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Abstract Simulations of protein dynamics may work on different levels of
molecular detail. The levels of simplification (coarse-graining)may concern different
simulation aspects, including protein representation, interaction schemes or models
of molecular motion. So-called coarse-grained (CG) models offer many advantages,
unreachable by classical simulation tools, as demonstrated in numerous studies of
protein dynamics. Followed by a brief introduction, we present example applica-
tions of CG models for efficient predictions of biophysical mechanisms. We discuss
the following topics: mechanisms of chaperonin action, mechanical properties of
proteins and their complexes, membrane proteins, protein-protein interactions and
intrinsically unfolded proteins. These areas illustrate the opportunities for practical
applications of CG simulations.

1 Introduction

The steady increase in computational power constantly sets new limits in simula-
tions of biomolecular dynamics [164]. Nevertheless, the majority of biologically
relevant protein dynamic processes remain beyond the reach of atomistic Molec-
ular Dynamics (MD), the classical simulation tool. In such cases, the introduction
of properly designed simplifications that capture relevant physical features can be
the only option, or incomparably cheaper than atomistic MD, to better understand
macromolecular processes [64].

A variety of purely theoretical models for analyzing the dynamic properties of
proteins have been proposed [109, 171]. Nevertheless they appeared to be rather
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limited in their predictions. This is due to the complicated nature of proteins and
rules governing their structure. Compared to purely analytical methods, the molec-
ular simulation approach is better suited to handling protein complexity. Presently,
molecular simulations represent a powerful and the most widely used theoretical
approach for the understanding of protein dynamics [64, 99, 117].

1.1 CG Simulation Models

Themost direct computational approach to protein dynamics prediction is simulation
of a dynamic systemof interest. A simplified simulationmodel of proteins is probably
the earliest example of CG approach in structural biology, developed in the mid-
1970s [91]. Since that time the field has grown tremendously, branching out in many
variants of protein representation, models of interactions and sampling techniques
(Fig. 1). Interestingly, recent estimates indicate a noticeable increase in the number
of studies that rely on CG simulations [155]. This significant rise is perhaps related
to a growing number of experimentally solved structures of large biomolecules (or
their complexes), too big to be reasonably addressed by all-atom simulations.

Fig. 1 Conceptual components of CG protein simulation models and their variants: a protein
representation, b interaction schemes (Go-like potentials are protein specific, i.e., native interactions
are favored to assure the lowest energy for the native conformation, and are used individually or in
combination with non-protein specific: physics- or knowledge based schemes), c sampling model.
This diagram applies either to continuous-space or discrete (lattice) models. For detailed review of
these variants and coarse-graining levels, refer to [64]
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A number of mean-resolution CG models have been developed for protein struc-
ture prediction [64, 71]. Some of them enable efficient simulation of dynamic pro-
cesses. A typical example is the CABS model [72], which acronym stands for the
united atoms representing a single residue in a protein chain (CA—alpha carbon of
themain chain, B—beta carbon, and S—the center of side group). Thus, in the CABS
model, a single amino acid is represented by 2–4 (depending on the side-chain size)
interaction centers, and one of them (C-alpha) is placed into a high-resolution lattice.
The interaction scheme is based on mean-force potentials derived by the statistical
analysis of known protein structures. In spite of the fact that the interaction scheme is
obtained only from known crystallographic structures related to completely random
protein chains, protein dynamics processes (folding, unfolding, folding upon bind-
ing, diffusion, flexibility of folded structures etc.) simulated by the CABSmethod are
qualitatively correct [23, 51, 52, 63, 65, 66, 67, 85]. These qualitatively correct results,
not trivial to obtain, show that interaction patterns of unfolded (or partially unfolded)
proteins are quite similar to the interactions seen in fully folded structures. The lattice
representation of CABS proteins significantly increases the speed of conformational
updates. Simulation processes are controlled by the Monte Carlo (MC) scheme: ran-
dom series of local conformational transitions. This pseudo-random Monte Carlo
process does not describe accurately ultra-short-time motions and ranges of a few
angstroms, although longer-time (and space) dynamics is essentially identical with
the dynamics observed for continuous spacemodels [52, 53, 72]. The coarse-graining
of CABS enables very fast derivation of its low resolution structures from high res-
olution atomistic coordinates, and what is more important quite accurate all-atom
structures could be very rapidly re-computed from CABS coordinates [63, 65, 87,
86].

