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Three-dimensional protein structures, whether determined experimentally or theoretically, are often too
low resolution. In this mini-review, we outline the computational methods for protein structure recon-
struction from incomplete coarse-grained to all atomistic models. Typical reconstruction schemes can
be divided into four major steps. Usually, the first step is reconstruction of the protein backbone chain
starting from the C-alpha trace. This is followed by side-chains rebuilding based on protein backbone
geometry. Subsequently, hydrogen atoms can be reconstructed. Finally, the resulting all-atom models
may require structure optimization. Many methods are available to perform each of these tasks. We dis-
cuss the available tools and their potential applications in integrative modeling pipelines that can trans-
fer coarse-grained information from computational predictions, or experiment, to all atomistic
structures.
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1. Introduction

Coarse-grained protein models (with some missing atomic
details) are the outcome of many experimental or computational
methods for the investigation of protein structures and their
dynamics. For example, structures obtained via difficult compara-
tive modeling and de novo simulation strategies often need further
improvement. The complexity of the protein systems demands a
multiscale approach, which requires easy and fast conversion
between models of various resolutions and accurate reconstruction
of atomic details. Coarse-grained modeling tools offer high
efficiency and enable to overcome the limitations of all-atom tools
on accessible system sizes and simulation time scales [1]. All-atom
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Table 1
Overview of protein reconstruction methods. The accuracy of some methods is evaluated using RMSD values between reconstructed and reference structures measured on: alpha
carbons (RMSDCA) or backbone (RMSDBB) or side chain (RMSDSC) heavy atoms. The accuracy of side chain reconstruction is also evaluated using chi angles, the first (v1) and the
second (v2, if applicable).

Method, reference and
year of the last
publication

Software availability* Reconstruction**
task

Description*** Benchmark sets and comments***

Reconstruction from deeply coarse-grained representation or contact maps
CONFOLD [31], 2015

CONFOLD2 [32],
2018

server
(confold) + standalone
(confold2): http://protein.
rnet.missouri.edu/confold/
https://
github.com/multicom-
toolbox/CONFOLD2/

CM ? CA The method translates contact maps into
distance restraints and uses them as the
input to distance geometry algorithm
which builds tertiary structure models.
CONFOLD2 predicts 200 models using
various subsets of input contacts and
selects five top models by clustering them.

CONFOLD2 is an improved version of
CONFOLD method. Structure predictions
for 150 proteins from the PSICOV dataset
and for CASP12 targets showed that the for
most protein sequences CONFOLD2 was
able to capture the structural fold of the
protein.

FT-COMAR
[30], 2008

standalone
http://bioinformatics.cs.
unibo.it/FT-COMAR/

CM ? CA A heuristic procedure for building tertiary
structure models from a possibly
erroneous and incomplete contact maps.

Tested on 100 non-redundant single-
domain protein chains (a, b, a+b, a/b; size
from 55 to 786 residues) from SCOPE
release 1.67. FT-COMAR is much more
tolerant to under prediction than to over
prediction of contacts. It can ignore up to
75% of the contact map and still compute a
protein structure whose RMSDCA < 4 Å
(assuming that the remaining 25% contains
no errors).

GDFuzz3D
[33], 2015

server + standalone:
http://iimcb.genesilico.pl/
gdserver/GDFuzz3D/

CM ? AA
+ optimization

The method transforms contact maps into
distance restrains and uses them as the
input to MODELLER method [44], which
generates protein models and REFINER
method [138] for structure refinement.

Tested on 45 single-domain targets
analyzed in the CASP10 experiment and
150 proteins of the PSICOV dataset. The
tests showed that GDFuzz3D is slightly
more accurate (based on TM-score and
RMSD) than FT-COMAR and slightly inferior
to PconsFold but more computationally
efficient.

PconsFold [34], 2014 standalone: https://
github.com/ElofssonLab/
pcons-fold

CM ? AA Merges PconsC contact prediction tool
[139] and the ROSETTA protein modeling
tool [140]. The method has no intermediate
stages of reconstruction.

Tested on 150 proteins (from 52 to 266
residues) of the PSICOV dataset. The input
sequence can come from a PDB header
(instead of an ATOM section) to avoid
internal gaps of chain. This approach
enables protein structure prediction of
single-domain targets. PconsFold
performance was also compared to that of
GDFuzz3D [33].

SICHO [36], 2000 standalone: http://blue11.
bch.msu.edu/mmtsb/
rebuild.pl

SICHO ? AA Method for reconstruction from the
SICHO coarse-grained model (see
Section 2.2 and Fig. 2). Uses a library of
fragments and a side chain center-based
coordinate system to rebuild Ca positions
and a complete backbone. Chooses side
chain conformations from a rotamer
library.

Tested on 13 high-resolution X-ray
structures. Reconstruction quality RMSDCA:
< 0.6 Å on experimental structures.

SUReLib, 2019 standalone: http://
biocomp.chem.uw.edu.
pl/tools/surpass

SURPASS ? CA Method for reconstruction from the
SURPASS coarse-grained model (see
Section 2.2 and Fig. 2). Uses a knowledge-
based library of 6-residue fragments and
structural regularities observed in known
protein structures.

Tested on PISCES_4600, BAKER_62 and
other various proteins (a, b, a+b, a/b; size
from 56 to 1016 residues). Reconstruction
quality RMSDCA: < 0.5 Å on experimental
structures and 1–2 Å on distorted models.

Backbone reconstruction from CA-trace
BBQ [38], 2007 standalone: http://

biocomp.chem.uw.edu.
pl/tools/bbq

CA ? BB Uses the library of 5148 backbone 4-
residue fragments (quadrilaterals) and
algorithm described by Milik et al. [141]
with some modifications. All quadrilaterals
are pre-computed (as Ca distances and a
local coordinate system) and stored in a
table. The algorithm is sequence-indepen-
dent.

Tested on 81 non-redundant experimental
protein structures and near-native decoys.
Reconstruction quality RMSDBB < 0.7 Å on
experimental structures. Available as part
of the Bioshell package. The algorithm is
implemented in java programming
language. BBQ performance was also
compared to that of PD2 and other tools
[39] and can be improved by additional
minimization [52].

BriX [42,142], 2010 standalone CA ? BB Uses the library of high-resolution
structural fragments between 4 and 14
residue long and local fit approximation
algorithm. Newer version [142] uses addi-
tional Loop BriX database of non-regular
structure elements (loops) and fragments
from over 7000 non-homologous proteins
from the Astral set. User provided struc-
tures can be covered on the fly with BriX
fragments, especially gaps or low-confi-
dence regions in these structures can be
bridged.

Tested on all known human structures from
the PDB (935, Park & Levitt protein set),
with a global 0.48 Å RMSD [42] (improving
existing results using smaller libraries
[48,143]) and over 300 protein-peptide
complexes from PepX database within 1 Å
RMSD [144]. Irregular loop regions can be
reconstructed from smaller (4–8 residues
long) building blocks.

