(MC) scheme: random series of local conformational transitions. This pseudo-

random Monte Carlo process does not describe accurately ultra-short-time mo-

tions and ranges of a few angstroms, although longer-time (and space) dynamics is  
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Fig. 1 Conceptual components of CG protein simulation models and their variants: (A) 

protein representation, (B) interaction schemes (Go-like potentials are protein specific, i.e., 

native interactions are favored to assure the lowest energy for the native conformation, and 

are used individually or in combination with non-protein specific: physics- or knowledge- 

based schemes), (C) sampling models. This diagram applies either to continuous-space or 

discrete (lattice) models. For detailed review of these variants and coarse-graining levels 

refer to (Kolinski and Skolnick 2004). 

essentially identical with continuous space models (Kolinski 2004). The coarse-

graining of CABS enables very fast derivation of its low resolution from high 

resolution atomistic coordinates, and what is more important quite accurate all-

atom structures could be very rapidly re-computed from CABS coordinates 

(Kmiecik et al. 2007; Kmiecik et al. 2012). 

1.2 From CG to All-Atom Structures: Multiscale Modeling 

One of the major future issues of CG dynamics studies is the design of methods 

for the reliable and efficient transition between simplified and atomic resolution 

levels (Scheraga et al. 2007), as the element of multiscale methodologies. The idea 

of multiscale modeling is efficient computation on a CG scale to send it to the 

detailed all-atom simulation, or vice versa (Kmiecik et al. 2011). Obviously, the 

CG model used in the multiscale methods must produce physically realistic 

coarse-grain protein structures. Even if it is fulfilled, it is a non-trivial problem to 

add all-atom details to CG structures to produce physically realistic all-atom coun-

terparts (Kmiecik et al. 2007). It has been demonstrated in applications to protein 

folding CG trajectories that reliable and efficient movement between CG and 

atomic resolution is feasible (Kmiecik et al. 2012; Heath et al. 2007). Finally, it is 

accepted that one of the most promising future directions is to develop approaches 
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that can minimize the difference between the simplified and atomic models 

(Kamerlin et al. 2011). 

2 Applications in Structural Biology 

In this section, we discuss several recent examples of CG modeling, including our 

reports and other published literature. The section covers the following actively 

studied tasks of protein dynamics: mechanisms of chaperonin action, mechanical 

properties of proteins, dynamics of protein-protein interactions and membrane and 

intrinsically unfolded proteins. We consider these aspects of protein dynamics one 

of the most prospective development areas of new computational strategies includ-

ing CG protein simulation models. Most of our own examples of CG simulations 

described below were done using the CABS CG modeling tool (Kolinski 2004) 

(the CABS applications to the study of protein folding pathways have been re-

viewed elsewhere (Kmiecik et al. 2011)). 

2.1 Testing Mechanisms of Macromolecular Dynamics via 

Simple Models: Chaperonin Action 

Complex macromolecular processes can be generalized to very simple concepts 

and tested computationally on a very general level. This is the case of the studies 

of chaperonin action. Chaperonin and its protein substrate is a very large protein 

complex whose dynamic processes are way beyond the reach of classical dynam-

ics simulation models. Over the past 20 years a significant number of studies, both 

experimental and theoretical, have been pursued to understand how chaperonins 

(like GroEL) facilitate protein folding processes in the cell.  

Many theoretical models have been proposed focusing either on the passive 

(aggregation prevention) or active (folding promotion) possible roles of chapero-

nins (Jewett and Shea 2009). A number of CG simulation studies investigated the 

effect of confinement on protein folding using very simplistic (Zhou and Dill 

2001), simple lattice (Betancourt and Thirumalai 1999), off lattice C-alpha based 

and Go-like (Takagi et al. 2003; Rathore et al. 2006) or more realistic 

(Baumketner et al. 2003) models. Another aspect of chaperonin action, namely the 

effect of interactions of the protein substrate with chaperonin cavity, was also a 

subject of numerous CG simulations studies, e.g., by lattice (Betancourt and 

Thirumalai 1999) and off-lattice (Jewett et al. 2004) models. For broad, recent 

reviews covering the use of CG models in chaperonin action studies, see (Jewett 

and Shea 2009; Lucent et al. 2009). 