1.2 From CG to All-Atom Structures: Multiscale Modeling

One of the major future tasks of CG dynamics studies is the design of methods
for the reliable and efficient transition between simplified and atomic resolution
levels [132], as the element of multiscale methodologies. The idea of multiscale
modeling is efficient computation on a CG scale to send it to the detailed all-atom
simulation, or vice versa [68]. Obviously, the CG model used in the multiscale
methods must produce physically realistic coarse-grain protein structures. Even if
it is fulfilled, it is a non-trivial problem to add all-atom details to CG structures to
produce physically realistic all-atom counterparts [63]. It has been demonstrated in
applications to protein folding CG trajectories that reliable and efficient transitions
betweenCGand atomic resolution are feasible [46, 65]. Finally, it is accepted that one
of the most promising future directions is to develop approaches that can minimize
the difference between the simplified and atomic models [58].
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2 Applications in Structural Biology

In this section, we discuss several recent examples of CG modeling, including our
reports and other published literature. The section covers the following actively stud-
ied tasks of protein dynamics: mechanisms of chaperonin action, mechanical prop-
erties of proteins, protein-protein interactions, membrane proteins and intrinsically
unfolded proteins. Most of our own examples of CG simulations described below
were done using the CABS CG modeling tool [72]. Numerous CABS applications
have been also reviewed elsewhere [64, 68].

2.1 Testing Mechanisms of Macromolecular Dynamics
via Simple Models: Chaperonin Action

Complex macromolecular processes can be generalized to very simple concepts
and tested computationally on a very general level. This is the case of the studies
of chaperonin action. Chaperonin and its protein substrate is a very large protein
complex whose dynamic processes are way beyond the reach of classical dynamics
simulation models. Over the past 20 years a significant number of studies, both
experimental and theoretical, have been pursued to understand how chaperonins
(like GroEL) facilitate protein folding processes in the cell.

Many theoretical models have been proposed focusing either on the passive
(aggregation prevention) or active (folding promotion) possible roles of chaperonins
[55]. A number of CG simulation studies investigated the effect of confinement on
protein folding using very simplistic [178], simple lattice [11], off lattice C-alpha
based and Go-like [121, 156] or more realistic [5] models. Another aspect of chaper-
onin action, namely the effect of interactions of the protein substrate with the surface
of chaperonin cavity, was also a subject of numerous CG simulations studies using
lattice [11] and off-lattice [54] models. For broad, recent reviews covering the use
of CG models in chaperonin action studies, see [55, 102].

Probably the most popular theoretical model which provides explanation of the
chaperonin active role is the Iterative Annealing Model (IAM). In this model chap-
eronin promotes the protein substrate folding by sequential unfolding of misfolding
traps through their hydrophobic interactions with cage walls. Just very recently,
we have attempted to test the IAM hypothesis using a de novo CABS modeling
approach employing a non-specific (without the Go-like approximation) knowledge-
based interaction scheme [67]. Importantly, inmost (if not all, as described by Lucent
et al. [102]), simulation studies testing various chaperonin models on real (i.e. not
too much simplified) protein substrates, a common simplified interaction model was
used: the Go-like model. Therefore, in contrast to earlier simulation studies, the
CABS model did not preclude transient conformers stabilized by non-native inter-
actions (Fig. 2).
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Fig. 2 A simple chaperonin model used in protein folding studies with the CG CABS model [67].
The chaperonin cage was simulated as a sphere with a thick wall of variable hydrophobicity. In
the basic state the walls are inert for 9/10 of the simulation time. Periodically (see the simulation
timescale above in the Figure) the walls became hydrophobic, attracting the encapsulated protein
chain with a strength typical for hydrophobic interactions within folded proteins (according to the
CABS force field)

The CABS simulation results showed that periodic distortion of the simulated
proteins by hydrophobic chaperonin interactions promotes rapid folding and leads to
a decrease in folding temperature. According to the observed mechanism of folding
promotion, chaperonin prevents kinetically trapped conformations. This is contrary
to the so far accepted interpretation of the IAMmodel suggesting not the prevention
but rather the unfolding action from already trapped conformations. Interestingly,
the analysis of the folding trajectories enables general observation of chaperonin-
inducedmodulation of the observed foldingmechanisms from nucleation–condensa-
tion to more framework-like. All these observations are in good agreement with the
experimental data on chaperonin-bound protein substrates, generally indicating an
ensemble of compact and locally expanded states lacking stable tertiary interactions.

It is worth to mention that theoretical studies of chaperonin-mediated folding may
have important conceptual applications in other fields [102] e.g. in the development
of structure-refinement software or in the construction of chaperonin-like molecules
designed for specific biotech and medical applications. We have to emphasize that
we are only at the beginning of the understanding of how chaperonins work. As
pointed out by Lucent et al. [102], so far most theoretical and experimental research
focused on GroEL, a specific prokaryotic chaperonin. Since chaperonins exhibit
apparently different modes of action in prokaryotic and eukaryotic organisms, the
investigation of these differences may be essential for the complete understanding of
underlying mechanisms and protein folding itself. This challenging issue has already
been addressed by a very simple lattice model [50].
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2.2 Mechanical Unfolding and Refolding of Proteins
and Their Complexes