(continued on next page)
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Table 1 (continued)

Method, reference and
year of the last
publication

Software availability* Reconstruction**
task

Description*** Benchmark sets and comments***

PD2 ca2main [39],
2013

server + standalone: http://
www.sbg.bio.ic.ac.uk/
~phyre2/PD2_ca2main/

CA ? BB
optimization

Uses the library of short 528 backbone
fragments obtained using Gaussian mixture
models (GMMs). The accuracy of
reconstruction can be improved by
additional (optional) energy gradient
minimization.

Tested on 15 low-resolution and 28 high-
resolution protein structures.
Reconstruction quality RMSDBB < 0.4 Å on
experimental structures. When combined
with Rosetta, PD2 method produced
significantly lower energy all-atom
models than other tested tools. Except
built-in minimization, another
minimization scheme had been
successfully tested [52]. The algorithm is
implemented in C++ programming lan-
guage.

SABBAC [40], 2006 server: http://bioserv.rpbs.
jussieu.fr/SABBAC.html

CA ? BB Uses a 27-letter hidden Markov model-
derived structural alphabet described by
155 backbone fragments from known
protein structures and a greedy algorithm
(based on the OPEP force field) to obtain an
optimal combination of fragments. Ca-
trace coordinates remain unaffected and
only the missing backbone atoms are
added. No further refinement is performed.

Tested on the Adcock subset of 14 proteins
from 58 to 437 residues and a 7 PDB
newcomers subset up to 666 residues.
Reconstruction quality RMSDBB is near
0.4 Å for experimental structures. The
algorithm is robust to CA deviations (for
Ca-traces randomly perturbed by over 1 Å,
SABBAC results were only marginally
affected). SABBAC enables reconstructing
single polypeptide chains.

Side chains reconstruction from backbone
CIS-RR [67], 2011 server BB ? SC Uses Dunbrack backbone-dependent

rotamer library, SCWRL3-based scoring
function and clash-reduction guided
iterative search (CIS) with conjugate
gradients optimization of rotamers
(rotamer relaxation, RR). CIS-RR detects
the cysteine pair, which forms a disulfide
bond.

Tested on 180 proteins (SCWRL3 test set)
and 65 high-resolution crystal structures of
proteins. Compared to other tools
(SCWRL4, IRECS and SCAP) reconstruction
accuracy is similar but removes atomic
clashes much more effectively. Also
evaluated and compared with other tools in
work [95].

IRECS [76], 2007 standalone: https://irecs.
bioinf.mpi-inf.mpg.de/
index.php

BB ? SC Uses a coarse-grained backbone-dependent
rotamer library, heuristic greedy iteration
scheme and effective score (based on
knowledge-based scoring term ROTA 10 Å)
for ranking all SC rotamers according to the
probability of rotamer conformation.

Tested on 641 high resolution X-ray
structures (194 with single conformation
for all SCs and 447 with at least one SC of
multiple conformations). Reconstruction
accuracy similar to SCWRL3 and SCAP,
RMSDSC ~1.5 Å. Allows the use of additional
template of side-chain conformations.

NCN [92], 2004 standalone:available on
request from the authors
https://www.med.upenn.
edu/wandlab/research.
html

BB ? SC Uses optimized OPLS parameters for long-
range and multi-body terms (van der Waals
and electrostatic terms), hydrogen-bonding
potential and frequency of rotameric states
from PDB. The library contains 49,042
discrete rotamers.

Tested on 65 high resolution X-ray
structures. Highly accurate tool for SC
reconstruction
(RMSDSC: ~1 Å).

OPUS_Rota2 [81],
2019
OPUS_Rota [96],
2008

standalone: http://ma-lab.
rice.edu/soft.php

BB ? SC Uses rotamer frequency and van der Waals
potentials and two additional unique
pairwise energy terms: short-range
orientation-dependent (OPUS-PSP) for side
chain packing interactions and explicit
solvation effects. In newer OPUS_Rota2
version, OPUS-PSP had been replaced by
OPUS-DASF term that describes relative
positions of atoms on the side chains.

Tested on 65 high resolution X-ray
structures and a 379-protein PISCES subset
(sequence identity 30%, 1.8 Å) [77,81]. In
the native tests sets, Opus_Rota2 was more
accurate than other methods (OpusRota,
SCWRL4, OSCAR-star variants) but slightly
less accurate than OSCAR-o. In non-native
test sets (with added random noise to the
main-chain torsional angles) Opus_Rota2
was more accurate than any other tested
method and also several times faster (ex-
cept Upside).

OSCAR [97], 2011 standalone: https://
sysimm.ifrec.osaka-u.ac.jp/
OSCAR/

BB ? SC Uses a flexible (-o, slow modeling) or rigid
(-star, fast modeling) rotamer model. The
energy terms include distance and
orientation-dependent potentials and side
chain dihedral angle potential energy
function. The library of sub-rotamers was
derived by perturbation of dihedral angles
of rotamers from Dunbrack and Cohen
[145].

Tested on 218 proteins and a RAPPER decoy
set.
Oscar had similar accuracy in SC
reconstruction for experimental structures
as other available software and good
accuracy in selecting near-native
conformations from loop decoys. Also
evaluated and compared with other tools in
work [73].

PEARS [82], 2018 server: http://opig.stats.ox.
ac.uk/webapps/
newsabdab/sabpred/pears

BB ? SC Uses position-dependent antibody-specific
rotamer library which is based on SC’s v1

dependency on its immunogenetic
positions. The method is robust for
uncertainties in the model backbone and
detects disulphide bridges. SC clashes are
reduced during 200 rounds of Gaussian
relaxation.

Tested on a set of 639 non-redundant and a
blind set of 95 antibody structures. The
approach is comparable to SIDEpro, RASP
and SCWRL in reconstruction the side
chains of crystal structures, while on
computationally designed models PEARS
achieves the highest average accuracy and
the smallest number of clashes.
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Table 1 (continued)

Method, reference and
year of the last
publication

Software availability* Reconstruction**
task

Description*** Benchmark sets and comments***

RASP [83], 2011 standalone BB ? SC
rotamer
optimization

Uses backbone-dependent rotamer library,
an optimized energy terms and the clash
elimination strategy to guide the
optimization of side chain conformations.
Combinatorial search includes dead-end
elimination, graph theory-based, branch-
and-terminate, backtrack and Monte Carlo
algorithms.

Tested on 2412 high-resolution (�1.8 Å)
structures with complete side chains
obtained from PISCES server. RASP had
comparable prediction accuracy (%chi1, %
chi1+2, RMSD) and returned much fewer
clashes than SCWRL4, OPUS-Rota or IRECS.
It was also much faster than these methods,
but an order of magnitude slower than
Upside. RASP performance was also
evaluated and compared with other tools in
works [73,95].

SCAP [98], 2001 standalone: http://honig.
c2b2.columbia.edu/jackal

BB ? SC Heuristic approach using optimized
CHARMM parameters for van der Waals
torsion-angle terms in an iterative
repacking protocol. The library contains
7562 discrete rotamers in terms of 1)
Cartesian coordinates, 2) dihedral angles..

Tested on 33 high resolution protein
structures (66–328 residues) not included
in the creation of rotamer library. For
multi-chain proteins, only the first chain
was used. Reconstruction quality
RMSDSC < 2 Å.