Probably the most popular theoretical model which provides explanation of the 

chaperonin active role is the Iterative Annealing Model (IAM). In this model cha-

peronin promotes folding by unfolding the protein substrate from misfolding traps 

through its hydrophobic interactions with cage walls. Just very recently, we have 

attempted to test the IAM hypothesis using a de novo CABS modeling approach 

employing a non-specific (non-Go-like) knowledge-based interaction scheme 

(Kmiecik and Kolinski 2011). Importantly, in most (if not all, as described by 
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Lucent et al. (Lucent et al. 2009)) simulation studies testing various chaperonin 

models on real (i.e. not too much simplified) protein substrates, a common simpli-

fied interaction model was used: the Go-like model. Therefore, in contrast to earli-

er simulation studies, the CABS model did not preclude transient conformers  

stabilized by non-native interactions. 

 

Fig. 2 A simple chaperonin model used in protein folding studies with the CG CABS model 

(Kmiecik and Kolinski 2011). The chaperonin cage was simulated as a sphere with a thick 

wall of variable hydrophobicity. In the basic state the walls are inert for 9/10 of the simula-

tion time. Periodically (see the simulation timescale above in the Figure) the walls became 

hydrophobic, attracting the encapsulated protein chain with a strength typical for hydro-

phobic interactions within folded proteins (according to the CABS force field). 

The CABS simulation results showed that periodic distortion of the simulated 

proteins by hydrophobic chaperonin interactions promotes rapid folding and leads 

to a decrease in folding temperature. According to the observed mechanism of 

folding promotion, chaperonin prevents kinetically trapped conformations. This is 

contrary to the so far accepted interpretation of the IAM model suggesting not the 

prevention but rather the unfolding action from already trapped conformations. 

Interestingly, the analysis of the folding trajectories enables general observation of 

chaperonin-induced modulation of the observed folding mechanisms from nuclea-

tion–condensation to more framework-like. All these observations remain in 

agreement with the experimental data on chaperonin-bound protein substrates, 

generally indicating an ensemble of compact and locally expanded states lacking 

stable tertiary interactions. 

It is worth to mention that theoretical studies of chaperonin-mediated folding 

may have important conceptual applications in other fields (Lucent et al. 2009), 

e.g., in the development of structure-refinement software or in the construction of 

chaperonin-like molecules designed for desired biotech and medical applications. 
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We have to realize that we are only at the beginning of the understanding of how 

chaperonins work. As pointed out by Lucent at al. (Lucent et al. 2009), so far most 

theoretical and experimental research focused on GroEL, a specific prokaryotic 

chaperonin. Since chaperonins exhibit different modes of action in prokaryotic 

and eukaryotic organisms, the investigation of these differences may be essential 

for the complete understanding of underlying mechanisms and protein folding 

itself. This challenging issue has already been addressed by a very simple lattice 

model (Jacob et al. 2007). 

2.2 Mechanical Unfolding of Proteins 

One of the functional features of proteins is response to a wide range of applied 

forces. Being subjected to an applied load, proteins play key roles in cytoskeletal 

organization (Fletcher and Mullins 2010), mechanics (Granzier and Labeit 2004), 

cellular transport (Serohijos et al. 2006), signaling (Stossel et al. 2001) and protein 

degradation (Hanson and Whiteheart 2005). The required external force to unfold 

protein is in the order of pico-Newtons. Since the atomic force microscopy (AFM) 

and laser optical tweezers (LOT) techniques (Rief et al. 1997; Marszalek et al. 

1999; Simmons et al. 1996) detect forces in the pico-Newton range, they are use-

ful tools for studying mechanical unfolding of biomolecules. In both techniques 

two major strategies are used. In the first technique, protein is pulled by a force 

ramped linearly with time, while monitoring the force (mechanical resistance) as a 

function of the end-to-end distance. The second strategy is the application of a 

constant force through force clamp devices. In experiments at a constant pulling 

speed, the total force experienced by protein is F=k(vt-x), where k, v, t and x are 

respectively: the spring constant (stiffness) of cantilever, pulling speed, time, and 

displacement of the pulled amino acid from its original position. Typically, in 

AFM experiments k and v are in the range of 10 - 1000 pN and 10
-11 

- 10
-7 Å/ps, 

respectively. In LOT, the velocity range is similar to that of AFM, whereas the 
typical values of spring constant, k=0.001 - 0.1 pN/nm. Stiffness defines the force 
resolution of experiment. Thus, AFM can probe unfolding of strong proteins with 
required  Fmax of about few hundreds of pN (such as titin (Rief et al. 1997) or 
ubiquitin (Carrion-Vazquez et al. 2003)), while LOT is precise enough for study-
ing biomolecules with few tens of pN mechanical resistance (weaker proteins as 
well as DNA and RNA molecules (Smith et al. 1996; Liphardt et al. 2001)).  