One of the functional features of proteins is response to a wide range of applied
forces. Being subjected to an applied load, proteins play key roles in cytoskeletal
organization [33], mechanics [37], cellular transport [139], signaling [149] and pro-
tein degradation [44]. The required external force to unfold protein is in the order of
pico-Newtons. Since the atomic force microscopy (AFM) and laser optical tweezers
(LOT) techniques [105, 124, 145] detect forces in the pico-Newton range, they are
useful tools for studying mechanical unfolding of biomolecules. In studies of these
processes two major strategies are used. In the first technique, protein is pulled by a
force ramped linearly with time, while monitoring the force (mechanical resistance)
as a function of the end-to-end distance. The second strategy is based on the appli-
cation of a constant force through force clamp devices. In experiments at a constant
pulling speed, the total force experienced by protein is F � k(vt−x), where k, v, t
and x are respectively: the spring constant (stiffness) of cantilever, pulling speed,
time, and displacement of the pulled amino acid from its original position. Typi-
cally, in AFM experiments k and v are in the range of 10–1000 pN and 10−11–10−7

Å/ps, respectively. In LOT, the velocity range is similar to that of AFM, whereas
the typical values of spring constant, k � 0.001–0.1 pN/nm. Stiffness defines the
force resolution of experiment. Thus, AFM can probe unfolding of strong proteins
with required Fmax of about few hundreds of pN (such as titin [124] or ubiquitin
[16]), while LOT is precise enough for studying biomolecules with few tens of pN
mechanical resistance (weaker proteins as well as DNA and RNA molecules [98,
147]).

Figure 3a shows the force-extension profile obtained by constant velocity stretch-
ing experiments for Ig8 titin fragment. The peaks in Fig. 3a are associated with
breaking hydrogen bonds (HBs) between strands A′ and G (Fig. 3d) in single titin
domains of themultidomain construction. Apart frommolecular interactions studies,
AFM technique can also be used to investigate the mechanical stability of proteins
measured by Fmax in the force-extension profile (note that Fmax depends on the pulling
speed logarithmically, Fmax ~ ln(v) [31]). Measuring the mechanical stability in dif-
ferent solutions, one can also probe the effect of environment on hydrogen bonding
[101]. Themechanical unfolding studies provide also insights intomany other impor-
tant issues, including: forces that drive biological processes, ligand binding affinity to
proteins/receptors [34], force-induced intermediate states [35, 93, 135], the mechan-
ical unfolding free energy landscape (FEL) of proteins [14]. The problem of FEL is
considered in more detail below.

A major limitation of AFM experiments is that it cannot give the detailed char-
acterization, at the atomic level, of conformational changes under the applied force.
Computer simulations may be employed as a tool to complement experimental stud-
ies. Schulten’s group used the all-atom models with an explicit water to study the
mechanical unfolding of the I27 protein [100]. They deciphered in a great detail the
unfolding pathway of I27 and demonstrated the existence of hump due to breaking
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Fig. 3 a Force-extension profile obtained by stretching of Ig8 titin fragment (adapted from Ref.
[124]). Each peak corresponds to unfolding of a single domain with maximum resisting force to
stretching, Fmax. Smooth curves are fits to the wormlike chain model. b Conceptual plot for the free
energy landscape of protein unfolding without (red) and under (blue) the external force. An applied
force lowers unfolding barrier by Fxu increasing exponentially the unfolding rate constant (ku),
but decreasing exponentially the folding rate constant(kf). xu is the distance between native and
transition state and xf is the distance between transition and denatured state. c Distance to transition
state, xf in twodifferent regimes for titin protein (pdb ID1tit). The crossover from the low- tomiddle-
force regimes occurs at f switch �~5 pN. d Cartoon representation of native state conformation of
I27 domain (PDB code: 1tit) with eight β-strands labeled: A(4–8), A′(11–15), B(18–25), C(32–36),
D(47–52), E(55–61), F(69–75), G(78–88). Importance of HBs between beta-strands marked by red
color is described in the text

HBs between beta strands A and B (Fig. 3d) [101]. Mechanical unfolding of a num-
ber of proteins has been also probed by all-atom simulations with implicit solvent
[115]. The major shortcoming of all-atomMD simulations is that the pulling speed is
about 6 orders of magnitude higher than that used in AFM experiments. It is unclear
if in silico results obtained in such extreme conditions are meaningful to understand
experiments (strong forces may considerably disturb FEL), although recent studies
claimed that unfolding pathways are not sensitive to pulling forces and speeds [90,
97].