SCATD (ThreePack)
[79], 2005

standalone: https://ttic.
uchicago.edu/~jinbo/
TreePack.htm

BB ? SC
rotamer
optimization

Uses a backbone-dependent rotamer
library (the same as SCWRL3), interaction
scores by dead end elimination and energy
minimization by tree decomposition. This
tool does not attempt to regularize the
backbone geometry or solve punched rings.

Tested on 180 experimental structures
from the SCWRL3 benchmark set of
proteins. This approach was several times
faster than SCWRL3 especially on larger
proteins or cases with heavy atomic
clashes. SCATD is freely available and was
only tested on a Debian Linux machine.

SCWRL4 [77], 2009 standalone:
http://dunbrack.fccc.edu/
scwrl4/

BB ? AA
rotamer
optimization

Uses a backbone-dependent rotamer
library based on kernel density estimates to
provide rotamer frequencies and torsional
angles, a tree decomposition algorithm to
solve the side chain packing problem,
specific potentials (anisotropic hydrogen-
bonding, soft pairwise van der Waals), and
fast collision detection. Allows
consideration of the crystal symmetry in
the side-chain conformation prediction.
SCWRL4 is perhaps the most widely used
SC reconstruction method, as shown by its
high citation count.

Optimized on a set of 100 protein
structures and tested on 379 X-ray
structures with electron densities available
from UEDS [146]. SCWRL4 performance
was evaluated and compared with other
tools in works [73,95]. SCWRL4 is also
available as a dynamic-linked library for
incorporation into other software. In
comparison to its earlier version SCWRL3,
SCWRL4 can be slower but converged in all
cases tested, while SCWRL3 sometimes did
not converge [77]. The software is freely
available for academic research on request.

SIDEpro [99], 2012 server + standalone: http://
sidepro.proteomics.ics.uci.
edu/
http://scratch.proteomics.
ics.uci.edu/

BB ? SC rotamer
optimization

Uses a machine learning approach based on
156 neural networks that are trained to
compute an energy function based on
pairwise contact distances and a backbone-
dependent rotamer library (the same as
OPUS-Rota [96]). The neural networks set
the side-chains to the highest probability
rotamers. The final optimizing procedure
removes steric clashes.

Tested on the SCWRL4 benchmark set (379
proteins), 94 proteins from CASP9, 7 large
protein complexes and a ribosome with
and without RNA. SIDEpro can use non-
standard amino acids, post-translational
modifications and external ligands. It was
several times faster and slightly better in
accuracy than SCWRL4 and its RMSDSC

remained ~1.0 Å also for complexes.
SIDEpro performance was also evaluated
and compared with other tools in work
[95].

Upside [100], 2018 standalone: https://
github.com/sosnicklab/
upside-md

BB ? SC
rotamer
optimization

Uses side chain free energy in a molecular
dynamics simulations scheme. During the
optimization of side chain packing, each
rotamer state is represented by a single
oriented CG bead (3 spatial and 2
orientation coordinates). Uses a
combination of isotropic (excluded
volume) and directional interactions
(chemical character, e.g. polar, aromatic)
for each pair of interacting side chains or
backbones. The side chain model is trained
by the maximum-likelihood scheme. The
NDRD rotamer library [70] is used to define
the atomic positions of side chains.

Tested on a large, non-redundant set of
crystal structures of globular proteins from
the PDB with 50–500 residues and
resolution < 2.2 Å (6255 chains). The
method gave similar accuracy of chi1 angle
as SCWRL4 and RASP, but is several (1–3)
orders of magnitude faster.

All-atom reconstruction from CA-trace
ca_to_allatom

(ROSETTA) [43],
2008

standalone: https://www.
rosettacommons.org/

CA ? AA
AA optimization

The Rosetta protocol ca_to_allatom
reconstructs AA structure and performs
structure refinement. Uses the initial Ca-
trace (with a user-defined parameter
specifying how far Ca atoms are allowed to
deviate from the initial model)) and rigid-
body perturbation of secondary structure

Tested on 8 proteins (from 101 to 310
residues) from cryoEM maps at 5 and 10 Å
resolution. Original Ca positions are
slightly changed during the reconstruction
process by harmonic oscillation [147].
Successfully used in protein reconstruc-
tion from experimental data [43]. Avail-

(continued on next page)
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Table 1 (continued)

Method, reference and
year of the last
publication

Software availability* Reconstruction**
task

Description*** Benchmark sets and comments***

fragments from known protein structures.
The protocol includes optional loop
remodeling (centroid mode) and all
torsion angle minimization (all-atom).

able as an executable in the bin directory of
ROSETTA package (bin/ca_to_allatom.ver-
sion).

CG2AA [37], 2016 standalone CA ? AA
SC optimization

Uses a strictly geometric approach based on
Ca triplets and parameters from the
Amber03 force field for rebuilding the
protein backbone and Cb. The side chain is
rebuilt based on the definition of the united
atom for the side group.

Tested on 5 experimental protein
structures with reconstruction quality
RMSDBB: <0.8 Å, stability of reconstructed
models has been tested in MD
simulations. The algorithm is
implemented in Python.

Modeller [44], 2016 standalone: https://salilab.
org/modeller
Modeller-based
reconstruction script:
https://bitbucket.org/
lcbio/ca2all

CA ? AA
AA optimization

Uses protein template(s) in CG
representation (it can be in Ca-trace) to
create a set of distance restraints that guide
the reconstruction. Stereochemical
restraints (bond lengths and angles) are
obtained from the CHARMM force field and
statistical analysis of known structures.
MODELLER employs various structure
optimization techniques.

Available as part of the Modeller package.
The algorithm is implemented in Python.
Modeller-based script ca2all [148] is used
by CABS-flex and CABS-dock multiscale
modeling tools [149,150] for reconstruction
of protein or protein-peptide models).

ModRefiner [53], 2011 server + standalone:
https://zhanglab.ccmb.
med.umich.edu/
ModRefiner/

CA ? AA
AA optimization

Reconstructs and refines protein structures,
first the BB only and, after adding SC, the
entire structure. Both side-chain and
backbone atoms are flexible during
refinement simulations, while
conformational search is driven by physics-
and knowledge-based force-field. It can
optionally use secondary structure
assignment/prediction to drive the
refinement. The method can start from the
CA, BB or SC model.

Tested on 261 proteins up to 150 residues
(148 hard targets for I-TASSER and 113
with good templates). Compared to other
tools, ModRefiner was better in side chain
packing and improving hydrogen-
bonding networks. Input CA coordinates
can have unphysical distortions. A
standalone tool enables reconstruction of
dimeric proteins, while server handles
only single-chain proteins.

PULCHRA [54], 2008 standalone: http://cssb.
biology.gatech.edu/
skolnick/files/PULCHRA/
index.html

CA ? AA
AA optimization

Uses backbone fragment library, rotamer
library and backbone reconstruction
algorithm described by Milik et al. [141]
with some modifications. The initial Ca-
trace and reconstructed backbone are
minimized to improve hydrogen-bonding
networks. Positions of SC united atoms
(center of mass) can be used to improve the
accuracy of full-atomic reconstruction.

