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ABSTRACT TOUCHSTONEX, a new method for
folding proteins that uses a small number of long-
range contact restraints derived from NMR experi-
mental NOE (nuclear Overhauser enhancement)
data, is described. The method employs a new lattice-
based, reduced model of proteins that explicitly
represents C�, C�, and the sidechain centers of mass.
The force field consists of knowledge-based terms to
produce protein-like behavior, including various
short-range interactions, hydrogen bonding, and
one-body, pairwise, and multibody long-range inter-
actions. Contact restraints were incorporated into
the force field as an NOE-specific pairwise potential.
We evaluated the algorithm using a set of 125 pro-
teins of various secondary structure types and
lengths up to 174 residues. Using N/8 simulated,
long-range sidechain contact restraints, where N is
the number of residues, 108 proteins were folded to
a C�-root-mean-square deviation (RMSD) from na-
tive below 6.5 Å. The average RMSD of the lowest
RMSD structures for all 125 proteins (folded and
unfolded) was 4.4 Å. The algorithm was also applied
to limited experimental NOE data generated for
three proteins. Using very few experimental
sidechain contact restraints, and a small number of
sidechain–main chain and main chain–main chain
contact restraints, we folded all three proteins to
low-to-medium resolution structures. The algo-
rithm can be applied to the NMR structure determi-
nation process or other experimental methods that
can provide tertiary restraint information, espe-
cially in the early stage of structure determination,
when only limited data are available. Proteins 2003;
53:290–306. © 2003 Wiley-Liss, Inc.
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INTRODUCTION

In this postgenomic era, the elucidation of the three-
dimensional (3D) structures of proteins from their se-
quences is of great importance. At present, the NMR
solution structure determination of proteins comprises a
small portion of this process. Traditional NMR structure
determination methods1,2 require a large number of nuclear

Overhauser enhancement (NOE) restraints—typically
15–20 NOE restraints per residue—to obtain a high-
resolution structure (equivalent to about a 2 Å X-ray
structure).3 Yet, in reality, such a large number of re-
straints is hard to obtain because of line broadening and
spectral crowding, especially for large proteins.3 Although
tremendous advances in both NMR hardware and soft-
ware have taken place during the past decade, this prob-
lem still limits the range of utilization of NMR as a tool for
protein structure determination. As an alternative and
complementary approach, protein structure prediction with
a limited number of distance restraints holds great prom-
ise.4–12 Research has indicated that in ab initio protein
structure prediction, a limited number of distance re-
straints can be sufficient to guide folding to a correct
structure that would otherwise be difficult to predict.9

Such a small number of distance restraints is relatively
easy to obtain from NOE data, even in the early stage of
NMR-based structure determination. The resulting low-to-
medium resolution structures can be used directly for
structural and functional analysis.13,14 Alternatively, they
can serve as an initial model for resonance and constraint
assignments, which would greatly simplify the overall
procedure. Thus, protein structure prediction with sparse
NMR data should speed up the process of protein structure
determination.

Among the studies of protein folding that use a small
number of distance restraints, Smith-Brown et al.4 have
modeled a protein as a chain of glycine residues using a
substantial number of tertiary restraints. Connolly et al.5

used an off-lattice reduced representation of proteins to
estimate fold from incomplete and approximate NOE
distance data (0.5 long-range restraints per residue).
Aszodi et al.6 used a distance-geometry–based method to
assemble protein structures, with experimental tertiary
distance restraints supplemented by predicted interresi-
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due distance restraints extracted from multiple-sequence
alignment. On average, more than N/4 restraints (where N
is the number of residues) were required to obtain struc-
tures with a root-mean-square deviation (RMSD) below 5
Å from native. Skolnick and Kolinski have used a high-
coordination lattice model of protein structure and a
knowledge-based force field to fold proteins.8,9 Nine pro-
teins up to 247 residues in length could be folded to
moderate resolution with as few as N/7 long-range re-
straints and some knowledge of the secondary structure.
Bowers et al.12 selected peptide fragments from proteins of
known structure based on sequence similarity and consis-
tency with the chemical shift and NOE data, then as-
sembled proteins to high resolution using �1 NOE re-
straint per residue.

