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ABSTRACT: It is widely recognized that atomistic Molecular
Dynamics (MD), a classical simulation method, captures the
essential physics of protein dynamics. That idea is supported
by a theoretical study showing that various MD force-fields
provide a consensus picture of protein fluctuations in aqueous
solution [Rueda, M. et al. Proc. Natl. Acad. Sci. U.S.A. 2007,
104, 796−801]. However, atomistic MD cannot be applied to
most biologically relevant processes due to its limitation to
relatively short time scales. Much longer time scales can be
accessed by properly designed coarse-grained models. We
demonstrate that the aforementioned consensus view of protein dynamics from short (nanosecond) time scale MD simulations is
fairly consistent with the dynamics of the coarse-grained protein model - the CABS model. The CABS model employs stochastic
dynamics (a Monte Carlo method) and a knowledge-based force-field, which is not biased toward the native structure of a
simulated protein. Since CABS-based dynamics allows for the simulation of entire folding (or multiple folding events) in a single
run, integration of the CABS approach with all-atom MD promises a convenient (and computationally feasible) means for the
long-time multiscale molecular modeling of protein systems with atomistic resolution.

1. INTRODUCTION

Protein folding is a very complex process involving very fast
local dynamics and long-time scale rearrangements of a large
number of atoms. Local fluctuations (side-chains, loops) occur
in picoseconds, while global rearrangements (folding/unfold-
ing) require typically milliseconds, even for small globular
proteins. No experimental or simulation technique is able to
embrace all spatial and temporal scales relevant to process
description.1,2 Thus, complete characterization of the folding
process requires proper integration of data from a variety of
experimental and computational methods. Recent examples of
such integrative characterization involve a description of the
smallest systems and time scales3 as well as large macro-
molecular machines in motion.4

As noted above, folding, and in fact most relevant biological
processes involving protein conformational changes, takes place
on large time scales (between 10 microseconds and milli-
seconds or even hours), making most of them inaccessible to
atomistic MD simulation. Supercomputer efforts in the past few
years established the limit of such simulations to be around 10
microseconds of simulated biological time.5 Just very recently
the 1-millisecond barrier was broken by the Shaw group thanks
to a custom-built supercomputer.6 The 1-ms simulation of
folded protein BPTI (58 residues) revealed distinct separation

of time-scales: hopping between structurally different con-
formational states on time scales of the order of 10
microseconds, whereas local relaxations occurred on a time
scale at least 1000 times faster. The fast relaxations were found
to originate primarily from side chain motions, whereas the
slow relaxations corresponding to transitions between well
separated basins originated mostly from backbone motions.6

Shaw’s group also succeeded in modeling the folding pathway
of a 35-residue protein6 and later continued folding simulation
studies of larger and more complex fast-folding proteins.7 The
atomic MD simulations (over periods ranging between 100
microseconds and 1 ms) of 11 out of the 12 structurally diverse
proteins studied (ranging from 10 to 80 residues) resulted in
spontaneous and repeated folding to their experimentally
determined native structures. Interestingly, for most cases,
folding proceeded along a single, dominant route, where
additional structural elements were formed in a well-defined
sequence.7 What is important is that these unique simulations
(with respect to protein size and simulation time) were
performed using a single force-field that was able to consistently
fold a substantial number of proteins, representing major
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structural classes, to their native states. This result suggests that
current MD force-fields may be accurate enough for conducting
long time-scale MD simulations. However, another study of the
same group, using different force-fields to folding of the villin
headpiece,8 showed that even all studied force-fields were able
to fold the protein with folding rates consistent with the
experiment, the observed folding pathways depended on the
choice of the force-field and the properties of the unfolded state
were substantially different among various force-fields.
Importantly, a number of other studies (applying atomistic
MD and explicit representation of water molecules) confirmed
a possibility to fold a protein into its native tertiary
structure6,9−13 and also the inconsistency of different force-
fields in the description of a folding pathway.6,14,15