Tested on 30 high-quality X-ray structures.
(reconstruction quality RMSDAA 1.0–1.5 Å)
and on a set of 500 low-resolution protein
models. Initial Ca coordinates can be
distorted. This approach enables
reconstruction of multi-chain models or
a chain with breaks and solves punched
rings. The algorithm is implemented in C
programming language.

RACOGS [55], 2007 server available on request
from the authors http://
www.kavrakilab.
org/software.html

CA ? AA
AA optimization

Uses a geometric approach to place the
backbone atoms at the average positions
derived from known protein structures
(based on the algorithm by Milik et al.
[141] and Feig et al. [36]) with SC recon-
struction using backbone dependent, coor-
dinate rotamer libraries (algorithm
described by Xiang and Honig [98]). The
final stage of the procedure includes the
addition of all hydrogen atoms and short
all-atom minimization.

Tested on CG trajectories of SH3, S6
systems and a subset of 2945 non-
redundant experimental structures from
PDB. This approach enables reconstruction
of all-atom details from large regions of the
protein folding landscape as folded,
partially folded or random protein
structures.

REMO [41], 2009 server + standalone:
https://zhanglab.ccmb.
med.umich.edu/REMO/

CA ? AA
AA optimization

Uses backbone isomer libarary (528,798
fragments) and backbone-dependent
rotamer library (SCWRL) for atomic details
reconstruction. Backbone rebuilding stage
includes removing steric clashes and
optimizing the hydrogen-bonding
network based on a consensus of PSIPRED
preferred secondary structure distribution.

Tested on 230 non-redundant proteins up
to 300 residues (experimental and CG
decoys generated by I-TASSER in the
CASP8). This approach can remove steric
clashes, retain correct topology and
improve the backbone hydrogen-bonding
network.

Hydrogen atom reconstruction
CHIMERA (AddH)

[104], 2004
standalone: http://www.
cgl.ucsf.edu/chimera/index.
html

SC ? AA Adds missing hydrogen and OXT atoms.
Uses the atom types and steric-only or H-
bonds (default, slower) criterion to
determine the number and positions of
added hydrogens. Bond lengths are taken
from Amber parm99 parameters.

The positions of pre-existing atoms are
not changed. Protonation states of certain
ionizable side chains can be specified at
specific pH (default: physiological). This
software is also a molecular visualization
tool.

CNS [113], 1998 standalone: http://cns-
online.org/v1.3/

SC ? AA The algorithm starts from random positions
of hydrogen atoms and optimizes them
using an iterative procedure of molecular
dynamics simulations and Powell energy
minimization steps. The energy function
includes bonded terms and van der Waals.

The method is able to compute also
electrostatic interactions if the required
parameters are provided. It is flexible
hierarchical software for macromolecular
structure determination, especially
crystallographic refinement or NMR
structure calculations using NOEs, J-
coupling or chemical shifts.
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Table 1 (continued)

Method, reference and
year of the last
publication

Software availability* Reconstruction**
task

Description*** Benchmark sets and comments***

Computational
Titration [106],
2009

server SC ? AA
AA optimization

Uses a force field with the concept of
hydropathic interactions (HINT) as its
noncovalent force field and exhaustive
enumeration for optimization. The method
uses coordinate data for the protein, ligand
and bridging water molecules (if available)
and predicts the best combination of
protonation states for each ionizable
residue and/or ligand functional group as
well as the Gibbs free energy of binding for
the ionization-optimized protein-ligand
complex.

Tested successfully in modeling binding
affinities of protein-ligand complexes: b
secretase (2va7), mutant HIV-1 reverse
transcriptase (2opq) and human sialidase
NEU2 complexed with an isobutyl ether
mimetic inhibitor (2f11). The method
improves optimization of protonated
amines and phosphines and supports the
use of additional functional groups such
as phosphates, sulfates, nucleotide
backbone phosphates and sugars.

GROMACS (pdb2gmx)
[114], 2001

standalone: http://
www.gromacs.org/
Downloads

SC ? AA
AA optimization

Uses a geometry-based approach and
performs molecular dynamics simulations.
Uses different bond lengths and angles
according to selected force field
parameters. The energy function includes
bonded terms, van der Waals and
electrostatics.

The method enables optimization of
histidine protonation states by
attempting to satisfy neighboring hydrogen
bonds. Water hydrogen atoms are also
predicted. GROMACS is very fast at
calculating non-bonded interactions.

HAAD [107], 2009 server + standalone:
https://zhanglab.ccmb.
med.umich.edu/HAAD/

SC ? AA
AA optimization

Combines local geometry restraints and
conformational search that minimizes
atomic overlap, encourage hydrogen
bonding and optimize electrostatic
interactions. Local geometries of the initial
positions of H-atoms are taken from the
CHARMM22 force field.

Tested on three sets of experimental data:
high-resolution X-ray crystallography,
structures from neutron diffraction, and
NOE proton-proton distance restraints.
Compared with other methods (CHARMM
and REDUCE) HAAD was faster and had
significantly higher accuracy and better
compatibility with NOE restraints. The
algorithm is implemented in FORTRAN90
programming language.

Hbuild (CHARMM) (X-
PLOR)
[115,117,151], 2005

standalone: http://
charmm.chemistry.
harvard.edu/
https://nmr.cit.nih.gov/
xplor-nih/doc/current/
xplor/

SC ? AA Searches hydrogen atom positions at
intervals of 10� (/ = 10) or 3� (/ = 3) around
the axis of a cone with a side equal to the
bond length or places hydrogens using
geometric criteria. Uses different bond
lengths and angles according to the
selected version of the CHARMM force field.
The energy function includes torsion angle,
van der Waals and electrostatics.

All hydrogen atoms (including non-polar)
are described explicitly. Water hydrogen
atoms are also predicted. This approach is
quite fast and can be used before running
molecular dynamics calculations or during
large-scale homology modeling. The Hbuild
algorithm is used in CHARMM and X-PLOR
software packages.

MCCE2 [152], 2009
MCCE [108], 2002

standalone SC ? AA Uses a geometry-based and molecular
mechanics approach to place all non-
hydroxyl hydrogen atoms. For hydroxyl
and water hydrogens it uses systematic
search of torsion angles. The energy
function includes torsion angle (from
CHARMM), van der Waals, solvation and
continuum electrostatics.

Cysteine residues cannot be treated as
disulfide bridged. This is a slower but
more accurate approach that can be used
for studies involving a specific protein,
especially when the protonation states of
ionizable residues and orientations of
buried hydroxyls are relevant.

PyMOL, DeepView
(SPV) [105], 1997

standalone: https://pymol.
org/2/
https://spdbv.vital-it.ch/
disclaim.html

SC ? AA Molecular visualization tools that use only
geometric criteria, without minimization.

Protonate3D [109],
2009

Standalone available on
request from the authors
http://www.
chemcomp.com

SC ? AA
AA optimization

Predicts hydrogen geometry, ionization,
and tautomer states for macromolecular
structures based on 3D coordinates. The
energy model includes van der Waals,
electrostatics, solvation, rotamer, tautomer,
and titration effects. Optimal states are
chosen according to a chemical model
derived from the MMFF94 force field.