The time scale discrepancy (and the related discrepancy in stretching forces
required to induce unfolding) between AFM experiments and simulation can be
reduced by the usage of CG models. Nowadays GPU technique allows reaching
experimental pulling speeds by CG Go models [176]. CG Go models have been suc-
cessfully used by many groups to study mechanical properties of proteins [2, 9, 24,
170]. Despite their simplicity, in many cases they correctly capture unfolding path-
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ways, FEL and mechanical stability of proteins. For example, a complete description
of mechanical unfolding pathways of single and multidomain Ubiquitin at the level
of secondary structure was obtained [95]. It was shown that thermal and mechanical
pathways for fibronectin type III and I27 domain are different [115]. This is because
the thermal fluctuations havemore global effect on entire protein and unfold themost
unstable part of protein while the force should propagate protein unwinding from
the points to which force is applied. Having used Go-model, mechanical unfolding
pathways of protein DDFLN4 [94] and two slipknotted proteins (pdb codes—1e2i
and 1p6x) [150], were shown to depend on the pulling speed.

The CG Go-models may be suitable for deciphering the FEL (Fig. 3b). Consider-
ing FEL as a function of end-to-end distance, one can use Bell-approximation [7] to
estimate the distance between the native state (NS) and transition state (TS), xu, using
either the dependences of unfolding rates on the external force [7] or the dependence
of force on pulling speed [31]. The distance between the NS and TS xu (Fig. 3b),
estimated by the C-alpha Go-like model [25], was in excellent agreement with exper-
imental results [15, 76]. Furthermore, Li showed that xu (Fig. 3b) is defined by the
secondary structure content and approximately depends linearly on the contact order
[83, 92], thus the helix proteins have larger distances from the native state to the
transition state than beta proteins. It should be noted that the phenomenological Bell
theory is based on the assumption that xu is not moving under stretching. Recently,
applying Kramers theory [81] and assuming that the distance between NS and TS is
force-dependent, Dudko et al. [29] have gone beyond the Bell assumption. With the
help of proposed non-linear kinetic theory [29] one can estimate not only intrinsic
rate coefficient, ku, and the distance between NS and TS, xu, but also the unfolding
barrier, �G++

u (Fig. 3d).
One of the most successful application areas of CG Go models were estimations

of the mechanical stability of proteins [13, 92, 144, 152]. It has been found that helix
proteins are less stable than beta proteins and unfolding force Fmax may be expressed
as a linearly function of the contact order [119]. This is understandable because
beta proteins have a larger fraction of long-range residue-residue contacts leading to
higher resistance to external perturbation [83]. Using the Go models, Cieplak et al.
computed Fmax for thousands of proteins [144, 152] and have found that the mechan-
ical clamp (resistance-determining region of a protein) of the top strongest proteins
is not only consisted of hydrogen bonded β-strands being sheared during the pulling.
Structures tied by disulfide bonds were found to contribute to significantly larger
mechanical stability than shear-based mechanical clamps. Novel mechanical clamps
were identified and classified [143, 144]. Later on, the high resistance to stretching
of top 13 proteins (cysteine-slipknots) was confirmed by all-atom steered molecular
dynamics (SMD) simulations [116] and observed experimentally [163]. Recently CG
model was successfully applied even for proteins with non-trivial structures [150,
151], which was confirmed by experiment [45]. For a more detailed review of protein
mechanostability, see Chap. 10 of this book entitled “Mechanostability of proteins
and virus capsids.”

The success of CG Go models is possibly associated with the fact that the pulling
starts from the native state and that these models are based on topology of the native
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state. However, in particular cases one has to be careful with predictions emerging
from these simple models. In the case of DDFLN4 protein, the Gomodel did not give
the peak in the force-extension curve observed in the experiment. It was shown that
the occurrence of that peak is due to non-native interactions neglected in Go model
[77]. Thus, in certain cases the non-native interactions are important because non-
native contacts appear in intermediate state during the unfolding process. To avoid
possible artifacts associatedwith neglecting non-native interactions, CGmodels with
more realistic potentials may be used. Using the CABSmodel [78] it was shown that
non-native interactions have led to an additional intermediate state along mechanical
unfolding pathway,whichwas previously detected in theAFMexperiments [134] and
in explicit-solvent all-atom simulation, but not in CG Go-model. Another example
of such case is the force-induced intermediate of Ubiquitin, which was neglected in
CG Go-model simulations [95], but detected by the Lund force-field [49].

Recently, Steered Molecular Dynamics (SMD) simulations have become a pow-
erful tool to assess the strength of the molecular interactions. The idea behind using
SMD simulations is that the mechanical stability, or rupture force (measured as a
peak in force-extension profile), required to unbind a ligand from a receptor is related
to the strength of the interaction between them [8, 26, 38, 39, 74, 75, 96, 128]. Over
the last 5 years, SMD method has been implemented in many CG protein simula-
tion packages including CABS [78], UNRES [142], AWSEM [41] and many others.
With the ability of simplified models to sample longer timescales, when compared
to atomistic models, application of CG models is a promising direction for studies
of mechanical stability of large biomolecular complexes.