While MD simulations of large structural rearrangements
(such as entire folding processes) showed to be force-field
dependent, the simulations of near-native dynamics seem to be
essentially force-field independent, as shown by Orozco and
colleagues.16 The authors examined the consistency of different
force-fields in the description of near-native protein dynamics
(by state-of-the-art atomistic MD simulations with explicit
water). The analysis revealed that most of the dynamics
behavior is force-field independent. The four most popular
force-fields were used: AMBER17,18 (A), CHARMM19,20 (C),
GROMOS21,22 (G), and OPLS23,24 (O), in a massive
supercomputer project for proteins with different folds. MD
trajectories from the different force-fields provided a consensus
picture of near-native protein dynamics by classical atomic MD
in conditions close to physiological.16 In this work, we use these
trajectories as the reference data for comparison with our
simulations conducted by a coarse-grained protein model with
stochastic dynamics and statistical potentials − the CABS
model. This work is a continuation of our previous studies of
testing the capability of the CABS model which are successful
examples of protein folding simulations from fully denatured to
the near-native state.25−29

2. MATERIALS AND METHODS
2.1. Protein Data Set and MD Data. We used all the

currently available MD trajectories from the Rueda et al.16 MD
dynamics analysis deposited in the microMoDEL subset of the
MoDEL database.30 The protein data set is listed in Table S1.
For all the proteins in the data set 10-ns simulation MD runs
were performed with explicit water (the TIP3P water model
was used for A, C, and O simulations, and the SPC water model
for G simulations) at constant pressure (1013.25 hPa) and
temperature (300 K) using standard coupling schemes (the
same in all cases).16

Experimental mobility profiles (Figure 2 and Figure S2) were
derived from crystallographic B-factors (⟨R2⟩i = (3Bi)/(8π

2),
where B is the B-factor) or multimodel NMR structures
(calculated in the same way as for trajectories, see eq 1). In the
cases of NMR solved structures: 1BSN, 1SDF, 1IL6, and 1I6F
(deposited in the PDB database as a single model), equivalent
multimodel PDB data was used (1BSH, 2SDF, 2IL6, and 1I6G,
respectively), except for 1FVQ for which multimodel data were
not available.
2.2. CABS Dynamics. Coarse-grained models, employing

united atom representation, offer substantial extension of the
time scales of simulated systems compared to those of all-atom
models.2,31−33 The CABS model (described in detail else-
where34) employs coarse-grained representation of a polypep-
tide chain that uses up to four atoms per residue. These are Cα

and Cβ atoms and two virtual pseudoatoms: one placed in the
center of mass of a side-chain and the other in the center of the
Cα−Cα virtual bond (see Figure 1). The CABS force-field is

derived from statistical regularities seen in known protein
structures, and it includes side-chain−side-chain mean field
potentials, coarse-grained models of main chain hydrogen
bonds, and local peptide-chain geometric preferences. The
solvent effect is accounted for in an implicit fashion through
protein structure statistics used in the derivation of the CABS
force-field. The dynamics of CABS-based coarse-grained
proteins is simulated by a random series of local conformational
transitions (controlled by a Monte Carlo method). Thus, very
short-time dynamics, relevant to small-distance local geometric
changes, is not physical. However, long series of such random
local transitions (modulated by the model force-field) define
realistic long-time dynamics, as shown in previous reports.25−29

Apart from the application to protein dynamics, it is worth
noting that the CABS model proved very efficient and accurate
in numerous protein structure prediction applications: de novo
or comparative modeling (e.g.: ranked the best, or one of the
best, among other approaches in CASP6 blind prediction
experiments35) or loop modeling.36 Importantly, the spatial
resolution of CABS predictions enables computationally
inexpensive conversion to realistic all-atom models (as shown
in the application to high-resolution structure prediction26 or
all-atom description of a folding pathway27).

2.3. CABS Simulation Setup. For the whole protein data
set, more than a hundred simulation setups were performed to
test various temperature values, scaling coefficients of force-
field components, and versions of distance restraints (unre-
strained simulations were also performed) to find the best
correlation coefficient for residue fluctuation profiles with the
MD trajectories. The highest Spearman’s correlation coefficient
was found for the simulations with local native-like restraints
put exclusively on pairs of residues under two conditions: (1)
the distance between their Cα atoms was smaller than 8 Å, (2)
both residues were assigned to belong to secondary structure