Figure 3A shows the force-extension profile obtained by constant velocity 
stretching experiments for Ig8 titin fragment. The peaks in Figure 3A are asso-
ciated with breaking hydrogen bonds (HBs) between strands A’ and G (Figure 3B) 
in single titin domains of the multidomain construction. Apart from molecular 
interactions studies, AFM technique can also be used to investigate the mechanical 
stability of proteins measured by Fmax in the force-extension profile (note that Fmax 
depends on the pulling speed logarithmically, Fmax ∼ ln(v)(Evans and Ritchie 
1997)). Measuring the mechanical stability in different solutions, one can also  
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Fig. 3 (a) Force-extension profile obtained by stretching of Ig8 titin fragment (adapted from 

Ref. (Rief et al. 1997)). Each peak corresponds to unfolding of a single domain with maxi-

mum resisting force to stretching, Fmax. Smooth curves are fits to the wormlike chain mod-

el. (b) Cartoon representation of native state conformation of I27 domain (PDB code: 1tit) 

with eight -strands labeled: A (4-8), A’(11-15), B(18-25), C(32-36), D(47-52), E(55-61), 

F(69-75), G(78-88). Importance of HBs between beta-strands marked by red color is de-

scribed in the text. (c) Conceptual plot for the free energy landscape of protein unfolding 

without (red) and under (blue) the external force. An applied force lowers unfolding barrier 

by Fxu increasing exponentially the unfolding rate constant (ku), but decreasing exponen-

tially the folding rate constant(kf). xu is the distance between native and transition state and 

xf is the distance between transition and denatured state. 

probe the effect of environment on hydrogen bonding (Lu and Schulten 2000). 

Moreover, the mechanical unfolding studies enable insights into: forces that drive 

biological processes, ligand binding affinity to proteins/receptors (Florin et al. 

1994), force-induced intermediate states (Fowler et al. 2002; Li et al. 2005; 

Schwaiger et al. 2004), the mechanical unfolding free energy landscape (FEL) of 

proteins (Bustamante et al. 2004). The problem of FEL is considered in more  

detail below. 

A major limitation of AFM experiments is that it cannot give the detailed cha-

racterization of conformational changes under the applied force at the atomic lev-

el. Computer simulations may be employed as a tool to complement experimental 

studies. Schulten’s group used the all-atom models with an explicit water to study 

the mechanical unfolding of the I27 protein (Lu et al. 1998). They deciphered in 

great detail the unfolding pathway of I27 and demonstrated the existence of hump 
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due to breaking HBs between beta strands A and B (Figure 3B) (Lu and Schulten 

2000). Mechanical unfolding of a number of proteins has been also probed by all-

atom simulations with implicit solvent (Paci and Karplus 2000). The major short-

coming of all-atom MD simulations is that the pulling speed is about 6 orders of 

magnitude higher than that used in AFM experiments. It is unclear if in silico 

results obtained in such extreme conditions are meaningful to understand experi-

ments (strong forces may considerably disturb FEL), although recent studies 

claimed that unfolding pathways are not sensitive to pulling forces and speeds 

(Lichter et al. 2012; Lee et al. 2009). 

The timescale discrepancy (and the related discrepancy in stretching forces re-

quired to induce unfolding) between AFM experiments and simulation can be 

reduced by the usage of CG models. Nowadays GPU technique allows one to 

reach experimental pulling speeds by CG Go models (Zhmurov et al. 2010). CG 

Go models have been successfully used by many groups to study mechanical 

properties of proteins (West et al. 2006; Cieplak et al. 2002; Arad-Haase et al. 

2010; Best and Hummer 2008). Despite their simplicity, in many cases they cor-

rectly capture unfolding pathways, FEL and mechanical stability of proteins. For 

example, a complete description of mechanical unfolding pathways of single and 

multidomain Ubiquitin at the level of secondary structure was obtained (Li et al. 

2007). It was shown that thermal and mechanical pathways for fibronectin type III 

and I27 domain are different (Paci and Karplus 2000). This is because the thermal 

fluctuations have more global effect on entire protein and unfold the most unstable 

part of protein while the force should propagate protein unwinding from the points 

to which force is applied. Having used Go-model, mechanical unfolding pathways 

of protein DDFLN4 (Li and Kouza 2009) and two slipknotted proteins (pdb codes 

- 1e2i and 1p6x) (Sulkowska et al. 2009), were shown to depend on the pulling 

speed.  

