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ABSTRACT A simple protein model restricted to the face-centered cubic lattice has been studied. The model interaction
scheme includes attractive interactions between hydrophobic (H) residues, repulsive interactions between hydrophobic and
polar (P) residues, and orientation-dependent P-P interactions. Additionally, there is a potential that favors extended b-type
conformations. A sequence has been designed that adopts a native structure, consisting of an antiparallel, six-member Greek-
key b-barrel with protein-like structural degeneracy. It has been shown that the proposed model is a minimal one, i.e., all the
above listed types of interactions are necessary for cooperative (all-or-none) type folding to the native state. Simulations were
performed via the Replica Exchange Monte Carlo method and the numerical data analyzed via a multihistogram method.

INTRODUCTION

Despite their enormous conformational space, small globular

proteins rapidly fold to a well-defined densely packed native

structure and with a transition that resembles a first-order

phase transition (Ptitsyn, 1987; Anfinsen, 1973; Jackson,

1998). Due to the small size (several hundreds of atoms) of

a protein that precludes any notion of the thermodynamic

limit, this abrupt and cooperative folding transition is

frequently abbreviated as the all-or-none transition to

underline the very small population of folding intermediates

at the transition temperature (Shakhnovich and Finkelstein,

1989b; Scheraga et al., 1995). In this paper, we attempt to

design a minimal protein-like model that in a qualitative way

mimics the most pronounced features of globular proteins

(Baker, 2000). These features include: the existence of

a lowest energy native state that has secondary structure

features, a well-defined hydrophobic core, and a unique,

quite complicated, Greek-key (Branden and Tooze, 1991)

topology. Additionally, the model has to reproduce a co-

operative all-or-none folding transition and the cooperative

formation of secondary structure upon the collapse (or

folding) transition (Shakhnovich and Finkelstein, 1989a).

The last features are the major difference between this model

and other well-known simple-exact cubic lattice models (Dill

et al., 1995; Abkevich et al., 1996; Dinner et al., 1996;

Karplus and Sali, 1995). We also provide proof that the

designed model is indeed a minimal model, i.e., that one

needs all the proposed components of the interaction scheme

to ensure the above outlined protein-like features are present.

The protein model we adopt is a face-centered cubic lattice

chain, with the chain beads representing the polypeptide

amino acid units. Each amino acid residue is characterized

by two fundamental properties: its hydrophobicity (that

dictates the character of the binary interactions) and its

secondary structure propensity (that encodes the tendency to

adopt a specific rotational-isomeric state of a chain frag-

ment). As demonstrated in many earlier studies, such an

interplay between the short- and long-range interactions

leads to cooperative collapse transitions in a finite length

polymer (Kolinski and Skolnick, 1996; Kolinski et al., 1986;

Kolinski et al., 1996; Post and Zimm, 1979). Here, for the

first time, we provide quantitative arguments that the exis-

tence of both types of interactions is actually a necessary

condition for protein-like behavior.

PROTEIN MODEL

In this section, a detailed description of the model is provided. The purpose

of the rigorous math-type definition of the model is to provide a convenient

and precise notation for the following section, where the model’s energy

landscape (Bryngelson et al., 1995; Onuchic et al., 1997) is analyzed in

considerable detail.

Representation of protein conformation

The model polypeptide is restricted to a face-centered cubic lattice (fcc).

There are 12 orientations of the fcc vectors, which form a BASE, base set, of

the lattice. This set could be written as:

BASE ¼ fe1; e2; . . . ; e12g; (1)

where: e1 ¼ (1,1,0), e2 ¼ (1,�1,0), e3 ¼ (1,0,1), e4 ¼ (1,0,�1), e5 ¼ (0,1,1),

e6 ¼ (0,1,�1), e7 ¼ (0,�1,1), e8 ¼ (0,�1,�1), e9 ¼ (�1,0,1), e10 ¼
(�1,0,�1), e11 ¼ (�1,1,0), and e12 ¼ (�1,�1,0).