Figure 1. CABS model overview: (a) reduced representation, (b)
single C-alpha kink move, (c) schematic illustration of larger scale
moves of the Monte Carlo scheme.
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elements. Therefore, loop regions were completely unre-
strained and regions of secondary structure locally only. The
applied distance restraints softly penalized the position of
restrained residues if their distance differed from the distance in
the native structure by more than 1 Å.
2.4. Analysis of MD and CABS Trajectories. MD and

coarse-grained trajectories were analyzed on the level of Cα

trace representation to obtain their structural and dynamics
characteristics together with their consistency measures.
The mobility of residue i was defined as
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where j - trajectory frame, i - residue index, c - position of the
Cα atom in the average structure, and N - number of trajectory
models.
The global similarity of structures generated by different MD

force-fields and the CABS model was obtained by computing
the RMSD between all of the snapshots collected in the two
trajectories and related similarity index Ω
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where N is the number of atoms, M is the number of frames in
the compared trajectories, and x is the residue coordinate. The
similarity index was computed using the Bioshell package.37

The mean-square displacement autocorrelation function
acorr(τ) was defined as
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where pi,t - position of residue i at time t, N - number of protein
residues, M - number of trajectory frames, and τ - time frame
(Δt).
Global flexibility was shown by the Lindemann’s disorder

index38

Δ =
∑

′

R

aL
N i

N
i

1 2

(5)

where N is the number of atoms, a′ is the most-probable
nonbonded near-neighbor distance, and ⟨Ri

2⟩ is the fluctuation
of the residue i (see eq 1).38 Lindemann’s disorder index was
calculated using the PCASuite package.39

Commonly used deformation space overlap was defined
using root-mean-square inner product γ40
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where A and B index the two compared methods, i and j index
the eigenvectors (ranked on the basis of their contribution to
structural variance), and n is the minimum number of
eigenvectors needed to explain 90% of total variance.
Deformation space overlap was defined using root-mean-

square inner product “s overlap”41
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where A and B index covariance matrices of the two compared
methods, tr is the trace of a matrix, λ are index eigenvalues, and
v are index eigenvectors.
This measure has several advantages over the commonly

used subspace overlap41 (the overlap between the subspaces of
the first nA and nB eigenvectors of matrix A and B, employed
also in the study by Rueda et al.16) which depends strongly on
nA and nB and ignores the eigenvalues. “s overlap” metric takes
into account differences between eigenvectors with small and
large eigenvalues and treats more correctly degenerate
subspaces.

3. RESULTS AND DISCUSSION
3.1. Maximizing MD and CABS Convergence. We

started the CABS simulations of the proteins with the
optimization of CABS parameters (simulation time, temper-
ature) to obtain the best possible convergence with the
available MD data16 (see Materials and Methods). As a
convergence criterion we used the average Spearman’s
correlation coefficient (rs) for residue mobility between
different MD force-fields and the CABS model. The residue
mobility reflects the oscillations of the Cα atom of a residue
around its mean position (averaged over the whole trajectory,
see eq 1).
The highest mean correlations for the completely unre-

strained simulations (average over all simulations) between
CABS and A, C, G, and O force-fields were the following: 0.62,
0.61, 0.64, 0.63, respectively (see Table S3 for individual
protein values). This level of similarity to all-atom MD were
also recently achieved by other prediction methods: Support
Vector Regression42 and Gaussian Network Model43 (mean
correlation coefficients respectively: 0.67 and 0.64, as given in
ref 42).
Further examination of the CABS mobility profiles revealed,

in comparison to the MD trajectories, sometimes smaller
stability of the secondary structure elements, particularly visible
at elevated temperatures due to long-distance and very fast
motions of more flexible parts of protein structures.
Furthermore, relying on this observation, we attempted to
increase the CABS and MD convergence by repeating the
optimization of CABS parameters (simulation time, temper-
ature) and introduction of various types of distance restraints
(derived from native structures) to avoid any long-distance and
very fast motions of protein structure (see the SI text for
optimization procedure of CABS parameters for simulations
with distance restraints and predictive power test).
The optimization results showed that the same parameters

setup as trained on the whole protein set was found when the
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method was optimized on randomly chosen half of the protein
set. The predictive strength of the method is slightly lower
when evaluated on the remaining half of the protein set, than as
tested on the whole set (rs = 0.70 and 0.74, respectively).
The optimal parameters setup, which yielded overall the