SMD simulations have been used for a wide variety of applications in the studies
of biological processes and various biomolecules [90]. Going forward, SMD tech-
niques can be used to study cell functions, where proteins are exposed to their native
(crowded) environment [167]. One of the recent applications of SMD is to understand
themechanism of virus binding to its host cell [141]. Another issue of great interest is
the application of SMD for studying the response of protein to periodic forces [154].
It is also worth to mention some important problems for further studies. For instance,
it remains unclear if the distance between the native and transition states (distance xu
(Fig. 3c) followed from the non-linear theory [29]) depends linearly on contact order
(as it was obtained in the linear Bell approximation). Generally, the deciphering FEL
is done by its projection onto one-dimensional space, usually end-to-end distance.
However, the validity of such approximate mapping is not always true [10], thus this
issue requires further investigation.

In addition to mechanical unfolding studies, CG models can be used to charac-
terize the refolding kinetics of proteins in a presence of external force [80, 131].
Many proteins in human body that are being subjected to a wide range of mechanical
forces face challenges to reach their native states. The question of how an external
force affects the protein refolding remains to be clarified. Single-molecular manipu-
lation experiments have demonstrated that the refolding of protein under small force
can be probed by force-clamp technique [32]. If the quenched force is smaller than
equilibrium critical force separating folded and unfolded states, protein refolds into
native state. Typical time scales for protein folding in the absence of applied external



70 S. Kmiecik et al.

force varies from microseconds to hours [82]. Note that underlying dynamics of the
protein refolding process under force can occur on timescales that are a few orders
of magnitude slower compared to conventional folding process. This is because in
the presence of external force, f , the refolding times exponentially increase with f
[7]. Thus, only CG models can be effectively used to study refolding process under
external load. Using CG Go-model, Kouza and coworkers [80] studied the impact of
the external force from 0 to 14 pN on protein refolding pathways of several proteins.
It was found that there are two force regimes for refolding of titin with different
distance to transition state, xf (Figs. 1b and 1c). In the first or low force regime,
the refolding pathways were in close agreement with the thermal ones. However, the
simulation values of xf obtained in this force range did not agree with the experimen-
tal ones. The results obtained for xf in the second force regime are in good agreement
with experiments (Fig. 1c) [80]. This implies that force-clamp experiments are being
carried out in the second force regime (Fig. 1c) where the pathways are not the same
as thermal ones. Only if the quench force is smaller than f switch, the thermal folding
pathway can be probed by force-clamp experiments. This result calls for a caution
in interpreting results of single-molecular manipulation experiments.

2.3 Dynamics of Protein-Protein Interactions

Dynamics of protein-protein interactions is extremely demanding in terms of com-
putational power, when using classical atomistic modeling tools. As demonstrated in
numerous works, CG models allow for efficient exploration of the thermodynamics
and kinetics of protein complexes [36, 60, 62, 114, 130]. For example, Kim andHum-
mer [60] investigatedbinding affinities ofVps27 complexeswith ubiquitin attached to
themembrane, where folded domains were rigid and linkers between themwere flex-
ible. They used a C-alpha model with various variants of potentials for interactions
between domains, linker movement and the protein-membrane complex. Predicted
binding affinities, for various modeled complexes, were in good agreement with the
experimental data. Furthermore, conformations of some ubiquitin complexes were
predicted with very good precision (DRMS<2 Å).

Interestingly, accurate values of binding affinities could also be determined with
a more simplified model [36]. In this case the Brownian dynamics of the Barnase-
Barstar complex was derived with a model in which three amino acids were repre-
sented by one bead. Computed kinetic data of the association process corresponded
well with the experiment.

The binding of a protein coactivator to an enzyme is a class of extremely important
processes, usually difficult to study due to relatively high protein rearrangements.
The characterization of such processes has recently been the aim of CG simulation
studies [28, 84]. In one of them, Kurcinski and Kolinski [84] applied the CABS
model to describe the activation of the Retinoid X Receptor (RXR) by 9-cis retinoic
acid and the TRAP220 coactivator. They focused on specific transition states. The
results agreed well with the experimental data and a two-stage sequential reaction
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mechanism could be suggested. Interestingly, the simulations were conducted with
a fully flexible peptide coactivator (11 residues) and a moderately flexible receptor
(238 residues) whose conformation was restrained to the vicinity of its experimental
structure (see Fig. 4 for the scheme of the multistage procedure). The resulting extent
of conformational sampling was incomparably larger than with any classic all-atom
simulations.

Apart from the possibility to use restraints from experimental structures to main-
tain the protein fold we can also use an elastic network model (ENM) as was done by
Hall and Sansom [43]. In this study proper structures of the Cohesin (162 residues)-
Dockerin (60 residues) complex were predicted with a CG-Molecular Dynamics
(CG-MD) model in which each amino acid was represented by four beads. Ca. 80%
of interfacial residues were identified correctly and two various ways of ligand bind-
ing were identified which agreed well with the results of experimental data.