The fcc lattice, FCC, may be defined by induction as follows:

ð0; 0; 0Þ 2 FCC; (2a)

and: if e 2 BASE; x 2 FCC; then xþ e 2 FCC: (2b)

Points x1, x2 2 FCC are neighbors on the lattice if there exists e 2 BASE,

such that x2 ¼ x1 þ e. We write in this case: x1 ; x2.
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Let CHAIN ¼ {1, . . . ,N} be a set of residues in a polypeptide chain. A

structure of a polypeptide is represented on the lattice by a function s:
CHAIN ! FCC, which satisfies the following three conditions:

sð1Þ ¼ ð0; 0; 0Þ; (3a)

if i 2 CHAIN; i\N; then sðiþ 1Þ ; sðiÞ; (3b)

if i; j 2 CHAIN; i 6¼ j; then sðiÞ 6¼ sð jÞ: (3c)

We will identify a structure with its representation on the lattice, and we

denote by S the set of all structures. S will be called the conformational

space. It is easily seen that

#S\123 11N�2; (4)

where the symbol # denotes the number of elements in a set. The above

inequity reflects the ‘‘attrition’’ of conformations due to the excluded

volume of the chain.

Representation of the polypeptide sequence

A sequence of the chain is defined by its hydrophobic pattern Pat:

CHAIN ! {H,P} and its secondary structure Sec:CHAIN ! {b,C}. This

means that from the point of view of the long-range pairwise interactions,

there are two types of residues (Dill et al., 1995): nonpolar, hydrophobic (H)

and polar (P). Moreover, on the level of secondary structure, or chain

stiffness, b stands for extended, b-type short-range interactions, and C

denotes the flexible coil, or loop, regions. Thus, the model employs a four-

letter sequence code.

Interaction scheme

The definition of a model polypeptide sequence implies two main types of

molecular interactions. First, the long-range interactions depend on the

number of contacts between residues. Let vi(s) be a vector from s(i) to s(i þ
1). We will write it simply as vi. A pair of vectors, (vi�1,vi) and (vj�1,vj), are
called parallel (notation: vi�1,vi k vj�1,vj) if either vi�1 ¼ vj�1 and vi ¼ vj or
vi�1 ¼ �vj and vi ¼ �vj�1. For a given structure s, we define functions

counting three types of long-range contacts between residues:

KHHðsÞ ¼ #ffi; jg: ji� jj[1; sðiÞ ; sð jÞ;
PatðiÞ ¼ Patð jÞ ¼ Hg; (5a)

KHPðsÞ ¼ #ffi; jg: ji� jj[1;

sðiÞ ; sð jÞ; PatðiÞ 6¼ Patð jÞg; (5b)

KPPðsÞ ¼ #ffi; jg: ji� jj[2; sðiÞ;sð jÞ; PatðiÞ ¼ Patð jÞ
¼ P; vi�1; vikvj�1; vjg: (5c)

Note that PP interactions are counted only for the residues contacting in

a parallel fashion, reflecting the tendency of the parallel packing of polar side

chains on the surface of a protein (Ilkowski et al., 2000).

The short-range interactions simulate the local conformational stiffness

of the polypeptide chains. Here, for illustration, we limited ourselves to the

case of b-type proteins. Let us denote by x � y the dot product of vectors x, y.
The number of residues with preferences to be in b-strands is defined as

follows:

KbðsÞ ¼ #fi: SecðiÞ ¼ b; vi�2�vi�1 ¼ vi�1�vi ¼ 1;

vi�2�vi ¼ 2g: (6)

The geometric conditions mean that a given three-bond fragment has the

most expanded conformation with its planar angles equal to 1208.

Let K(s) ¼ (KHH(s),KHP(s),KPP(s),Kb(s)) be a vector defining the

numbers of various interactions and e ¼ (eHH,eHP,ePP,eb) be a vector of

weights, or the force-field parameters. The conformational energy of

a structure s is, by definition, a linear combination of its contacts:

EðsÞ ¼ e�KðsÞ: (7)

Recently, we have shown that this model exhibits a highly cooperative

all-or-none collapse transition (Gront et al., 2001) into a three-dimensional

structure of unique Greek-key topology (Branden and Tooze, 1991). Here,

we would like to show that a very similar model is indeed minimal, i.e., that

the design of the force field is not accidental and that one needs nonzero

values of all the proposed interactions to obtain a protein-like folding

transition. The same, quite complex topology of the native state is assumed,

which is an antiparallel six-stranded Greek-key b-barrel typical for

a significant fraction of real b-type proteins. The force field has been

simplified with respect to the previously studied model (Gront et al., 2001).