highest mean correlations (on the level of 0.74), were obtained
with weak native-like restraints applied only locally and
between coordinates belonging to the secondary structure
elements (alpha or beta) (see the SI text for the parameters
details). Therefore, loop-forming residues remained completely
unrestrained (for the restraints description see Materials and
Methods). That was for the setup with significantly higher
temperature than the optimal in unrestrained simulations
described above. Thus, in comparison to the unrestrained
simulations (optimal with regard to temperature and simulation
time), the optimal restrained ones allowed for the following:
(1) enhanced mobility of at least loop fragments (higher
temperature increases the overall acceptance rate of the moves
in the Monte Carlo scheme), (2) additional stabilization of the
secondary structure and its motifs, and (3) overall decrease in
CABS fluctuation level (see the mean RMSD in Table S3 for
unrestrained and restrained CABS simulations).
The average correlation coefficients for residue mobility

between different MD force-fields and the CABS-simulations
with the optimal setup found are listed in Table 1(detailed

results for each protein are listed in Table S3). Note that, in this
manuscript we report the average statistics for the entire
protein set (for the most comprehensive comparison of the
methods), however the average from the predictive power test
(0.7) should be considered as the estimate of the CABS ability
to predict fluctuations from the MD (see the SI text for the
optimization details). As highlighted above, the mean
correlation between CABS and MD force-fields is on the
level of 0.7, which is on a slightly lower level with respect to
correlations among different MD force-fields (which varied
between 0.75 and 0.82). The average similarity between the
mobility profiles measured by RMSD (Table 1) shows more
significant differences between CABS and MD force-fields (in
the range of 2.8−3.1 Å) than among different MD force-fields
(1.8−2.5 Å) which is due to higher average residue oscillations
observed in CABS than in MD simulations. For the examples of
the mobility profiles with the highest (1FAS, rs = 0.86) and the
lowest (1PDO, rs = 0.49) correlation coefficients between
CABS and MD, see Figure 2. For the mobility profiles
visualized on example 3D structures, see Figure 3. As analyzed
by Rueda et al.,16 there is a good agreement between X-ray B-
factors and MD-derived mobility profiles, which is also the case
of the similarity between experimental (X-ray or NMR) and
CABS derived fluctuations (see Figure 2 and Figure S2).

Recently, two similar studies of the suitability of coarse-
grained techniques for the prediction of protein dynamics were
conducted by Emperador et al.44,45 The studies tested two Go̅-
like models:45 Brownian dynamics (BD46) and discrete
molecular dynamics (DMD47) with a Go̅-like Hamiltonian
and a DMD model based on a simple pseudophysical force-
field44 (a hybrid between the physical potential and empirical
Go̅-like model). The simulation results were compared to fully
atomistic MD simulations (the same as used in our study). The
comparison showed that the coarse-grained models delivered in
general similar protein dynamics features as the atomistic MD
simulations. The force-field of the CABS model is not limited
to native-like interactions, and, therefore, the results obtained in
folding simulations are not assumed a priori. It should be noted,
that in the case of the restrained simulations (described above)
a part of the protein residues forming native-like interactions
were weakly restrained toward their native distance (those
between or within secondary structure elements), while the rest
of them remained completely unrestrained (those between or
within loops or between loops and secondary-structure
elements).

3.2. MD and CABS Convergence. In addition to residue
mobility analysis, we provide below further convergence

Table 1. Average Spearman’s Correlation Coefficient and
Mean RMSD (in Brackets) between MDs (A, C, G, O) and
CABS Mobility Profilesa

A C G O

CABS 0.74 (3.12) 0.74 (2.84) 0.72 (2.91) 0.75 (2.92)
A 1 0.80 (1.75) 0.78 (2.49) 0.82 (1.76)
C 1 0.75 (2.23) 0.81 (1.59)
G 1 0.75 (2.43)

aThe mean values for the whole test set are shown. Individual values
for each protein are reported in Table S3.