In this article, we describe the folding of proteins with
sparse, long-range contact restraints using an extended
version of our protein structure prediction algorithm,
TOUCHSTONE, named here TOUCHSTONEX. Different
from our previous algorithms, our new lattice-based, re-
duced model of proteins explicitly includes the C�, C�, and
sidechain centers of mass (CABS). The force field includes
knowledge-based terms to produce protein-like behavior,
including various short-range interactions, hydrogen bond-
ing, and one-body, pairwise, and multibody long-range
interactions. Correct contact restraints were incorporated
into the force field as an NOE-specific pairwise interaction.
The algorithm uses predicted instead of known secondary
structure, as was the case with our previous algorithms.8,9

Here, we also apply our algorithm to the folding of 125
proteins using N/8 randomly generated, exact, long-range
sidechain contact restraints. For 65 of those proteins, N/12
and N/4 restraints were also used to evaluate the perfor-
mance of the algorithm as the number of restraints varied.
We also applied this algorithm to three proteins with
experimental NOE data to evaluate its performance in
real-life applications. For these three proteins, sidechain
contact restraints, as well as sidechain–main chain and
main chain–main chain contact restraints derived from
NOEs, were used.

MATERIALS AND METHODS
Protein Model and Force Field

A newly developed, lattice-based, reduced model of
proteins, the CABS model, is used. A detailed description
of the model may be found in a separate article.15 Briefly,
each amino acid is represented by up to three united atom
groups, namely, the C�, C�, and sidechain center of mass.
For computational simplicity, the main chain C� atoms are
restricted to a 3D underlying cubic lattice system, with a
lattice spacing of 0.87 Å, and 312 allowed bond vectors.
The C�–C� virtual bond length fluctuates from 3.26 Å to
4.35 Å. The virtual C�–C� bond angle is restricted to the
experimental range of 65–165°. The positions of three
subsequent C� atoms define the local coordinate system
used for the determination of the remaining two interac-
tion centers—the C� (except glycine) and the center of
mass of the sidechain heavy atoms (except glycine and
alanine). The parameters for the determination of C� and

sidechain center of mass are extracted from the Protein
Data Bank (PDB).16 A two-rotamer approximation is
assumed, depending on the expanded (e.g., sheet) or
compact (e.g., helix) main chain conformation. Any protein
structure can be fitted to the corresponding lattice model,
with an average accuracy of 0.45 Å.

The force field consists of a variety of terms based on the
regularities seen in protein structures. They contain both
generic (sequence-independent) interactions to produce
protein-like structures and sequence-dependent interac-
tions derived from sequence analysis and multiple-
sequence alignments. Interactions are divided into two
categories: the short-range, secondary structure type of
interactions and long-range, tertiary interactions. Explic-
itly, the short-range interactions include short-range C�–C�

and sidechain–sidechain correlations (between residue i
and residues i � 2, i � 3, i � 4, and i � 5), and local
protein-like conformational stiffness with a bias toward
predicted secondary structure. Among the long-range inter-
actions are long-range orientation-dependent pairwise in-
teractions that include both generic and sequence-depen-
dent terms. The one-body center-symmetric burial
interactions represent the general propensity of amino
acids to be buried inside the protein or exposed to solvent.
The environmental profile describes the contact environ-
ment of amino acids. Debye–Huckel electrostatic interac-
tions are allowed among the four charged amino acids
(Asp�, Glu�, Lys�, and Arg�). The explicit cooperative
hydrogen-bond interactions can be short- or long-range,
depending on the involved secondary structure. Finally,
the contact order and contact number terms enforce biases
toward the expected contact order (the number of residues
along the chain between contact residues)17 and expected
length-dependent contact number. A detailed description
of the force field can be found in other publications.8,9,15,18,19

In addition to the aforementioned terms, the scoring
function also has specific penalty terms to incorporate
predicted restraints from our threading algorithm PROS-
PECTOR.20 These restraints include predicted local C�

distance restraints (less than 6 residues along the se-
quence) and predicted nonsequential sidechain contact
restraints. See articles by Kolinski et al.,21 Kihara et al.,22

and Zhang et al.15 for a detailed description of these terms.
The overall scoring function is the combination of all of

the energy terms described above. The relative weights of
these nonindependent energy terms are determined by
maximization of the correlation of energy and the decoy–
native similarity.15