The present model constitutes a highly simplified version of our older

studies of a Greek-key folding motif (Kolinski et al., 1995), where the effect

of multibody potentials on protein dynamics and thermodynamics were

investigated in a framework of high coordination lattice model of

polypeptide chain (Kolinski et al., 1996).

Definition of the target native structure

The target structure is an ‘‘ideal,’’ six-stranded, antiparallel, b-barrel motif

with a Greek-key topology, assumed to be a lattice representation of the

‘‘native structure’’ (see Fig. 1A). Using the numbers representing the BASE

vectors, this structure could be abbreviated as follows:

Native ¼ 11; ð6; 11Þ
L
; 9; ð7; 2Þ

L
; 7; 1; ð6; 11Þ

L
;

6; 4; 3; ð7; 2ÞL; 1; 11; ð6; 11ÞL; 9; ð7; 2ÞL; 7; (8)

The following sequence has been designed to be consistent with the

above six-stranded b-barrel structure:

SecðCHAINÞ ¼ ðC2b2L�1CÞ6; (9a)

FIGURE 1 Model six-stranded Greek-key b-barrel on the face-centered

cubic lattice. (A) The N-terminus is shown in blue and the C-terminus in red.

(B) Illustrates the well-defined hydrophobic core of the barrel (hydrophobic

residues shown in green). The polar residues (shown in red ) point outside of

the structure. The loops contain longer sequences of the polar residues. (C )

Shows five distinct conformations of the native state (viewed from the top

of the barrel ). The total number of native conformations is 20 (see the text

for details). All have exactly the same conformational energy and pattern of

interactions. They differ in small details involving the mutual positions of

the b-strands.
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PatðCHAINÞ ¼ ððPHÞLP3ðPHÞLPÞ3; (9b)

where L is a number of hydrophobic residues in one strand of the native

structure. L is a parameter of the size of the model, and it is easy to verify

that the number of residues N ¼ 12(L þ 1). The designed model appears to

satisfy the principle of ‘‘minimal’’ (energetic) frustration, in the sense that

the PH pattern and the pattern of secondary propensities are consistent with

the structure shown in Fig. 1 B. The native structure for this model is

degenerate, i.e., several very similar (but not the same) structures have

exactly the same pattern of interactions with a well-defined hydrophobic

core, polar surface, and clearly defined secondary structure. As shown in

Fig. 1C, there are five basic variants of the native structure depending on the

projection of the structure onto the plane containing the ends of the chain and

the tops of the b-hairpins. Each of these structures has two substructures that

differ with the location of a single 908 planar angle near the hairpin end.

Finally, each substructure has a mirror image topology, due to the lack of

any chiral interactions in the model. All together, the native structure appears

in 20 forms. The forms have exactly the same (the same contribution from

various components of the interaction scheme) interactions and the same

topology (modulo their mirror image) but have a slightly different detailed

geometry. This conformational degeneracy of the model’s native state is

probably quite physical. Indeed, in real proteins the native structure could be

quite mobile, with (at least) changes of side-chain rotamers. In both cases (in

the model and real proteins), the degeneracy of the native state provides an

entropic stabilization of the native structure.

RESULTS

Native state and alternative
low-energy conformations

To explore the conformational space of the model, we

performed a large number of Replica Exchange Monte Carlo

simulations (Hansmann, 1997; Hansmann and Okamoto,

1997; Hansmann and Okamoto, 1999; Gront et al., 2000;

Gront et al., 2001; Hukushima and Nemoto, 1996; Sugita

and Okamoto, 1999; Swendsen and Wang, 1986) for various

values of L ¼ 2,3,4 (only the results for L ¼ 4 are discussed

in detail) and different vectors of interaction parameters e.

We found all 20 different forms of our native structure and

a collection of regular, nonnative structures which, depend-

ing on the model parameters, were the global minimum

of energy. These competitive structures are schematically

shown in Fig. 2, and their lattice representations are listed

in Table 1. The interaction patterns in these structures were

analyzed in detail, and the results are given in Table 2. While

competitive structures (and the native structures) were found

many times in various simulations, no other lower energy

structure was ever recorded, regardless of the very broad

range of the interaction parameters explored.