Figure 2. Example mobility profiles by the CABS model, different MD
force-fields (A, C, G, O) and experimental data (derived from
crystallographic B-factors). The profiles are shown for the following:
(A) 1FAS (example of the highest correlation between CABS and
MD: 0.86) and (B) 1PDO (example of the lowest correlation between
CABS and MD: 0.49). See also 1FAS and 1PDO profiles visualized on
3D structures in Figure 3. The profiles for the remaining proteins in
the test set are shown in the SI text (Figure S2) together with
Spearman’s correlation coefficient values for the whole test set (Table
S3).
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analysis (for the optimal CABS setup) with different metrics for
trajectory comparison. The metrics applied here are the same,
or similar, as those used in the study investigating A, C, G, and
O force-fields consistency.16

The global similarity between the structures obtained by
different MD force-fields and CABS is shown in Table 2
according the similarity index Ω. The analysis shows that all
simulations produce a similar picture of protein structural

diversity, with CABS and G-simulations being slightly less
similar to others than A, C, and O simulations to each other.
The average effective distance (Ω−1) between pairs of A, C, and
O simulations is around 1.4 Å, while that between pairs of
CABS and G-simulations with others is around 1.7 Å . The
examination of average divergences between different types of
simulations (αAB in eq 3) shows that the largest deviations are
found between CABS and MD simulations (3.3−3.5 Å), while
among MD force-fields the divergences are in the range of 2.2−
2.9 Å (the largest for G-simulations).
The CABS trajectories appeared to be different from the

different MDs and most similar to G by way of the average
Lindemann’s disorder index. The index provides a global
measure of protein flexibility compared with that of macro-
scopic solids or liquids38 (see eq 5). The average ΔL indexes are
as follows: 0.21 ± 0.03 for O; 0.22 ± 0.03 for A, C; 0.24 ± 0.03
for G; and 0.26 ± 0.03 for CABS trajectories. The slight
difference in the calculated ΔL compared to the data presented
in ref 16 (average ΔL = 0.28 ± 0.06) may result from
considering only Cα atoms here, with more flexible portions of
proteins (such as exposed side chains for which the ΔL found

16

was 0.38 ± 0.07) being neglected.
Furthermore, we computed the overlap of deformation space

(indicating similarity between the modes of two trajectories)
using γ and s overlap (see eq 6 and eq 7). The similarity
indexes presented in Table 3 indicate the same level of

deformation space overlap between CABS and MD as among
different MDs. The complexity of the deformability space
(measured as the minimum number of eigenvectors needed to
explain 90% of total variance) is higher in the case of CABS
simulations than different MDs (see Figure 4). This is a similar
observation to that shown in the study of coarse-grained BD
and DMD models (already mentioned above), indicating that
essential movements from coarse grained models might not be
accurate individually, but when considered together (in the

Figure 3. Example mobility profiles visualized on 3D structures.
Profiles are shown for the three proteins with the highest (A) and the
three with the lowest (B) correlation values between CABS and MD.
For each protein mobility profiles are presented from the CABS
model, the four MD force-fields (averaged mobility profile marked as
A/C/G/O) and a single MD force-field (A, C, G, or O - always the
one which yielded the highest fluctuation value for any single residue).
Correlation coefficients for residue mobility between CABS and
presented MD simulation are given in brackets. Colors denote
fluctuation values scaled from the maximum (red) to minimum
fluctuation value (blue) observed in any of the simulations. Protein
chain thickness indicates the largest (thick tube) and smallest
fluctuations (thin tube), for the given simulation only. Additionally,
for the weakest correlation cases (B) protein fragments with the largest
contribution to CABS and MD fluctuation inconsistency are marked
with red arrows. For 1KTE, an additional fourth fluctuation profile is
shown (from C simulations) to indicate significant inconsistency
between G and C simulations (rs = 0.27) and consistency between
CABS and C simulations in the marked region. The correlation
coefficients and RMSD for the whole test set are given in Table S3.

Table 2. Ω Similarity Index between MDs (A, C, G, O) and
CABS Simulationsa

A C G O

CABS 0.6 0.6 0.6 0.6
A 1.0 0.7 0.6 0.7
C 1.0 0.6 0.7
G 1.0 0.7

aΩ = 1 indicates that the simulations sample identical conformational
space (in terms of pair-cross RMSD between trajectory structures),
while Ω close to zero means that structural diversity is very high.