The CG Go-models may be suitable for deciphering the FEL (Figure 3C). Con-

sidering FEL as a function of end-to-end distance, one can use Bell-approximation 

(Bell 1978) to estimate the distance between the native state (NS) and transition 

state (TS), xu, using either the dependences of unfolding rates on the external force 

(Bell 1978) or the dependence of force on pulling speed (Evans and Ritchie 1997). 

The distance between the NS and TS xu (Figure 3C), estimated by the C-alpha Go-

like model (Clementi et al. 2000), was in excellent agreement with experimental 

results (Kouza et al. 2008; Caraglio et al. 2010). Furthermore, Li showed that xu 

(Figure 3C) is defined by the secondary structure content and approximately de-

pends linearly on the contact order (Li 2007; Kumar and Li 2010), thus the helix 

proteins have larger distances from the native state to the transition state than beta 

proteins. It should be noted that the phenomenological Bell theory is based on the 

assumption that xu is not moving under stretching. Recently, applying Kramers 

theory (Kramers 1940) and assuming that the distance between NS and TS is 

force-dependent, Dudko et al. (Dudko et al. 2006) have gone beyond the Bell as-

sumption.  With the help of proposed nonlinear kinetic theory (Dudko et al. 2006) 

one can estimate not only intrinsic rate coefficient, ku, and the distance between 

NS and TS, xu, but also the unfolding barrier, u
++ 

(Figure 3C). 



Coarse-Grained Modeling of Protein Dynamics 63 

 

One of the most successful application area of CG Go models were estimations 

of the mechanical stability of proteins (Sulkowska and Cieplak 2007; Sikora et al. 

2011; Li 2007; Brockwell et al. 2003). It has been found that helix proteins are 

less stable than beta proteins and unfolding force Fmax may be expressed as a linear 

function of the contact order (Plaxco et al. 1998). This is understandable because 

beta proteins have more long-range contacts leading to higher resistance to exter-

nal perturbation (Kumar and Li 2010). Having used the Go models, Cieplak et al. 

have computed Fmax for thousands of proteins (Sikora et al. 2011; Sulkowska and 

Cieplak 2007) and found that the mechanical clamp (resistance-determining re-

gion of a protein) of the top strongest proteins is not only consisted of hydrogen 

bonded -strands being sheared during the pulling. Structures tied by disulfide 

bonds were found to contribute to significantly larger mechanical stability than 

shear-based mechanical clamps. Novel mechanical clamps were identified and 

classified (Sikora et al. 2011; Sikora and Cieplak 2011). Later on, the high resis-

tance to stretching of top 13 proteins (cysteine-slipknots) was confirmed by all-

atom steered molecular dynamics (SMD) simulations (Peplowski et al. 2011) and 

observed experimentally (Valbuena et al. 2009). Recently CG model was success-

fully applied even for proteins with non-trivial structures (Sulkowska et al. 2009; 

Sulkowska et al. 2010), which was confirmed by experiment (He et al. 2012). For 

a more detailed review of protein mechanostability, see Chapter 10 of this book 

entitled “Mechanostability of proteins and virus capsids. ” 

The success of CG Go models is possibly associated with the fact that the pull-

ing starts from the native state while these models are based on topology of the 

native state. However, in particular cases one has to be careful with predictions 

followed from these simple models. In the case of DDFLN4 protein, the Go model 

did not give the peak in the force-extension curve observed in the experiment. It 

was shown that the occurrence of that peak is due to non-native interactions neg-

lected in Go model (Kouza et al. 2009). Thus, in certain cases the non-native inte-

ractions are important because non-native contacts appear during the unfolding 

process leading to intermediate states. To avoid possible artifacts associated with 

neglecting non-native interactions, CG models with more realistic potentials may 

be used. A good example of such case is the force-induced intermediate of Ubiqui-

tin, which was neglected in Go-model simulations (Li et al. 2007), but detected by 

the Lund force-field (Irback et al. 2005). 

SMD simulations have been used for a wide variety of applications in studies of 

biological processes and various biomolecules (Lee et al. 2009). Going for-

ward, there is a clear need to move SMD techniques into living cell where proteins 

are exposed to their native (crowded) environment (Vogel and Sheetz 2006). One 

of the recent applications of SMD is to understand the mechanism of virus binding 

to its host cell (Sieben et al. 2012). Another issue of great interest is the applica-

tion of SMD for studying the response of protein to periodic forces (Szymczak 

and Janovjak 2009). It is also worth to mention some important problems for fur-

ther studies. For instance, it remains unclear if the distance between the native and 

transition states (distance xu, see Figure 3C) followed from the nonlinear 
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theory(Dudko et al. 2006) depends linearly on contact order (as it was  obtained in 

the linear Bell approximation). Generally, the deciphering FEL is done by its pro-

jection onto one-dimensional space, usually end-to-end distance. However, the 

validity of such approximate mapping is not always true (Best et al. 2008), thus 

this issue requires further investigation.  