Because the force field imposes strong conformational
biases to predicted secondary structure, reasonably high-
accuracy secondary structure prediction is extremely im-
portant for the success of tertiary structure prediction.
According to our test results from the comparison of three
contemporary secondary structure prediction algorithms,
PHD,23 SAM-T99,24 and PSIPRED,25 the “overlap” of
PSIPRED and SAM-T99 prediction with a cutoff equal to
0.5 has the highest accuracy15 and is therefore our method
of choice.
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Generation of Long-Range NOE-Like Contact
Restraints

Contact restraints are either simulated or extracted
from experimental NOE data. The simulated restraints
are randomly selected from sidechain contacts in the
native protein structure. Two sidechains that have at least
one pair of their heavy atoms within 4.5 Å are considered
to be in contact. These simulated restraints are also
termed “exact restraints” in contrast to the predicted
restraints mentioned earlier. For NMR experiments, the
proton NOE data are first divided into three groups:
between sidechain and sidechain atoms, between sidechain
and main chain atoms (H�, HN), and between main chain
and main chain atoms. The atomic-level NOE data are
then converted into sidechain contact restraints, sidechain–
main chain contact restraints, and main chain–main chain
contact restraints between residues. For both simulated
and NOE-derived contact restraints, only contact partners
at least 5 residues apart along the protein chain are
considered.

Implementation of NOE-Specific Pairwise
Interactions

Long-range contact restraints are incorporated into the
scoring function as NOE-specific penalties. In the case of
sidechain contact restraints, the penalties are as follows:

ENOE

� �ε � εa � �d � 6.3� for 6.3 � d � 7 (in lattice units)

�2ε�εa�(d�6.3) for d � 7 (in lattice units)

(1)

Two terms in Eq. (1) hierarchically penalize violation. The
first term penalizes the violation of distances between
sidechain centers (d) with penalty (�). The second term
further penalizes the violation of d according to the extent
of the violation scaled by �a. The algorithm allows a small
amount of violation. Only the part of ENOE that exceeds a
threshold (�threshold) enters into the scoring function.
�threshold is set numerically equal to the number of re-
straints. This enables the protein to undergo large confor-
mational changes and jump out of local minimum during
the simulation through a partial violation of the re-
straints. The value of �a 	 0.5 �, with � 	 8. This weight is 8
times the weight of the predicted contact restraints.

In the case of sidechain–main chain and main chain–
main chain contact restraints, similar penalties are used:

ENOE � �2ε � εa � �d � 7� for d � 7 (in lattice units) (2)

Here, d is the distance between sidechain center and C� for
sidechain–main chain restraints, and between C� atoms
for main chain–main chain restraints. The distance cutoff
is set to 7 in lattice units instead of 6.3. In the second term
of Eq. (2), a small amount of violation is also allowed. The
threshold (�threshold) is set numerically equal to the num-
ber of restraints. � and �a are scaled the same as for the
sidechain restraints.

Another kind of restraint involves the main chain hydro-
gens. Backbone hydrogen bonding can provide fully inde-
pendent and supporting evidence for regular secondary
structure.26 Long-range (at least 5 residues apart), regular-
pattern backbone hydrogen bonding comes exclusively
from �-sheets. The pattern of hydrogen bonding can be
used to differentiate parallel and antiparallel �-sheets. In
our algorithm, these main chain hydrogen-bonding re-
straints are incorporated as follows: If the distance d
between the two C� atoms is less than 6.7 in lattice units,
and the backbone orientation associated with the C� atoms
is appropriate for antiparallel and parallel �-sheets, respec-
tively, then

ENOE � �2ε (3)

To judge the backbone orientation, we define two vectors
on each C�. One is the cross product of the two successive
C�–C� virtual bond vectors connected to the C� atom; the
other is the bisector of them. For parallel �-sheets, the
angle between the two bisector vectors associated with the
two C� atoms is within �60–60°, and the angle between
the two cross product vectors is within �65–65°. For
antiparallel �-sheets, the angle between the two bisector
vectors is within �60–60°, and the angle between the two
cross product vectors lies within 115–245°. � is scaled the
same as for the sidechain restraints.