Table 3. Average Deformation Space Overlaps γ (First
Number) and s (After the Slash Number) between MDs (A,
C, G, O) and CABS Simulationsa

A C G O

CABS 0.6/0.3 0.6/0.4 0.6/0.4 0.6/0.4
A 1.0/1.0 0.6/0.4 0.6/0.3 0.7/0.4
C 1.0/1.0 0.6/0.4 0.7/0.4
G 1.0/1.0 0.6/0.4

aSimilarity index γ was computed for the minimum number of
eigenvectors required to explain the 90% of variance. Note that when
the compared trajectories span the same conformational space, the
overlap value is equal 1; when the overlap value is zero, the sampled
spaces are completely orthogonal (γ and s indices are described in the
Materials and Methods, see eqs 6 and 7).
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essential deformation space) they provide a similar description
to that obtained by MD.45 Interestingly, the similarity index γ
between MD and CABS observed in our study (for 90% of the
essential space, Table 3) is on a similar level but slightly higher
(0.59) than the same index between MD and coarse grained
BD and DMD models (0.51 and 0.55, respectively) observed in
the Emperador et al.45 study.
3.3. Diffusion Properties. Protein folding dynamics can be

described as diffusion on a free energy landscape (considered as
a function of one or a few chosen reaction coordinates).48

Diffusive dynamics is characterized by mean square displace-
ment (MSD) linearly growing with time ⟨Δx2(t)⟩ = 2Dtα,
where α = 1 and D is the diffusion coefficient. The nonlinear
relationship with time is described as “anomalous diffusion”. α
exponent values <1 and >1 correspond to subdiffusion and
superdiffusion, respectively. Subdiffusion indicates that a system
is trapped in local minima and the dynamics “has memory”,
whereas superdiffusion denotes long jumps of a system in
conformational space. We studied the diffusion properties with
the MSD autocorrelation function (see eq 4) to compare MD
and CABS dynamics. The MSDs of all MD trajectories exhibit a
power law dependence on time, with an exponent of around
0.3, just as in the CABS model (see Figure 5). This suppressed
diffusion is a consequence of the relatively short time scale of
the MD trajectories (the proteins are trapped in their near-
native minimum) in atomic MD simulations and soft restraints
imposed on protein structures (which force near-native
trapping) in the case of CABS modeling.

4. CONCLUSIONS
A great effort has been expended in recent decades to the quest
for efficient and accurate algorithms for protein dynamics
simulation. Numerous methods have been exercised utilizing
various sampling, representation, and force-field models.
Atomistic MD, employing Newton’s laws of motion and
empirical energy functions, emerged as gold standard of protein
dynamics simulations. Apart from the improvement of many
problems of classical MD techniques, current research seeks for
novel computational approaches capable of moving protein

simulations to higher coverage of conformational space and
better accuracy. We attempted to examine and maximize the
consistency of short-time protein dynamics by atomistic MD
and the CABS model, two qualitatively different approaches
with respect to sampling, representation, and force-field.
Considering the conceptual difference between the methods,
they both offer a surprisingly similar picture of protein structure
flexibility (the average Spearman’s correlation coefficient for the
fluctuations along protein chains from the protein set is 0.7).
This work offers promising prospects for the following: (1)

fast prediction of MD results by the CABS model (for at least
short time scale dynamics) and (2) bridging the CABS and
atomistic MD into a single multiscale protocol for the
simulation of protein dynamics in atomic resolution (in
which MD could be bootstrapped from representative models
from the CABS dynamics). Development of such multiscale
procedures offers simulation approach of similar quality to
atomic MD but many times faster. We roughly estimate CABS
dynamics to be 6 × 103 cheaper in terms of computational cost
than the classical MD (based on Rueda et al.16 estimations
giving on average 3650 CPU hours for single protein simulation
from a test set, compared to 0.6 CPU hour by the CABS
model).
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Figure 4. Number of essential modes required to explain 90% of
variance (for each protein from the set), using CABS (shown in red)
and different MDs (A, C, G, O - shown in green, blue, purple, and
cyan, respectively). The proteins are listed according to the average
value of essential modes for A, C, G, and O.

Figure 5. Autocorrelation function - mean square displacement
(MSD) (see eq 4) of all protein residues (log scale) at different time
intervals, averaged over all proteins studied. A single time unit on
abscissa corresponds to 1 ps in MD simulations and 1 CABS time unit
(time interval between each frame of the CABS trajectories, set to 200
MC CABS macrocycles).
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