Tested on ultra-high resolution X-ray
structures. The method considers side-
chain flip, rotamer, tautomer, and
ionization states of all chemical groups,
ligands, and solvent based templates are
available in a parameter file. Close contacts
and other poor geometry may cause
structure distortions. The tool is not
available for free.

Protoss [153,154,110],
2014

server: https://
proteins.plus/

SC ? AA
AA optimization

Adds hydrogen atom positions based on
optimal hydrogen bond networks in the
protein-ligand interface. Networks are
modeled as graphs. Uses an efficient
dynamic programming approach with
storing partial solutions and combining
them to globally optimal solutions. The
algorithm is split into two phases:
initialization (performed only once) and
optimization.

Can be used to model the protein-ligand
interface. Predicted hydrogen positions
were compared with those in high-
resolution protein structures (the test set
consisted of 34 hydrogen atoms from seven
protein structures). This approach does not
work well on strongly interconnected
graphs (1ps3). Samples 60 orientations for
a water molecule. The tool is faster than
Protonate3D.

(continued on next page)
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Table 1 (continued)

Method, reference and
year of the last
publication

Software availability* Reconstruction**
task

Description*** Benchmark sets and comments***

REDUCE (MolProbity)
[111,155], 2010

standalone: http://
kinemage.biochem.duke.
edu/software/reduce.php
a part of the MolProbity
server: http://molprobity.
biochem.duke.edu/

SC ? AA
AA optimization

Adds hydrogens based on expected atomic
geometry lengths and angles. Places
hydrogens to optimize local H-bonding
networks, avoid steric overlaps and detect
the correct orientations of side chains for
NQH residues, as well as imidazole ring,
OH, SH, NH3+, Met methyls, HET groups.
The protonation state of histidine is
adjusted based on the local environment.

Both proteins and nucleic acids can be
processed.
This approach is also efficient when a more
intensive approach is desired.
MolProbity evaluates X-ray and NMR
structures (ensemble structures of up to 80
models, accepts an mmCIF file and
automatically converts it to the PDB
hybrid36 format) and rebuilds the model
by removing outliers as part of the
refinement cycle.

WHAT IF
[112], 1990

server: https://swift.cmbi.
umcn.nl/servers/html/
index.html
select option: Hydrogen,
then Add Protons

SC ? AA
AA optimization

Adds all missing hydrogens to the
structure. It contains several servers which
additionally compute all possible hydrogen
bonds, but in default they do not determine
which bonds would be most favorable.

Uses the Optimal Hydrogen Bonds server
for computing the best possible hydrogen
bond network. The program works much
slower when the system contains many
water molecules. Dedicated for LINUX
systems.

Reconstruction from coarse-grained protein complexes with other biomolecules
BACKWARD [132],

2014
standalone: http://
cgmartini.nl/index.php/
back

Protein-lipid
MARTINI ? AA

Method for reconstruction from the
MARTINI coarse-grained representation of
protein-lipid systems. Uses a strictly
geometric approach based on Ca triplets for
rebuilding the protein backbone from
coarse-grained beads. It is possible to map
from MARTINI CG to united-aliphatic atom
(GROMOS) or all-atom (CHARMM, AMBER)
representation of single and multimeric
proteins.

Tested on 6 systems including lipid
bilayers, proteins in solution (YvoA),
membrane proteins (ASIC) and peptides
(WALP). Reconstruction quality RMSDBB:
<0.6 Å. The approach enables integral
backmapping and reconstructing complete
systems, including the solvent.

Stansfeld & Sansom
[133], 2011

Standalone available on
request from the authors
MemProtMD database:
http://memprotmd.bioch.
ox.ac.uk/

Protein-lipid
CG ? AA
optimization

Method for reconstruction from the
MARTINI coarse-grained representation of
protein-lipid systems. Uses fragment-
based libraries for reconstructing CG
complex protein-lipid bilayer systems. The
protocol starts from the MARTINI CG model
and uses all-atom force fields such as
CHARMM36, GROMOS and OPLS for final
energy minimization in MD simulations.
Atomic details of protein structure are
obtained by using MODELLER or PULCHRA.
Higher resolution of lipids is provided by
a library of atomistic lipid fragments.

Tested on 10 membrane protein-lipid
bilayer systems of different size and
complexity, generated by self-assembly
CGMD simulations (leuT, aquaporin, ELIC,
ASIC, Cyt Ox, KcsA, SERCA, b2AdR/lysozyme,
OmpC, OSC). This approach does not
attempt to convert united water particles.
The algorithm is implemented in perl
programming language.

Shimizu & Takada
[134], 2018

Standalone available on
request from the authors

Protein-DNA
CG ? AA
optimization

Method for reconstruction from coarse-
grained representation of protein-DNA
complexes. Uses a DNA fragment library
to reconstruct all-atomic details of DNA
and optimize side chain orientations of the
protein-DNA interface. Other fragments of
protein structure are modeled with PD2
and SCWRL4. The final stage of the
procedure includes the addition of all
hydrogen atoms by gmx (pdb2gmx) [156].
The method reconstructs atomic details
from a CG protein-DNA complex (CafeMol
representation), where an amino acid is
replaced by a single bead at the Ca position
and a deoxyribonucleotide by three beads
for the sugar, phosphate and base.

A library of 22,347 DNA fragments is
derived from high-resolution X-ray
structures from PDB. Tested on 180
complex protein-DNA experimental
structures with single or multiple DNA
chains and CG models obtained from
CGMD simulations. This approach provides
the tilt of a base plane well and proper
Watson-Crick base pairing of hydrogen
bonds and maintains the initial protein-
DNA interface. It should also be applicable
to other complexes as protein-ligand or
multi-protein systems.

* links to web servers or standalone methods have been provided only if working at the time of writing this publication.
** reconstruction tasks realized by outlined methods are summarized in the third column using the following shortcuts: contact map (CM), alpha carbon atoms (CA),
backbone atoms (BB), backbone and side chain atoms (SC), all-atom representation that includes backbone, side chain and hydrogen atoms (AA), coarse-grained repre-
sentation (CG).
*** some major or unique features are bolded for readers convenience.
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resolution of protein structures is required for many practical
structure-based studies, including drug design and protein design
[2–4]. Therefore, the practical use of coarse-grained protein models
and elastic network models requires integration with efficient
tools for rebuilding atomic details [1,157]. Ideally, the reconstruc-
tion procedure should be effective not only for regularly packed
folded protein structures, but also for models of disordered or par-
tially unfolded proteins [157,158].