According to Anfinsen’s hypothesis (Anfinsen, 1973), for

a meaningful model the native structure has to be of

minimum conformational energy. To have ‘‘protein-like’’

energy landscape the conformational energy of the native

state needs to be lower than the energy of all competitive

structures (misfolds M1–M8). This implies the following

system of linear inequalities:

EðNativeÞ\EðMiÞ i ¼ 1; 2 . . . 8 (10)

According to the interaction patterns provided in Table 2,

for i ¼ 1,2,. . .8, the above inequalities imply the following

set of relations between the parameters of the models:

ð11:1Þ eHP\ �eb
ð11:2Þ �ePP\ðeHP � ebÞ=2
ð11:3Þ �4ePP[0

ð11:4Þ �ePP\7LeHP=ð5Lþ 2Þ
ð11:5Þ �eHH\ð6eHP þ ð4Lþ 1ÞePP

� ð12L� 9ÞebÞ=ð12L� 12Þ
ð11:6Þ �eHH\ð2Lþ 1ÞeHP=ðL� 1Þ
ð11:7Þ �5LeHH[0

ð11:8Þ �eHH[ð4LeHP þ 4ðLþ 1ÞePPÞ=ð5LÞ (11)

A simple consequence of the above inequalities is that

our force field is minimal. It is easy to see that eHP, �eHH,
�ePP,�eb[0. Indeed, inequalities (11.3) and (11.7) trivially

mean that �ePP [ 0 and �eHH [ 0, respectively. The last

condition, together with (11.6), gives eHP [ 0. Similarly,

from (11.1) one obtains �eb [ 0. Let us also note that the

requirement of the parallel contacts of the polar residues in

the definition of KPP is a necessary one. Without such an

assumption, the competitive structure M3 would have

exactly the same pattern of interactions K as the native

ones. Consequently, the force field seems to be the simplest

one able to satisfy the thermodynamic hypothesis in the

context of our lattice model. Thus we have shown that the

FIGURE 2 Snapshots of the eight low-energy conformations (for some

values of interaction parameters) that might compete with the native

structure. More complex structures are shown in two alternative projections.
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model force field is minimal, i.e., to have a protein-like

model, one needs all types of interactions considered in this

work.

The above statement about a minimal character of the

interaction scheme relies on our definition of the native state

and the assumption that the other low-energy states found

in a broad range of interaction parameters are nonnative,

misfolded structures. Let us discuss these misfolds in more

detail, pointing out their non protein-like features. They are

abbreviated with the symbols M1–M8 in Fig. 2. M1 differs

from the native only with the orientation of a single residue

on the C-terminus. Instead of pointing along the barrel, it

points sidewise. It was assumed that these kinds of

conformations deviate from the regular Greek-key topology

and are less ‘‘protein-like’’ than the native target structure.

Structure M2, although a compact and regular one, has

a different topology. Two loops placed on top of each other

are not typical of globular proteins. The topology of M3 is

wrong, and some of its P-P contacts are not parallel and,

therefore, are not counted. The M4 and M6 structures have

a poorly defined hydrophobic core. Interestingly, structures

M4-M6 are more compact than the native one. Simply,

a number of polar residues are buried. Additionally M5

lacks most of extended b-type secondary structure. Struc-

tures M7 and M8 do not have well-defined hydrophobic core

and are not completely folded. As one might intuitively

expect (and it is apparent from the quantitative analysis of

the following sections), these misfolds result from a wrongly

balanced strength of various (short-range and long-range)

interactions.

An upper bound for a set of good parameters

Let us denote by E a set of good parameters, i.e., a set of such

e, for which the native structure corresponds to the global

minimum of conformational energy. Obviously, for every

pair of structures s1, s2 2 S and a positive number a, condi-
tions E(s1) \ E(s2) and aE(s1) \ aE(s2) are equivalent.

Therefore, without loss of generality we can assume that�eb
¼ 1 and identify e 2 E with the restrictions on (eHH,eHP,ePP).
It is easy to see that the system of inequalities (11) is satisfied

if and only if e 2 EU, where EU is the convex polyhedron

given by the vertices listed in Table 3. Obviously EU is an

upper bound for E, which means that E � EU. The shape of

the EU is schematically drawn in Fig. 3. Of course, the

specific shape of EU depends on the choice of the set of

competitive structures, which define the set of inequalities as

the one given in Eq. 11. On the other hand, the competitive

structures were selected very carefully, and they appear to

be representative. We searched for the lowest energy con-

formations over a broad range of interaction parameters and

found no other low energy structures. Therefore, it is very

unlikely that adding more structures to the set of competitive

structures could significantly change the estimation of the

upper bound for the set of good parameters of the model.