With regard to the large-scale dynamics of protein systems, another promising
and presently active field is CG dynamics of actin filaments [12, 21]. Because of the
scale of the system, it is extremely challenging to simulate myosin binding to actin
filaments by all-atom MD. A multiscale model [157] enabled the observation of the

Fig. 4 Multiscale procedure for the description of binding between the Retinoid XReceptor (RXR)
and the peptide (TRAP220) cofactor using CABS CG dynamics [84]. The procedure starts from
the generation of input data for a receptor and a protein cofactor. In the next step, the receptor and
the cofactor are put together in many random configurations, subsequently subjected to CABS CG
simulation. Various types of data stored along the procedure are shown in bold frames, while the
applied computational methods in thin frames
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myosinmotor and an insight into its action. In this case, three levels of coarse-graining
were introduced: chains of secondary structure elements, domains and molecules.
The movement of each component was simulated by Brownian Dynamics. A more
detailed, physicochemical view of the myosin-actin complex was recently obtained
with a CG simulation model [114] in which each bead represented a single amino
acid. In this case conclusions regarded also more general thermodynamic aspects of
protein-protein association.

Another popular and important protein-protein dynamics issue, in which diverse
levels of coarse-graining are applied, is protein aggregation. All-atom MD simu-
lations in explicit solvent can provide insights about early stages of aggregation
process of short peptides derived from full-length amyloidogenic proteins [6, 73,
79, 111, 158]. Larger complexes and longer timescales can be accessed using CG
models. In the simplest CGmodels, a single unit (cuboid [175] or tube [4]) represents
the whole peptide, while in the most detailed models each amino acid consists of
a few pseudo-atoms [20, 103, 107, 110, 125, 168]. Many practical applications of
CG models have been outlined in recent reviews [64, 108]. Dramatic progress has
been recently achieved in the CG modeling of large polyprotein complexes (made
up of many copies of the same or different proteins) [130]. In their review, Saunders
and Voth present two general classes of CG methods: mapping methods that transfer
information from one level to another only during parameterization and bridging
methods that connect different scales of representation during simulation.

The major challenge in modeling of protein interaction dynamics seems to be
as that outlined in the reviews of the performance of protein docking techniques
[162, 174, 22]. Namely, it is the treatment of substantial conformational changes.
CG simulation models offer perhaps the most prospective means for modeling of
extensive backbone dynamics in the nearest future.

2.4 Dynamics of Membrane Proteins

Membrane proteins play an important role in cell biology. They are responsible for
signaling, molecular transport across lipid bilayers, maintaining cell structural stabil-
ity and control of cell-cell interactions. Although 20 to 30% of all ORFs are predicted
to encodemembraneproteins, less than1%of all known3Dprotein structures account
for membrane proteins [112]. Moreover, those proteins are embedded in different
types of lipid bilayers. The interactionwith lipids is essential for both protein function
(e.g. can affect integral membrane protein activity [89]) and membrane properties
such as hydrophobic thickness or lipid composition [48]. The complex nature of
membrane-protein systems makes CG Molecular Dynamics (CG-MD) simulations
a valuable approach to the investigation of dynamics, structure-function relationship
and stability of membrane–protein systems [64]. One of the best performing, and
probably the most recognized, CG-MD approaches is based on the MARTINI force
field [104] that uses four-to-one atom mapping. Only four main types of interaction
sites are defined: polar (P), non-polar (N), apolar (C), and charged (Q). Each particle
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type has a number of subtypes allowing accurate representation of solvent, protein
andmembrane structures. This approach enables treatment of very large systems (cor-
responding to systems consisting of more than 500,000 atoms) and offers timescales
above 100 μs which are far beyond the scope of classical all-atom-MD. The method
was successfully applied by Sansom and co-workers for the prediction of protein
positions within lipid bilayers [136]. Self-assembly CG-MD simulations, starting
from a protein surrounded by randomly positioned water and lipid molecules, were
conducted for 91 different protein systems. The resulting structures gave insights
into direct protein-lipid interactions, membrane distortion around different proteins
and localization of proteins in the lipid bilayers, in agreement with experimental data
(see Fig. 5).

CG-MD simulations applying the MARTINI force field were also used for the
investigation of helix associations and dimerization of membrane proteins. Sengupta
and coworkers conducted a set of CG-MD simulations, each lasting 25 μs, to study
the association mechanism of glycophorin A and two disruptive mutants, T87F and