In this mini-review, we provide an overview of the available
computational tools for reconstruction of all-atom protein struc-
tures from various levels of incomplete representation. The review
is organized as follows. First, we present the typical reconstruction
pipeline and visualize example coarse-grained protein models of
various resolutions (Section 2.1). Then, we review the computa-
tional methods for consecutive reconstruction steps from low to
high resolution levels: reconstruction from low-resolution and
contact maps (Section 2.2), backbone reconstruction from the C-
alpha trace (Section 2.3), side chain reconstruction from the back-
bone (Section 2.4), hydrogen atom reconstruction (Section 2.5) and
final optimization/refinement of all-atom structures (Section 2.6).
The reconstruction methods are described and reviewed in Table 1.
2. Protein structure reconstruction methods

2.1. Stages of protein reconstruction

Fig. 1 shows a typical reconstruction pipeline used in multiscale
modeling methods that merge coarse-grained protein modeling
tools with all-atom modeling. Coarse-grained protein models can
present different levels of resolution [1]. In the case of low-
resolution models (such as SICHO [5,6] or SURPASS [7,8]) the
coarse-graining level can be so deep that it does not take into
account even the explicit positions of alpha carbons (see Fig. 2).
Fig. 1. Typical stages of protein structure reconstruction. The required range of
reconstruction stages depends on the resolution of the initial models. For some
deeply coarse-grained (CG) models, the first step is to reconstruct positions of C-
alpha (CA) atoms. For most medium resolution CG models, recovering atomistic
details starts with backbone (BB) reconstruction from the CA atoms that is followed
by side-chain (SC) reconstruction and, subsequently, adding hydrogen atoms. The
geometry of the final all-atom structure can be further improved using various
refinement techniques.
In such cases, structure reconstruction requires an additional stage
addressed to determine the C-alpha trace from the unified atoms
that encode deeply averaged fragments of protein structure. This
is not a trivial task due to the lack of unambiguous mathematical
formula or simple geometric rules. However, as accurate as possi-
ble determination of the C-alpha trace plays crucial role for subse-
quent reconstruction of all-atom structure. C-alpha atoms are
explicitly present in majority of medium resolution coarse-
grained models (such as CABS [9], UNRES [10,11], AWSEM [12]
or MARTINI [13], see Fig. 2) and C-alpha based elastic network
models [157]. In these cases, the reconstruction procedure starts
from the C-alpha trace level. Higher-resolution coarse-grained
models, such as ROSETTA-centroid [14] (see Fig. 2), OPEP [15],
PRIMO [16] or PaLaCe [17], require side chains reconstruction from
protein backbone coordinates.
2.2. Reconstruction from low-resolution models and contact maps

Reconstruction from low-resolution coarse-grained protein
models is a significant challenge and depends on the specificity
of the model’s simplification. For example, the SICHO [5,6]
coarse-grained protein model (see Fig. 2) is based on an assump-
tion that the protein spatial structure is determined and main-
tained by interactions between packed side chains. The single
united atom per residue is located in the center of mass of the side
group. Based on side chain center positions, the C-alpha trace and
backbone heavy atoms can be reconstructed using a set of geomet-
ric criteria (for more details see the SICHO method in Table 1).
Another low-resolution SURPASS model [7,8] assumes the averag-
ing of short 4-residue long fragments of secondary structure to a
single united atom lying in the center of their mass. As a result,
the representation of regular secondary structure elements (a-
helices and b-strands) in this model is almost linear. The procedure
for recovering the C-alpha trace from SURPASS representation uses
the SUReLib library (see Table 1), which consists of short fragments
differentiated by the type of secondary structure. The positions of
rebuilt C-alpha atoms maintain correct geometry and spatial orien-
tation. Therefore, the reconstructed C-alpha trace can be used as a
source of restraints (distances, angles or contacts) for higher reso-
lution models or directly reconstructed to atomic resolution using
the available tools.

Protein contact maps are another kind of low-resolution protein
models generated by contact prediction methods [18]. The contact
maps are usually defined as binary entries or distance maps
between Ca or Cb atoms [18]. Distance restraints can also be an
outcome of low-resolution experimental data analysis (SAXS [19–
21], NMR [22], cryo-EM [23], XL-MS [24], HDX-MS [25,26]). Predic-
tion of contact maps (and their application in protein structure
modeling) has become more accurate and effective by using evolu-
tionary coupling analysis (DCA) of multiple sequence alignment
(MSA) and deep neural networks to detect high-order correlation
[27,28]. The reconstruction of three-dimensional protein structure
based on a specific contact map is an NP-hard problem. Using the
preferred contacts as restraints in de novo modeling can lead to
more accurate structure predictions than template-based model-
ing, especially for proteins without close homologs [29]. The pre-
dicted contact maps often contain a fraction of false contacts.
Some reconstruction from contact maps are robust to inaccurate
or incomplete sets of preferred contacts (e.g. FT-COMAR [30], CON-
FOLD [31,32], GDFuzz3D [33], see Table 1). Contact maps are typ-
ically used as distance restraints between pairs of alpha carbons or
as part of the force field in de novo structure modeling (e.g. CON-
FOLD, PconsFold [34]). Initial, partially random atomic positions
are optimized in an iterative procedure to satisfy the specified dis-
tance restrictions.



Fig. 2. Example tripeptide presented in all-atom and corresponding coarse-grained resolutions. Various coarse-grained modeling tools are shown: Rosetta-centroid,
MARTINI, CABS, UNRES, SICHO and SURPASS. Note that most coarse-grained models use explicit positions of (pseudo) atoms while ROSETTA uses a set of torsional angles u,w,
x to describe backbone geometry. The legend explaining the colors of atoms and pseudoatoms is presented in top right.
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2.3. Backbone reconstruction from C-alpha positions

The arrangement of alpha carbons in the polypeptide chain is
locally very regular with an average distance of 3.8 Å between
neighboring Ca atoms. There are many methods dedicated to
reconstruction of protein backbone coordinates, which provide
models of protein backbone geometry (or complete all-atom
structure) based on the C-alpha trace (see Table 1, section ‘‘Back-
bone reconstruction from CA-trace” and section ‘‘All-atom recon-
struction from CA-trace”). Heavy atoms (N, C, O) in the main
chain are usually added according to simple geometric criteria
based on bond lengths and angles in the peptide plane (proline
residues need separate treatment) [35–37]. The optimal roto-
translation of the peptide plane is usually provided by the
sequence-dependent statistical potential that assumes ideal bond
lengths and phi-psi angles. Instead of inserting individual atoms,
the other commonly employed approach is to use a library of
peptide backbone fragments [38–41]. The fragments, typically
from 4 to 15 residues long, are derived from non-redundant set
of known protein structures and collected in the library. The size
of libraries can be very wide and results from clustering strategy
and adopted criteria. Some libraries are built from several hun-
dred (e.g. 528 in PD2 method [39]) to even several thousand
structural components (e.g. 5148 of 4-residue fragments in BBQ
method [38]) with fixed or multiple overlapping fragment
lengths [42]. The strategy of using protein fragments of various
lengths is also successfully used by Rosetta [43], Modeller [44],
and I-TASSER [136] packages for protein structure prediction.
The large size and diversity of backbone libraries is likely to
ensure high accuracy of reconstructed structures, but it increases
the cost of calculations [45]. Therefore, much smaller size
libraries (a dozen or several tens of fragments) are offered by
methods based on structural alphabets such as Protein Blocks
[46], SA-HMM [47] SABBAC [40] and other methods [48–50].
The structural alphabets are libraries consisting of short (from
3 to 7 residue long) usually fixed-length backbone fragments,
that can be used as building blocks in protein reconstruction
[42,46,51]. During the reconstruction procedure, overlapping
fragments are selected from the library that best fit to the C-
alpha trace. Selection of preferred fragments is based on energy
scores, structural similarity, secondary structure assignment or
geometric matching criteria [35].
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Typically, the accuracy of the backbone reconstruction proce-
dure is evaluated using measurement of the RMSD values (average;
or of individual atoms: C, N, O; to a reference structure calculated
on main chain heavy atoms) and Ramachandran dihedral angles
(w, u). For example, comparison of selected methods for protein
backbone reconstruction from the C-alpha trace [39] showed that
PD2 (especially with minimization step) and BBQ remain the most
accurate due to RMSD and dihedral angle shifts criteria. Accuracy
of those tools can be further improved by additional refinement
of the protein backbone [52].