2.3 Dynamics of Protein–Protein Interactions 

Dynamics of protein–protein interactions is in the spotlight of current biomedical 

research. Molecular level descriptions of interaction dynamics give insights into 

relevant biological processes, underlying causes of some diseases or drug-receptor 

interactions. 

Although CG models are less accurate than all-atom approaches, when used, 

we can focus on the important features of the thermodynamics and kinetics of 

protein complexes (Kim and Hummer 2008; Kim et al. 2008; Okazaki et al. 2012; 

Saunders and Voth 2012; Frembgen-Kesner and Elcock 2010). For example, Kim 

and Hummer (Kim and Hummer 2008) investigated binding affinities of Vps27 

complexes with ubiquitin attached to the membrane, where folded domains were 

rigid and linkers between them were flexible. They used a C-alpha model with 

various variants of potentials for interactions between domains, linker movement 

and the protein-membrane complex. Predicted binding affinities, for various mod-

eled complexes, were in good agreement with the experimental data. Furthermore, 

conformations of some ubiquitin complexes were predicted with very good preci-

sion (DRMS < 2Å).  
Interestingly, accurate values of binding affinities could also be determined 

with a more simplified model (Frembgen-Kesner and Elcock 2010). In this case 
the Brownian dynamics of the Barnase-Barstar complex was derived with a model 
in which three amino acids were represented by one bead. Computed kinetic data 
of the association process corresponded well with the experiment. 

The binding of a protein coactivator to an enzyme is a class of extremely im-
portant processes, usually difficult to study due to relatively high protein rear-
rangements. The characterization of such processes has recently been the aim of 
CG simulation studies (Di Fenza et al. 2009; Kurcinski and Kolinski 2010). In one 
of them, Kurcinski and Kolinski (Kurcinski and Kolinski 2010) applied the CABS 
model to describe the activation of the Retinoid X Receptor (RXR) by 9-cis reti-
noic acid and the TRAP220 coactivator. They focused on specific transition states. 
The results agreed well with the experimental data and a two-stage sequential 
reaction mechanism could be suggested. Interestingly, the simulations were con-
ducted with a fully flexible peptide coactivator (11 residues) and a moderately 
flexible receptor (238 residues) whose conformation was restrained to its experi-
mental structure (see Figure 4 for the scheme of the multistage procedure). The 
resulting extent of conformational sampling was incomparably larger than with 
any classic all-atom simulation. 
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Fig. 4 Multiscale procedure for the description of binding between the Retinoid X Receptor 

(RXR) and the peptide (TRAP220) cofactor using CABS CG dynamics (Kurcinski and 

Kolinski 2010). The procedure starts from the generation of input data for a receptor and a 

protein cofactor. In the next step, the receptor and the cofactor are put together in many 

random configurations, subsequently subjected to CABS CG simulation. Various types of 

data along the procedure are shown in bold frames, while the applied computational me-

thods in thin frames. 

Apart from the possibility to use restraints from experimental structures to 

maintain the protein fold we can also use an elastic network model (ENM) as was 

done in Hall and Sansom (Hall and Sansom 2009). In this study proper structures 

of the Cohesin (162 residues)-Dockerin (60 residues) complex were predicted with 

a CG-Molecular Dynamics (CG-MD) model in which each amino acid was 

represented by four beads. Ca. 80% of interfacial residues were identified correct-

ly and two various ways of ligand binding were identified which agreed well with 

the results of experimental data. 

With regard to the large-scale dynamics of protein systems, another promising 

and presently active field is CG dynamics of actin filaments (Chu and Voth 2006; 

Bindschadler 2010). Because of the scale of the system, it is extremely challeng-

ing to simulate myosin binding to actin filaments by all-atom MD. A multiscale 

model (Taylor and Katsimitsoulia 2010) enabled the observation of the myosin 

motor and an insight into its action. In this case, three levels of coarse-graining 
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were introduced: chains of secondary structure elements, domains and molecules. 

The movement of each component was simulated by Brownian Dynamics. A more 

detailed, physicochemical view of the myosin-actin complex was recently ob-

tained with a CG simulation model (Okazaki et al. 2012) in which each bead 

represented a single amino acid. In this case conclusions regarded also more gen-

eral thermodynamic aspects of protein–protein association. 