Fig. 5 Final structures from self-assembly CG-MD simulations, starting from a protein surrounded
by randomly positioned water and lipid molecules [129]. The figure presents the results of four sim-
ulations: A—cytochrome bc1 complex, B—putative metal-chelating ABC transporter, C—quinol-
fumarate reductase and D—Mg2+ transporter. Water, ion and DPPC lipid tail particles are excluded
for clarity. The backbone trace of the protein is shown in blue. The particle colors are: phosphate in
DPPC lipid headgroups: red; glycerol linker in the lipid: yellow; choline in PC headgroups: blue.
Picture created based on materials available in the CG Database [129]
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a triple mutant of the GxxxG motif (G79LG83LG86L), embedded in a DPPC lipid
membrane model [138]. In each case, dimers formed within the first 5 μs. The wild-
type dimer packed in a right-handed manner, and the structure was consistent with
the native structures defined by NMR studies [146]. The analysis of free energy
profiles reveals that two dimers formed by mutated peptides were less stable, by
about 8–10 kJ mol−1 as a result of the disruption of a lipid bilayer surrounding
the protein and less efficient helix-helix packing [138]. The observed differences
became only apparent after extensive sampling, which indicates the importance of
long microsecond simulation time scales.

A multiscale MD approach (combining CG-MD and all-atom-MD simulations)
was used by Kalli and coworkers [57] to explore the formation of an aIIb/b3 integrin
TM helix hetero-dimer in the DPPC membrane model. CG-MD simulations were
performed using high-throughput methodology [42] which enabled automatic run-
ning of multiple self-assembly simulations and statistical analysis over an ensemble
of approximately 100 structures. Dimer formation usually occurredwithin a few hun-
dred nanoseconds of CG-MD. The resulting dimers were submitted to further assess-
ment and refinement using all-atom-MD simulation. Comparing the final structure
of the modeled dimer with the available aIIb/b3 integrin NMR structure (PDB ID:
2K9 J [88]) yields a Cα rmsd of 2.2 Å for the TM region, a similar crossing angle of
30 ±3° and a helix-helix interface created by the same residues. The results indicate
that a purely computational based approach may result in hetero-dimer formation
with an accuracy similar to the NMR method.

Recently, Periole and coworkers applied large-scale CG-MD simulations to study
the energetics of the receptor-receptor dimer interface of theG protein coupled recep-
tor (GPCR), rhodopsin [118]. The procedure involved self-assembly simulations of
multiple copies of rhodopsin embedded into a lipid membrane over time scales
ranging from 10 to 100 μs. During the simulations the potentials of mean force
(PMFs) were computed for pairs of rhodopsin molecules along different interfaces.
The resulting data pointed to the most stable rhodopsin-rhodopsin conformation
involving a symmetrical Helix1/Helix8 interface. The observed interface was also in
agreement with recent cross-linking experiments [69] and EM density maps [126].
This approach based on extensive CG-MD simulations may also be used to investi-
gate homo- and hetero-dimer interfaces of other members of the GPCR family.

The above examples illustrate some of the CG-MDmethods which use the MAR-
TINI force field applied in the studies of membrane-protein systems. A wide variety
of other CG methods currently exist and new force fields are being developed [3,
59, 61, 120, 148, 179]. Recently, an extension of CABS coarse-grained model to
modeling the effect of membrane environment (CABS-membrane [120]) has been
applied to ab initio folding simulations of 10 short helical membrane proteins. The
CABS-membrane simulations started from random protein conformations, situated
outside the membrane environment, and allowed for full flexibility of the modeled
proteins during their spontaneous insertion into themembrane. In the obtained trajec-
tories, models close to the experimental membrane structureswere found (see Fig. 6).
Another class of approaches is based on combination of CG models with the Gaus-
sian network model (GNM) and/or the anisotropy elastic network model (ANM).
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Fig. 6 Membrane insertion and folding of 1A91 protein observed in CABS-membrane ab initio
simulations [120]. a example simulation snapshots illustrating the insertion and foldingmechanism,
b evolution of the RMSD values (reflecting similarity to the experimental structure) vs simulation
time, c comparison of the highest accuracy model obtained in the simulations (RMSD � 2.2 Å)
with the experimental structure (colored in green)

Thesemethods were used to investigate themechanism of L-arginine (Arg)/agmatine
(Agm) antiporter (AdiC) [18] and prediction of functional motions of outer mem-
brane transporter and signal transducer FecA [137].

Despite the limitations of CG models, united-atom representation and simplifi-
cation of energy function, there is a growing need for improving CG computational
methods to be used to study the function and dynamics of large and complex protein-
membrane systems. Nevertheless, CG based methods are rapidly advancing and may
become invaluable tools for the exploration of some fundamental events that are oth-
erwise still not reachable by biochemical experiments.

2.5 Intrinsically Unfolded Proteins

Over the last decades, the thermodynamically stable conformation of a protein was
usually treated as the state responsible for biological functions. Nevertheless, at the
end of the 20th century the research community realized that intrinsically disordered
proteins (IDP) or proteins with intrinsically disordered regions (IDR) are ubiquitous
in nature and they can retain their functionality [40, 106, 160, 161, 172]. Confor-
mational studies of these proteins are experimentally extremely challenging [30],
particularly due to their large structural heterogeneity and aggregation tendency.
With the boom of IDP studies, computer simulation models have emerged as use-
ful tools for the description of IDP conformational ensembles [17, 122, 123]. As
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the effective search of the conformational space is the major advantage of the CG
models, they can be used as methods of choice for possibly the broadest sampling
of conformational disorder.