A lower bound for a set of good parameters

In this section we are concerned with a lower bound for E.
Let e0 be the center of mass of EU. By the definition e0 ¼
(e1 þ e2 þ� � �þ e10)/10. Let us also define the set ei(d) ¼ dei
þ (1 � d)e0, where i ¼ 1,2, . . . ,10 (enumerating the vertices

TABLE 2 Number of contacts in the native and

competitive structures

Name KHH KHP KPP Kb

Native 9L 4L 4Lþ4 12L�6

M1 9L 4L�1 4Lþ4 12L�7

M2 9L 4Lþ1 4Lþ6 12L�7

M3 9L 4L 4L 12L�6

M4 9L 11L 9Lþ6 12L�6

M5 21L�12 4Lþ6 8Lþ5 3

M6 14L�5 14Lþ5 4Lþ4 12L�6

M7 4L 4L 4Lþ4 12L�6

M8 4L 0 0 12L�6

TABLE 1 Formulas for native and all competitive structures

Name Formula

Native 11,(6,11)L,9,(7,2)L,7,1,(6,11)L,6,4,3,(7,2)L,1,11,(6,11)L,

9,(7,2)L,7

M1 11,(6,11)L,9,(7,2)L,7,1,(6,11)L,6,4,3,(7,2)L,1,11,(6,11)L,

9,(7,2)L,1

M2 8,(10,8)L,2,3,(5,3)L,6,10,(10,8)L,2,3,(5,3)L,6,(10,8)L,10,

11,(5,3)L,5

M3 11,(6,11)L,12,2,(7,2),8,11,(6,11)L,9,(7,2),7,5,(6,11)L,6,

1,(7,2),7

M4 11,(9,11)L,10,(2,4)L,2,12,11,(9,11)L,3,(2,4)L,2,12,11,

(9,11)L,10,(2,4)L,2

M5 11,(5,12)L�1,9,5,10,8,4,(8,1)L,5,(5,12)L�1,9,5,10,8,4,

(8,1)L,5,(5,12)L�1,9,5,10,8,4,(8,1)L�1,8

M6 1,(3,1)L,10,(10,12)L,10,8,(3,1)L,3,3,12,(10,12)L,8,1,

(3,1)L,10,(10,12)L,10

M7 11,(6,11)2Lþ1,1,2,(7,2)2Lþ1,1,11,(6,11)2Lþ1

M8 6,(10,6)L,5,3,(7,3)L,1,(6,11)L,6,8,(2,7)L,2,12,(10,6)L,10,8,

(7,3)L,7

As explained in the text the native structure exists in twenty conformations

(given the first vector fixed). Similarly, the competing structures have

multiple conformations with the same pattern of interactions.

TABLE 3 Vertices of EU under the assumption that: 2eb 5 1

Vertex (�eHH, eHP, �ePP)

e1 ((4L�3)/(8Lþ2)) � ((2Lþ1)/(L�1), 1, 0)

e2 ((4L�3)/((37Lþ12)(4Lþ1))) � ((6Lþ3)(5Lþ2)/(L�1),

15Lþ6, 21L)

e3 ((40L2�41Lþ15)/(6L�6), 5Lþ2, 7L)/(9L�2)

e4 ((2L�1)/(3L�3), 1, 1)

e5 ((12L�3)/(12L�12), 1, 0)

e6 (0, 0, 0)

e7 (0, 5Lþ2, 7L)/(9L�2)

e8 (0, 1, 1)

e9 (0, 1, L/(Lþ1))

e10 (4/5, 1, 0)
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of the polyhedron EU as shown in Fig. 3) and 0 \ d \ 1.

Suppose, for a moment, that the native structure is a unique,

global minimum of E in ei(d), i ¼ 1,2, . . . ,10. Therefore, by
the fact that a convex combination of interaction parameters

does not change the energy order of structures, the native is

a unique, global minimum of E in the convex polyhedron

EU(d) defined by vertices ei(d), i ¼ 1,2, . . . ,10. Obviously
EU(d) � E � EU and EU(d)!EU if d!1.

Unfortunately, we are not able to prove EU(d) � E for

some value(s) of d. However, a credible estimation of the

lower bound of the parameter space could be obtained from

computer experiments. In many Monte Carlo simulations,

we obtained the native structure as a unique, global mini-

mum of E in large sets of structures visited during the simula-

tions where Replica Exchange Monte Carlo was employed

as a sampling scheme.