Another popular and important protein–protein dynamics issue, in which di-

verse levels of coarse-graining are applied, is protein aggregation. In the simplest 

models, a single unit (cuboid (Zhang and Muthukumar 2009) or tube (Auer et al. 

2008)) represents the whole peptide, while in the most detailed models each amino 

acid consists of a few pseudo-atoms. For the recent review of these approaches, 

see (Wu and Shea 2011). Dramatic progress has been recently achieved in the CG 

modeling of large polyprotein complexes (made up of many copies of the same or 

different proteins) (Saunders and Voth 2012). In their review, Saunders and Voth 

present two general classes of CG methods: mapping methods that transfer infor-

mation from one level to another only during parameterization and bridging me-

thods that connect different scales of representation during simulation. 

The major challenge in modeling of protein interaction dynamics seems to be 

as that recently outlined in the review of the performance of protein docking tech-

niques (Vajda and Kozakov 2009). Namely, it is the treatment of substantial con-

formational changes. CG simulation models offer perhaps the most prospective 

means for modeling of extensive backbone dynamics in the nearest future. 

2.4 Dynamics of Membrane Proteins 

Membrane proteins play an important role in cell biology. They are responsible 

for signaling, molecular transport across lipid bilayers, maintaining cell structural 

stability and control of cell–cell interactions. Although 20% to 30% of all ORFs 

are predicted to encode membrane proteins, less than 1% of all known 3D protein 

structures account for membrane proteins (Nilsson et al. 2005). Moreover, those 

proteins are embedded in different types of lipid bilayers. The interaction with 

lipids is essential for both protein function (e.g. can affect integral membrane pro-

tein activity (Lee 2004)) and membrane properties such as hydrophobic thickness 

or lipid composition (Hunte 2005)). The complex nature of membrane-protein 

systems makes CG Molecular Dynamics (CG-MD) simulations a valuable ap-

proach to the investigation of dynamics, structure-function relationship and stabili-

ty of membrane–protein systems. One of the best performing, and probably the 

most recognized, CG-MD approaches is based on the MARTINI force field 

(Marrink et al. 2007) that uses four-to-one atom mapping. Only four main types of 

interaction sites are defined: polar (P), non-polar (N), apolar (C) and charged (Q). 

Each particle type has a number of subtypes allowing accurate representation of 

solvent, protein and membrane structures. This approach enables treatment of very 

large systems (corresponding to systems consisting of more than 500,000 atoms) 

and offers timescales above 100 µs which are far beyond the scope of classical all-

atom-MD. The method was successfully applied by Sansom and co-workers for 

the prediction of protein positions within lipid bilayers (Scott et al. 2008).  
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Self-assembly CG-MD simulations, starting from a protein surrounded by  

randomly positioned water and lipid molecules, were conducted for 91 different 

protein systems. The resulting structures gave insights into direct protein–lipid 

interactions, membrane distortion around different proteins and localization of 

proteins in the lipid bilayers, in agreement with experimental data (see Figure 5). 

CG-MD simulations applying the MARTINI force field were also used for the 

investigation of helix associations and dimerization of membrane proteins. Sen-

gupta and coworkers conducted a set of CG-MD simulations, each lasting 25 µs, 

to study the association mechanism of glycophorin A and two disruptive mutants, 

T87F and a triple mutant of the GxxxG motif (G79LG83LG86L), embedded in a 

DPPC lipid membrane model (Sengupta and Marrink 2010). In each case, dimers 

formed within the first 5 µs. The wild-type dimer packed in a right-handed man-

ner, and the structure was consistent with the native structures defined by NMR 

studies (Smith et al. 2002). The analysis of free energy profiles reveals that two 

dimers formed by mutated peptides were less stable, by about 8–10 kJ mol 
–1

 as a  

 
 

 

Fig. 5 Resulting snapshots for the final frame in four simulations: A - cytochrome bc1 

complex, B - putative metal-chelating ABC transporter, C - quinol-fumarate reductase and 

D - Mg2+ transporter. Water, ion and DPPC lipid tail particles are excluded for clarity. The 

backbone trace of the protein is shown in blue. The particle colors are: phosphate in DPPC 

lipid headgroups: red; glycerol linker in the lipid: yellow; choline in PC headgroups: blue. 

Picture created based on materials available in the CG Database (Sansom et al. 2008). 
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result of the disruption of a lipid bilayer surrounding the protein and less efficient 

helix–helix packing (Sengupta and Marrink 2010). The observed differences be-

came only apparent after extensive sampling, which indicates the importance of 

long microsecond simulation timescales. 