Owing to their flexibility, disordered proteins have increased tendency of forming
protein-protein complexes. During binding, as compared to folded structures, they
can form a far larger number of interaction contacts. This theory is called the “fly-
castingmechanism” and it was illustrated by Shoemaker et al. [140] who investigated
the kinetics of IDP binding to the receptor using their free energy functional based
on a simplified scheme of amino acid contacts.

Nevertheless, CG simulations of pKID-KIX complexes [47] indicated that the
increased binding affinity can be caused not only by the greater capture radius of
IDPs. The kinetic analysis of this process was based on simulations using the CGGo
model with the continuumC-alpha chain representation and compared with available
experimental data for various ordered and disordered complexes. Interestingly, it was
found that the coupling of foldingwith binding of IDPs leads to a significant reduction
in the binding free-energy barrier. This work also discusses roles of other structural
factors important for this particular association.

Abeln and Frenkel analyzed other aspects of how intrinsically disordered regions
(IDRs) can influence the protein association process usingMonteCarlo (MC) simula-
tion on cubic lattice with C-alpha representation [1]. The simulation results provided
intriguing insights into the effect of IDRs on protein structure. The authors indicated
that proteins with hydrophobic binding motifs without neighboring IDRs tend to
aggregate and consequently form amyloids.

The ability to fold upon binding of some IDPs has been extensively studied using
CG simulation models [27, 159, 165, 166, 169]. A multiscale model was used to
generate the pathway of IDP folding induced by binding to its receptor [169]. The
method included a step of CG simulation with C-alpha representation and optimal
path calculation at an atomic level. The binding process was simulated as fully
flexible and the role of non-native interactions was stressed. In other studies [165,
166] the authors characterized an ensemble of transition states of p27Kip1 protein
binding to a rigid structure of a cyclin A—Cdk2 complex. In this case a knowledge-
based potential was utilized to investigate some aspects of the folding mechanism of
this protein. Intrinsically disordered proteins frequently serve as flexible linkers of
protein domains. CG modeling of such systems was reviewed by Zhou [177].

Similarly to protein structure prediction, IDPmodeling approaches can be divided
into de novo methods (based on the prediction power of the method) and those uti-
lizing sparse experimental data. The CG C-alpha model of Norgaard et al. [113] was
designed to simulate disordered proteins and parametrized using data from nuclear
magnetic resonance spin-labeling experiments on the �131� fragment of Staphy-
lococcal nuclease. Importantly, such an approach can be used by utilizing data from
MD trajectories or other experiments.

Interestingly, 2D lattice models have been recently used to explain the worse
performance of sequence-based disorder prediction methods for smaller proteins (or
segments) than for larger ones. Such a simple simulation model enabled a novel
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insight into the basic determinants of protein disorder: amino acid composition and
chain length [153].

As shown above, CGmodels, even very simplistic ones, provided many important
facts for the description of IDP and IDR dynamics. However, the potential of CG
modeling does not seem to be sufficiently exploited in the field [64], perhaps because
of the relatively recent interest in the area.

3 Conclusions and Perspectives

An obvious advantage of CG protein simulations is that larger protein systems can
be studied and longer timescales can be assessed than it is possible using atomic-
resolution MD [64, 117]. Apart from expanding the limits, the speed-up benefit of
CG models brings many new opportunities for the design of some extensive ‘in
silico experiments’ [155], such as: comparative dynamics for a large set of proteins
[156], comprehensive mutation analysis [70], scanning parameters of a simulation
model to see how it affects simulation results [173] or construction of databases by
high-throughput simulation protocols [19].

CG protein modeling has already a history of a few decades. The last decade
showed a dramatic increase in CGmodeling studies of large biomolecules [64, 155].
We can expect that this trend will continue in the foreseeable future, since atomic-
resolution MD is far too slow for studies of many practical problems. The current
need for computer-enhanced studies of large biomolecules is mostly due to the recent
growth of experimental data of structural biology that require rapid interpretation and
validation of emerging hypotheses [56, 117].

In this chapter, we described recent applications of CG simulations to some repre-
sentative and important topics of protein dynamics. Thework demonstrates the utility
of CGmodeling in understanding real biological problems. As shown, there aremany
variants of CG simulation tools and many successful strategies in which CG models
are an important component. Future developments are expected to includeCGmodels
in unified/integrative structure modeling procedures utilizing a wide range of exper-
imental and computational techniques [64, 127, 133]. Consequently, the integration
of protein CG models together with CG models for other molecules (lipids, nucleic
acids, carbohydrates) as well as CG models with atomic MD (so-called multiscale
approach) should be the focus of further research.
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