Thermodynamics of the model

Replica Exchange Monte Carlo sampling combined with

the histogram method provided data for analysis of the

thermodynamic properties of the model. Each computational

experiment consisted of two parts. The first stage employed

16 replicas with 106 attempts to replica exchange (per

replica) and 103 local moves (also per replica) between the

exchanges. In the next stage we employed 3–5 replicas with

33 106 replica exchanges and 103 micromodifications

between exchanges. The temperatures of particular replicas

were linearly distributed around estimated (in preliminary

simulations) transition temperature. A modified multihisto-

gram method of Ferrenberg and Swendsen was employed for

analysis of the system thermodynamics (Ferrenberg and

Swendsen, 1988; Ferrenberg and Swendsen, 1989; Newman

and Barkema, 1999).

The thermodynamics of the model system is analyzed in

terms of the density of states; this enables us to define the

distribution of states for the model system.

wðE9Þ ¼ #fs 2 S: EðsÞ ¼ E9g (12)

and

pTðE9Þ ¼ Z�1
T wðE9Þ expð�E9=kBTÞ; (13)

FIGURE 3 Illustration of the upper-bond estimation of the set of ‘‘good

parameters’’ of the model, where the native conformation has the lowest

conformational energy. It is assumed that eb ¼ �1. The coordinates of the

vertices 1–10 could be read from Table 3 for a given value of the barrel size

parameter L ¼ 4. See the text for details.

TABLE 4 Selected points from EU for our

Monte Carlo simulations

Point �eHH eHP �ePP %

e0 0.57 0.70 0.48 31.1

e1 1.15 0.38 0.0 45.7

e1(0.95) 1.12 0.40 0.02 45.0

e1(0.75) 1.0 0.46 0.12 42.5

e1(0.5) 0.86 0.54 0.24 39.2

e2 0.95 0.32 0.40 46.9

e2 (0.95) 0.93 0.33 0.41 46.4

e2 (0.75) 0.85 0.41 0.42 43.6

e2 (0.5) 0.76 0.51 0.44 40.0

e3 0.80 0.65 0.82 45.3

e3 (0.95) 0.79 0.65 0.81 44.9

e3 (0.75) 0.74 0.66 0.74 42.4

e3 (0.5) 0.69 0.67 0.65 39.2

e4 0.78 1.0 1.0 43.3

e4 (0.95) 0.77 0.98 0.97 42.8

e4 (0.75) 0.73 0.92 0.87 40.8

e4 (0.5) 0.68 0.85 0.74 37.9

e5 1.25 1.0 0.0 40.8

e5 (0.95) 1.22 0.98 0.02 40.5

e5 (0.75) 1.08 0.92 0.12 38.7

e5 (0.5) 0.91 0.85 0.24 36.3

e6 0.0 0.0 0.0 0.0

e6 (0.95) 0.03 0.03 0.02 2.3

e6 (0.75) 0.14 0.17 0.12 10.1

e6 (0.5) 0.29 0.35 0.24 18.7

e7 0.0 0.65 0.82 12.5

e7 (0.95) 0.03 0.65 0.81 14.1

e7 (0.75) 0.14 0.66 0.74 18.1

e7 (0.5) 0.29 0.67 0.65 23.2

e8 0.0 1.0 1.0 8.7

e8 (0.95) 0.03 0.98 0.97 10.3

e8 (0.75) 0.14 0.92 0.87 15.5

e8 (0.5) 0.29 0.85 0.74 21.7

e9 0.0 1.0 0.80 0.0

e9 (0.95) 0.03 0.98 0.78 2.3

e9 (0.75) 0.14 0.92 0.72 10.1

e9 (0.5) 0.29 0.85 0.64 18.7

e10 0.80 1.0 0.0 23.4

e10 (0.95) 0.79 0.98 0.02 23.9

e10 (0.75) 0.74 0.92 0.12 25.4

e10 (0.5) 0.69 0.85 0.24 27.6

It is assumed that �eb ¼ 1, L ¼ 4, and in the last column there is a percent

of energy of long-range interactions.
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where ZT is the partition function SE9 w(E9)exp(�E9/kBT).
This allows the definition of entropy and free energy of the

system to be:

SðE9Þ ¼ kBlogðwðE9ÞÞ (14)