A multiscale MD approach (combining CG-MD and all-atom-MD simulations) 

was used by Kalli and coworkers (Kalli et al. 2011) to explore the formation of an 

aIIb/b3 integrin TM helix hetero-dimer in the DPPC membrane model. CG-MD 

simulations were performed using high-throughput methodology (Hall et al. 2011) 

which enabled automatic running of multiple self-assembly simulations and statis-

tical analysis over an ensemble of approximately 100 structures. Dimer formation 

usually occurred within a few hundred nanoseconds of CG-MD. The resulting 

dimers were submitted for further assessment and refinement using all-atom-MD 

simulation. Comparing the final structure of the modeled dimer with the available 

aIIb/b3 integrin NMR structure (PDB ID: 2K9J (Lau et al. 2009)) yields a Cα 

rmsd of 2.2 Å for the TM region, a similar crossing angle of 30 ± 3º and a helix–
helix interface created by the same residues. The results indicate that a purely 
computational based approach may result in hetero-dimer formation with an accu-
racy similar to the NMR method. 

Recently, Periole and coworkers applied large-scale CG-MD simulations to 
study the energetics of the receptor-receptor dimer interface of the G protein 
coupled receptor (GPCR), rhodopsin (Periole et al. 2012). The procedure involved 
self-assembly simulations of multiple copies of rhodopsin embedded into a lipid 
membrane over time scales ranging from 10 to 100 µs. During the simulations the 
potentials of mean force (PMFs) were computed for pairs of rhodopsin molecules 
along different interfaces. The resulting data pointed to the most stable rhodopsin–
rhodopsin conformation involving a symmetrical Helix1/Helix8 interface. The 
observed interface was also in agreement with recent cross-linking experiments 
(Knepp et al. 2012) and EM density maps (Ruprecht et al. 2004). This approach 
based on extensive CG-MD simulations may also be used to investigate homo- 
and hetero-dimer interfaces of other members of the GPCR family.  

The above examples illustrate some of the CG-MD methods which use the 
MARTINI force field applied in studies of membrane-protein systems. A wide 
variety of other CG methods currently exist (Arkhipov et al. 2006; Kolinski 2004) 
and new force fields are being developed (Zhou et al. 2007; Spijker et al. 2010). 
CG approaches combined with the Gaussian network model (GNM) and the aniso-
tropy elastic network model (ANM) were also used to investigate the mechanism 
of L-arginine (Arg)/agmatine (Agm) antiporter (AdiC) (Chang et al. 2010) and 
prediction of functional motions of outer membrane transporter and signal trans-
ducer FecA (Sen et al. 2008). Despite the limitations of CG models, united-atom 
representation and simplification of energy function, there is a growing need for 
improving CG computational methods to be used to study the function and dy-
namics of large and complex protein-membrane systems. Nevertheless, CG-based 
methods are rapidly advancing and may become invaluable tools for the  
exploration of some fundamental events that are otherwise still not reachable by 
biochemical experiments. 
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2.5 Intrinsically Unfolded Proteins 

Over the last decades, the thermodynamically stable conformation of a protein was 

usually treated as the state responsible for biological functions. Nevertheless, at 

the end of the 20
th

 century the research community realized that intrinsically  

disordered proteins (IDP) are ubiquitous in nature and they can retain their func-

tionality (Mittag et al. 2010; Uversky et al. 2000; Wright and Dyson 1999). Con-

formational studies of these proteins are experimentally extremely challenging 

(Eliezer 2009), particularly due to their large structural heterogeneity and aggrega-

tion tendency. With the boom of IDP studies, computer simulation models have 

emerged as useful tools for the description of IDP conformational ensembles 

(Rauscher and Pomès 2010). As the effective search of the conformational space 

is the major advantage of the CG models, they can be used as methods of choice 

for possibly the broadest sampling of conformational disorder. 

Owing to their flexibility, disordered proteins have increased tendency of form-

ing protein–protein complexes. During binding, as compared to folded structures, 

IDP’s can form a far larger number of interaction contacts and may have a larger 

capture radius for a specific binding site. This theory is called the “fly-casting 

mechanism” and it was illustrated by Shoemaker et al. (Shoemaker et al. 2000) 

who investigated the kinetics of IDP binding to the receptor using their free ener-

gy functional based on a simplified scheme of amino acid contacts. 

Nevertheless, CG simulations of pKID-KIX complexes (Huang and Liu 2009) 

indicated that the increased binding affinity can be caused not only by the greater 

capture radius of IDPs. The kinetic analysis of this process was based on simula-

tions using the CG Go model with the continuum C-alpha chain representation and 

compared with available experimental data for various ordered and disordered 

complexes. Interestingly, it was found that the coupling of folding with binding of 

IDPs leads to a significant reduction in the binding free-energy barrier. This  

work also discusses roles of other structural factors important for this particular 

association. 