When considering the reconstruction of protein structures
from coarse-grained modeling, a very important aspect that
should be bear in mind is the ability of the method to handle
unphysical distortions of the initial C-alpha trace. The various
backbone reconstruction methods show different resistance to
small unphysical local distortions in the Ca chain that are often
present in coarse-grained models [1]. For some approaches, frag-
ments of incorrect C-alpha trace geometry can result in missing
parts of the rebuilt backbone or unphysical backbone distortions.
These may have significant impact on the quality of subsequent
side chain reconstruction, all-atom energy-minimization and
scoring [39]. Some of the backbone reconstruction methods (like
PD2 [39], SABBAC [40], ModRefiner [53], PULCHRA [54], RACOGS
[55]) have been designed to be robust to small (~1 Å) distortions
in the initial Ca chain of coarse-grained models. Methods like
PULCHRA and ModRefiner offer additional optimization of the
reconstructed main chain including Ca positions (see Table 1).
Finally, it should be noted that methods based on fragment
libraries, while usually effective in reconstruction of folded pro-
teins, do not always cope with unstructured/disordered fragments
of the protein chain.

2.4. Side-chain reconstruction from backbone

Side group interactions (hydrogen bonds, ionization, solvation,
contacts) have a major role for the stabilization of three-
dimensional protein structure [56–58] and binding interaction in
protein complexes [59–62]. Therefore, the accurate side chains
packing is important in structure prediction of proteins, their com-
plexes and protein design [59,63–65]. Except for a few methods
[66,67], most of the available side chain reconstruction methods
are based on the position of backbone atoms and use rotamer/con-
former libraries [68–72] with various strategies for the optimiza-
tion of side chain packing [73–80]. Such backbone-dependent
rotamer libraries define the probability of a given rotamer as a
function of the main chain dihedral angles. Thus, backbone distor-
tions (for example errors in backbone reconstruction) may have a
significant influence on the accuracy of reconstructed side chains.
However, minor backbone distortions are tolerated by some recon-
struction methods [53–55,81,82].

The prediction of side chain conformations and packing usually
involves three crucial modules:

� all-atom or coarse-grained rotamer library of discrete side chain
conformations (conformer library) or the frequency distribution
of rotational states (statistical rotamer library); rotamer models
differ in flexibility (rigid or flexible), number of available rota-
meric states, packing conditions (e.g. force field, score function)
and backbone dependencies

� set of energy functions to distinguish rotamer states (various
combinations of van der Waals and electrostatic potentials, sol-
vation effects, hydrogen bonds and orientation-dependent
terms)

� search algorithm for efficient sampling of the conformational
space of rotameric states: Monte Carlo Dynamics or Molecular
Dynamics, simulated annealing scheme, neural networks,
dead-end elimination, graph theory-based, self-consistent
mean field, branch-and-terminate, backtrack and various com-
binations of these approaches [73,83].

The side chain reconstruction methods try to strike the balance
between these modules by enhancing the sampling scheme
[86,74,87,76], optimizing terms of energy function [78,88–91] or
improving rotamers library [92–94]. Reconstruction of side chain
geometry defining their proper spatial packing is a much more
challenging task than reconstruction of the protein backbone. It
is related to the high flexibility of side groups, especially for larger
amino acids, defining a vast conformational space that needs to be
considered [57]. The complexity of the side chain reconstruction
problem can be simplified by using a finite number of variants of
the spatial arrangement of side-chain rotamers. Rotational states
are stored in the library, which can be efficiently searched even
for large proteins or their complexes [68,85]. Rotamers are selected
to avoid steric clashes and to provide favorable local interactions.

There are many software tools dedicated only to side-chain
reconstruction that available mainly as standalone programs
[76,79,77,92,96–99] (see Table 1, section ‘‘Side chains reconstruc-
tion from backbone”). The side-chain reconstruction methods are
also available within integrated software for reconstruction of
atomic details (including optimization of side chain packing) from
the initial C-alpha trace [37,41,44,53–55] (see Table 1, section ‘‘All-
atom reconstruction from CA-trace”).

A comparison of the best performing methods in various resi-
due environments (buried, surface, interaction interface,
membrane-spanning) and protein types (membrane, mono- and
multimeric) can be found in the comprehensive benchmark [73].
For all OSCAR (-o [78], -star [97]), OPUS (-Rota [96], -Rota2 [81]),
Upside [100], SCWRL4 [77], RASP [83] methods the overall accu-
racy exceeded 85% of v1 angle, 75% of v1 + v2 angles and below
1.5 Å of average RMSD between all-atoms in the predicted and
native side chain conformations. Interestingly, another evaluation
of some best performing algorithms suggested that for buried resi-
dues in the protein, the algorithms are close to the best possible
accuracy [95]. For exposed residues, there is large room for
improvement and the scoring functions seem to be the main obsta-
cle to correct side-chain packing [95]. Another room for improve-
ment remains also in the design and specialization of rotamer
libraries. This has been recently demonstrated in the work on the
PEARS tool [82], a family specific side-chain predictor for antibod-
ies, in which rotamers are binned according to their immunogenet-
ics position rather than their local backbone geometry. The concept
of PEARS is potentially generalizable to other protein families, pro-
vided that enough structural data is available.

The computational efficiency of thesemethods differs significantly.
For example, the Upside method is extremely fast (Upside needs
0.006 s per 100 residues). RASP, OPUS-Rota2 and SCWRL4 methods
are approximately 15, 150 and 300 times slower, respectively. The
OPUS-Rota and the OSCAR-star are almost equally fast as the SCWRL4
and the OSCAR-o is 2 orders of magnitude slower [81,83,100].