FTðE9Þ ¼ E9� TSðE9Þ ¼ �kBTðlogðpTðE9ÞÞ þ logðZTÞÞ:
(15)

At an infinite temperature the system energy can be esti-

mated as:

hEi‘ ¼ SE9E9wðE9Þ=SE9wðE9Þ: (16)

This enables a definition of an equivalent of the system

calorimetric enthalpy:

DEcal ¼ hEi‘ � Enative (17)

The ratio of van’t Hoff and calorimetric enthalpy is a

conventional way to measure the transition cooperativity:

k ¼ 23 Tmax½kBCvðTmaxÞ�1=2=DEcal (18)

Cooperativity coefficient k assumes value 1 for strictly

two-state all-or-none folding transition. Tmax is the temper-

ature corresponding to the maximum Cv(Tmax) of the heat

capacity curve. The heat capacity is measured in a standard

way from the fluctuations of the system conformational

energy. This analysis follows the approach employed

previously by Chan and co-workers (Chan, 2000; Kaya

and Chan, 2000a,b).

Fig. 4 shows the plots of the average system energy (A)
and the average heat capacity (B) as the functions of the

dimensionless absolute temperature for the central point of

the EU set. These quantities were calculated via canonical

averaging (with the free energy given in Eq. 15). The

transition temperature T ¼ 0.4246 is very well-defined by

the maximum of the heat capacity at constant volume, Cv,
plot. A very narrow range of the system temperature

indicates a very abrupt folding transition. Fig. 4 C shows

the Boltzmann distribution of states (Eq. 3) at the transition

temperature. Clearly, the highest density of states could be

observed at the low-energy end of the spectrum and in the

high-energy region. There is a gap in the intermediate energy

range, suggesting a cooperative two-state transition. The free

energy plot at the transition temperature for the central point

of the EU set is shown in more detail in Fig. 5. Several

interesting features can be seen from this plot. First, due to

the discrete character of the model, there is no single line;

instead, for almost the entire range of system energies, the

free energy can assume various scattered values. Interest-

ingly, near the native state the free energy becomes very well

defined and reaches a deep minimum at the native state. In

spite of the scattered character of the plot, the free energy

barrier between the low and the high energy states is well

pronounced and provides the signature of an all-or-none,

protein-like folding transition. The large symbols in the plot

indicate the native conformation (star) and the selected

competitive structures. Those similar to the native structure

are marked by black symbols (structure M2 was not

observed in this trajectory), and the open symbols indicate

more exotic misfolds. Interestingly, these appear in the

higher energy range; however, they are on the native side of

the free energy barrier.

To find out how the properties of the model are dependent

on the interaction parameters, we performed simulations for

the various vectors of parameters including these as close as

possible to the corners of the EU set (see Table 4). Somewhat

arbitrarily, we assumed that for a dependable estimation of

FIGURE 4 The thermodynamics of the model system for the interaction

parameters corresponding to the center of gravity of the EU set. The (A) and

(B) panels show the conformational energy and heat capacity curves

respectively. The vertical dotted line indicates the transition temperature

(maximum of Cv) which is equal to T ¼ 0.4246. The (C ) panel shows the

Boltzmann distribution of states.
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the thermodynamic quantities, the native structure should

appear in the first 20% of the simulation time. Thus, we

analyze the results for only six (rather representative) sets of

interactions parameters: e0, e1 (0.85), e2 (0.95), e3 (0.95), e4
(0.95), e5 (0.95), where e5 (0.95) means that the values of the

parameters correspond to the following (0.05e0 þ 0.95e5)

combination of the vectors e0 and e5. These parameters are

close to the corners of the EU set, confirming that our

selection of competitive structures led to a reasonable

estimation of the range of good parameters of the model

interaction scheme. Near the other vertices of the set the

folding is slow and the native structure appears less

frequently in the MC trajectories. For easy comparison the

Boltzmann distribution was subject to a smoothing pro-

cedure. The averaged quantity is defined below:

p�
TðEÞ ¼ DE�1

i SE92DEi pTðE9Þ: (19)

where DEi ¼ 1.0 is a small (however, containing a large

number of states) energy interval. The results are compared

in Fig. 6. The values of cooperativity parameters k are

included in all panels. First, it is easy to note that the stronger

interactions between polar groups led to a wider gap in

the distributions of states. Indeed, the clearly manifested

cooperative folding transitions are for e3 (0.95), and e4
(0.95), where the �ePP parameters describing the polar