Abeln and Frenkel analyzed other aspects of how intrinsically disordered regions 

(IDRs) can influence the protein association process using Monte Carlo (MC) si-

mulation on cubic lattice with C-alpha representation (Abeln and Frenkel 2008). 

The simulation results provided intriguing insights into the effect of IDRs on pro-

tein structure. The authors indicated that proteins with hydrophobic binding motifs 

without neighboring IDRs tend to aggregate and consequently form amyloids. 

The ability to fold upon binding of some IDPs has been extensively studied us-

ing CG simulation models (Wang et al. 2011; Verkhivker et al. 2003; Verkhivker 

2005; Turjanski et al. 2008; De Sancho and Best 2012). A multiscale model was 

used to generate the pathway of IDP folding induced by binding to its receptor 

(Wang et al. 2011). The method included a step of CG simulation with C-alpha 

representation and optimal path calculation at an atomic level. The binding 

process was simulated as fully flexible and the role of non-native interactions was 

stressed. In other studies (Verkhivker et al. 2003; Verkhivker 2005) the authors 

characterized an ensemble of transition states of p27Kip1 protein binding to a 

rigid structure of a cyclin A – Cdk2 complex. In this case a knowledge-based  
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potential was utilized to investigate some aspects of the folding mechanism of this 

protein. Intrinsically disordered proteins frequently serve as flexible linkers of 

protein domains. CG modeling of such systems was reviewed by Zhou  

(Zhou 2004). 

Similar to protein structure prediction, IDP modeling approaches can be di-

vided into de novo methods (based on the prediction power of the method) and 

those utilizing sparse experimental data. The CG C-alpha model of Norgaard et al. 

(Norgaard et al. 2008) was designed to simulate disordered proteins and paramete-

rized using data from nuclear magnetic resonance spin-labeling experiments on 

the ∆131∆ fragment of Staphylococcal nuclease. Importantly, such an approach 

can be used by utilizing data from MD trajectories or other experiments. 

Interestingly, 2D lattice models have been recently used to explain the worse 

performance of sequence-based disorder prediction methods for smaller proteins 

(or segments) than for larger ones. Such a simple simulation model enabled a nov-

el insight into the basic determinants of protein disorder: amino acid composition 

and chain length (Szilagyi et al. 2008).  

As shown above, CG models, even very simplistic ones, provided many impor-

tant facts for the description of IDP and IDR dynamics. However, the potential of 

CG modeling does not seem to be sufficiently exploited in the field (Rauscher and 

Pomes 2010), perhaps because of the relatively recent interest in the area. 

3 Conclusions and Perspectives 

An obvious advantage of CG protein simulations is that larger protein systems can 

be studied and longer timescales can be assessed than possible with atomic-

resolution MD. Apart from expanding the limits, the speed-up benefit of CG mod-

els brings many new opportunities for the design of some extensive ‘in silico  

experiments’ (Takada 2012), such as: comparative dynamics for a large set of 

proteins (Takagi et al. 2003), comprehensive mutation analysis (Koga and Takada 

2006), scanning parameters of a simulation model to see how it affects simulation 

results (Yao et al. 2010) or construction of databases by high-throughput simula-

tion protocols (Chetwynd et al. 2008). 

CG protein modeling has already a history of a few decades (Kolinski and 

Skolnick 2004). The last decade showed a dramatic increase in CG modeling stu-

dies of large biomolecules (Takada 2012). We can expect that this trend will con-

tinue in the foreseeable future, since atomic-resolution MD is far too slow for 

current needs. The current need for computer-enhanced studies of large biomole-

cules is largely due to the recent growth of experimental data on their structure 

and, consequently, the need for data interpretation and validation of resulting  

hypotheses. 

In this chapter, we described recent applications of CG simulations to some 

representative and important topics of protein dynamics. The work demonstrates 

the utility of CG modeling in understanding real biological problems. As shown, 

there are many variants of CG simulation tools and many successful strategies in 

which CG models are an important component. Future developments are expected 
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to include CG models in unified/integrative structure modeling procedures utiliz-

ing a wide range of experimental and computational techniques (Russel et al. 

2009; Schlick et al. 2011). Consequently, the integration of protein CG models 

together with CG models for other molecules (lipids, nucleic acids, carbohydrates) 

as well as CG models with atomic MD (so-called multiscale approach) should be 

the focus of further research. 
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