Taking into account methods accuracy, efficiency and various
features, different methods may be better in different applications
(see Table 1). For example, Upside and OPUS-Rota2 methods have
been tested in modeling of non-native conformers and can be very
efficient as a component of multiscale modeling protocols for sim-
ulation of protein dynamics. SCWRL4 and OPUS-Rota methods are
easy-to-use and well tested in the application to homology model-
ing. Also, SCWRL4 can improve the interactions of side chains
within the crystal conformations, which can be useful in molecular
replacement, structure refinement or prediction of protein-protein
interfaces [77]. Both OPUS- and OSCAR- tools variants are sensitive
to side chain orientations and used in selecting near-native confor-
mations from decoys [101,102].
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2.5. Hydrogen atom reconstruction

Hydrogen atoms account for nearly half of the atoms in pro-
tein structure. Omitting them in coarse-grained modeling enables
significant simplification of the conformational space and acceler-
ation of calculations by an order of magnitude. However, a more
detailed analysis of system energy (e.g. ligand binding to a pro-
tein) requires an accurate physicochemical force field, in which
hydrogens are treated in an explicit manner and their location
significantly contributes to system energy (hydrogen bonds, ion-
ization, solvation, contacts and structure stabilization). There are
many tools for placing hydrogen atoms according to geometric
criteria, and they also include specific effects, such as tautomeric
or protonation states. The experimental structures or recon-
structed models may have local stresses or clashes that require
additional energy optimization. To minimize energy, some meth-
ods also refine the final structure using molecular dynamics sim-
ulations (see Table 1) or even quantum-mechanical calculations
[103].

For most Protein Data Bank entries the experimental structures
contain incomplete information about the proper location of
hydrogen atoms. The main limiting factor for experimental tech-
niques in the detection of hydrogen positions is their high mobility.
However, the hydrogen occurring in various functional groups dif-
fers in rotational flexibility. Tautomeric states occur mainly in his-
tidine and carboxyl groups. Torsional angle changes based on the
rotation of the hydrogen position around the bond with the heavy
atom involve mainly hydroxyl, thiol and amine groups. Protonation
states differ in the number of hydrogens in the functional group
due to losing (negative charge for carboxyl or thiol) or adding a
proton (positive charge for amine or imidazole). Side chain flips
occur in amide and imidazole groups and are particularly frequent
for glutamine and asparagine residues.

Several tools that address the location of hydrogen atoms in
protein structure have been developed (see Table 1, section
‘‘Hydrogen atom reconstruction”). Some of them add hydrogen
according to simple geometric criteria (CHIMERA [104], PyMOL,
DeepView [105]), while others take into account more subtle inter-
actions and perform additional optimization (Computational Titra-
tion [106], HAAD [107], MCCE [108], Protonate3D [109], Protoss
[110], REDUCE [111], WHAT IF [112]) or employ molecular dynam-
ics (CNS [113], GROMACS [114], Hbuild [115]). Adding hydrogen
atoms is a necessary step in crystallographic structure refinement,
theoretical structure prediction, or calculation of associated bind-
ing energies [107,116]. A typical hydrogen reconstruction scheme
involves initial placement of atoms according to geometric criteria
which are then optimized by conformational search guided using
empirical or physicochemical energy terms [113–117] or heuristic
approaches [111,112]. Most methods are very effective in predict-
ing the position of a hydrogen atom that is bonded to a tetrahedral
geometry atom (both C and N), especially when the positions of the
other three atoms are known. Quite good compatibility was also
obtained for planar hydrogens and CH2-type groups. It is slightly
more difficult to predict the orientation of the CH3 and NH3 groups
due to their high rotational flexibility and planar amine groups in
asparagine, glutamine and arginine. In this case, geometry-based
methods provide the highest accuracy (MCCE, WHAT IF) [116].
CHARMM software seems to be an efficient tool to predict hydroxyl
and water hydrogens [116]. The HAAD [107] method is very effec-
tive in avoiding steric clashes in the densely packed hydrophobic
protein core. REDUCE [111] and several recently developed tools
such as Protoss [110] or Protonate3D [109] effectively take into
account the effects of rotamers, tautomers and ionization states
as well as side chain flips.
2.6. Optimization of all-atom structure

The accuracy of all-atom protein models, obtained using protein
reconstruction methods and/or experimental techniques, can be
further improved using physics-based energy-minimization and
simulation techniques [84,6]. Most commonly, the optimization
step is the last step of reconstruction procedures. However, energy
minimization can be also combined with different reconstruction
steps. This is the case of the ModRefiner method [53] which uses
two-step atomic level minimization: the first one to refine the
backbone only, and the second one to refine all-atom models.

Optimization of protein models can be short-timescale and
aimed at local-scale improvement [118,119], i.e. side chain repack-
ing, loop remodeling or optimization of hydrogen bonding in sec-
ondary structure elements. Much more challenging is deeper
long-timescale optimization aimed at large conformational
changes toward more accurate model [118,120–125]. The most
common approach for optimization of protein models is all-atom
Molecular Dynamics (MD) [120–123]. Long-timescale MD simula-
tions require enormous computational resources but they can usu-
ally be significantly accelerated by proper sampling strategies
[126–129], use of spatial restrains and knowledge-based informa-
tion [120–123,159,160]. The recent evaluation of protein refine-
ment techniques in the CASP12 experiment showed that the best
performing approaches used restrained MD simulations alone, or
in combination with other tools [122].

3. Summary

For successful reconstruction of all-atom protein models, com-
putational methods most commonly use a set of geometric rules,
libraries of protein fragments, various simulation techniques or
their combinations. The most effective strategy for backbone
reconstruction of folded proteins seems to be assembly from
known protein fragments. This is because of the well-defined char-
acter of the protein backbone that is structurally conserved among
homologous proteins and maintains major structural regularities
in protein fragments of similar sequence. What’s important to bear
in mind, the accuracy of backbone reconstruction has significant
impact on the accuracy of subsequent side-chain reconstruction
and energy-based scoring of obtained models [39,81]. Reconstruc-
tion of side chain positions is a challenging problem and also in this
case statistical regularities extracted from known protein struc-
tures can be useful [82]. The problem is NP-hard in nature and only
suboptimal solutions are available. Nevertheless, for many recon-
struction tasks such suboptimal solutions are satisfactory. Eventu-
ally, the performance of backbone and side chain reconstruction
stages can be improved through combination with physics-based
optimization techniques.

Methods of protein structure reconstruction from incomplete
models are already commonly used and will be valuable compo-
nents of modeling strategies that integrated data from various
sources. Those sources include experiment (like SAXS, NMR, X-
ray, cryo-EM [19–23,84] or measurements of the activity of mutant
protein variants [130,131]) and theoretical predictions (like
residue-residue contact predictions from evolutionary information
[27,28] or simulation trajectories in coarse-grained resolution
[1,157,158]). Since the all-atom MD is the most widely employed
simulation method, the local quality and stability of reconstructed
structures should be tested by using them as starting points for the
all-atom MD. The growing number of experimental data or coarse-
grained predictions on the structure of protein complexes also call
for reconstruction methods designed for refining structural
models of different biomolecules (the examples of methods for
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reconstruction of protein-lipid [132,133] and protein-DNA [134]
systems are presented in Table 1). This short review focuses on
reconstruction tools which use various kinds of coarse-grained
protein representations as the input. Note that there are also a
number of tools, not discussed in this review, that enable filling
the gaps of missing residues in protein structures [135–137].

Finally, we hope this short review can be a useful reference to
existing protein reconstruction resources. They may be useful for
design and development of new efficient molecular modeling tools,
but also for a much larger community of bioscientists who may use
reconstruction methods as supporting tools for deeper analysis and
illustration of experimental data in structural biology, biomedicine
and other branches of molecular biology. The tools available as
web servers (see the availability column in Table 1) are probably
the easiest to access and use.
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