contacts have the largest values. It could also be noted that

the all-or-none transition is well pronounced in these systems

where the contribution from all types of long-range inter-

actions is relatively large. The k values given in Fig. 6 are

obtained without empirical baseline subtractions. As it was

demonstrated by Kaya and Chan (Kaya and Chan, 2000a,b)

when k value obtained without baseline subtraction

approaches 0.7, the true van’t Hoff calorimetric enthalpy

ratio should be close to one. This applies to the examples

given in Fig. 6, D and E. For these systems the transition is

clearly very close to the ideal two-state folding. In these

cases, the height of the free-energy barrier is in the range of

5–10 kBT, which implies a negligible population of folding

intermediates. As it was shown in the previous sections,

some contribution from the short-range interactions is

necessary for the uniqueness of the native state; however,

the systems dominated by these short-range interactions are

very poor folders. In such cases, the transition is slow and the

energy gap (or the free energy barrier) is low.

The model studied here differs significantly from other

minimal models (Kaya and Chan, 2000a,b, 2002; Jang et

al., 2002) that exhibit a cooperative two-state folding

transition. First, we employ only a four-letter code for the

sequence of the model chain (the code describes a combi-

nation of secondary preferences and hydrophobicity of the

chain segments). Second, the geometry of our model seems

to be more realistic (but not more complicated) than the

geometry of the cubic lattice. Moreover, in contrast to many

models based on target-type potentials of long range

interactions, the present model allows nonnative interac-

tions. Very cooperative folding, close to an ideal two-state

transition, could be achieved for properly balanced con-

tributions of the short-range and long-range interactions.

Earlier findings (Kaya and Chan, 2000a,b; Kaya and Chan,

2002) that a more complex than two-letter (or three-letter)

code for chain sequence in the presence of repulsive

interactions is necessary for a highly cooperative transition

to a unique native state were confirmed in this work.

CONCLUSIONS

A very simple lattice model of globular proteins was studied

FIGURE 5 Reduced free energy as a function

of energy for the center of gravity of the EU set.

The star symbol indicates the native state which

corresponds to the minimum of the conforma-

tional energy and the minimum of free energy.

The inset gives the values of energy for the

native state and eight selected misfolded

structures. Slightly misfolded structures (black

symbols) have energy and free energy close to

the native one. More distant structures are

further away from the native structure param-

eters. The M2 misfold was not observed in this

long trajectory, suggesting its high free energy,

consistent with the rest of the plot.

1524 Pokarowski et al.

Biophysical Journal 84(3) 1518–1526



both theoretically and computationally by means of the

Replica Exchange Monte Carlo method combined with

a multihistogram analysis (Newman and Barkema, 1999).

The interaction scheme for the fcc lattice chain included

short- and long-range interactions. The short-range inter-

actions mimic a propensity to extended conformations,

typical for b-type proteins. The long-range interactions are

controlled by a pattern of polar and hydrophobic residues.

The pairs of contacting hydrophobic residues decrease the

system energy, whereas HP pairs are repulsive. The PP pairs

are attractive, provided that the contacting chain fragments

mimic the geometry typical of the parallel orientation of

polar side chains in real proteins. Other types of PP contacts

are ignored. The sequence of the model chain was designed

to be consistent with a two-sheet, six-stranded antiparallel

Greek-key b-barrel. Here, it was demonstrated that the

proposed interaction scheme leads to a highly cooperative

all-or-none (i.e., pseudo first order) transition to the expected

folded state. Interestingly, the folded state is energetically

degenerate; twenty slightly different geometrical realizations

of the barrel have exactly the same contributions from

various components of the force field (and consequently, the

same conformational energy). In an approximate way, this

mimics conformational mobility of the native structure of

real proteins. Thus, this is probably the first simple lattice

model that undergoes a protein-like discontinuous transition

to the folded state that exhibits limited conformational

degeneracy, a compact hydrophobic core, a protein-like fold

topology and well-defined secondary structure. Moreover, it

has been shown that the proposed interaction scheme is a

minimal one. The system requires nonzero contributions of

all potentials. The range of good parameters (that led to the

above outlined protein-like behavior) was estimated both

analytically and in Monte Carlo computational experiments.

The present work focused on b-type systems. Studies of

minimal a-type and a/b-type model polypeptides are now in

progress.
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