Monte Carlo Sampling Scheme and Folding
Protocol

The conformational sampling scheme uses a replica
exchange Monte Carlo (REMC) method.27,28 Initial, arbi-
trary random coil conformations of 40 replicas are created
and assigned different temperatures between an initial
maximum and an initial minimum. The initial maximum
temperature is equal to the final maximum temperature.
The initial minimum temperature is scaled according to
the final minimum temperature. The temperature differ-
ence between the initial minimum and maximum is one
third of the temperature difference between the final
minimum and maximum. The final maximum and mini-
mum temperatures are scaled according to protein length,15

the number of the restraints, and weight of the restraints;
they are proportional to the 0.7 power of the product of the
number and the weight of the restraints. The final maxi-
mum temperature ranges from 17 to 110 (in dimensionless
units). The final minimum temperature ranges from 1.1 to
1.8 (in dimensionless units). A conformational update of
the protein lattice chain includes local 2–6 bond moves, a
small displacement of a larger portion of the chain, and
chain end moves.15,18,19 Global conformational swaps also
occur between replicas at different temperatures. Between
two consecutive global swaps, there are 200 
 N (with N
being the number of residues) local movement attempts.
The simulation starts at high temperature; then, the
minimum temperature is gradually lowered in 20 steps to
the final minimum temperature during the first 400 global
swaps. Finally, a 5 times longer (2000 global swaps)
isothermal run at the lowest temperature is performed. A
total of 2400 global swaps are performed for each replica.
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Usually, the calculation takes 24–48 h of central process-
ing unit (CPU) time on a 1.26-GHz Pentium III processor
for proteins less than 200 residues.

Clustering and Computing the Average Structures

About 16,000 structures selected from the 8 lowest
temperature replicas are clustered.29 The clusters are
ranked according to the average energy of the structures in
the cluster. For each cluster, a centroid is determined by
optimally aligning the structures and computing their
average. The centroids from all of the clusters are then
compared with the native protein structure, and their C�

coordinate RMSDs from native are calculated. If there is at
least one cluster centroid with a global RMSD to native
less than 6.5 Å, the protein is considered successfully
folded. A more practical criterion involves only the top 5
lowest energy clusters instead of all clusters. If within the
top 5 lowest energy clusters, there is at least 1 cluster
centroid with a RMSD to native less than 6.5 Å, then the
protein is considered to have been successfully folded.
Both criteria are used. The lowest RMSD cluster centroid
(from native) is considered to be the best structure.

Sets of Proteins

Two test sets were examined. The first, set I, consisted of
65 proteins of different types (4 small proteins with little
secondary structure, 21 �-proteins, 20 �-proteins, 20 �/�-
proteins) and lengths (ranging from 39 to 146 residues),
and was the same as that previously used.22 The second
data set, set II, consisted of 60 proteins carefully selected
from the PDB for benchmark purposes, including 20
�-proteins whose lengths ranged from 36 to 156 residues,
20 �-proteins whose lengths ranged from 36 to 153 resi-
dues, and 20 �/�-proteins whose lengths ranged from 64 to
174 residues.15 This set consisted of more large proteins
than the first set. For both sets, simulated sidechain
contact restraints were used.

Recent advances in software development for interpret-
ing NMR data make it possible to acquire useful struc-
tural constraints efficiently in a remarkably short time.
For instance, by using the programs AutoAssign30 and
AutoStructure,31–33 backbone resonance assignments
and initial structural constraints can be generated
within 1 or 2 days with the use of good-quality NMR
spectral peak lists.34,35 To explore the value of these
NMR data in structure prediction, we tested 3 sets of
experimental contact restraints that can generally be
derived from NMR spectra in the initial stage of NMR
structure determination, including experimental NMR
data obtained for the Z-domain of staphylococcal protein
A (58 residues), the C-terminal BRCA-1–like domain
from T. thermophilus DNA ligase BRCT (92 residues),
and the human melanoma inhibitory activity (MIA)
protein (108 residues). The NMR data of protein MIA

were kindly provided by the NMR group at GeneFormat-
ics, Inc. (San Diego, CA).

Generation of Experimental Distance and
Hydrogen-Bonding Constraints for Z-Domain and
BRCT

The program AutoAssign30 was used for automated
analysis of backbone resonance assignments of Z-domain
and BRCT. The input for AutoAssign analysis of BRCT
included peak lists from 2D 1H-15N HSQC and 3D
CBCANH, CBCAcoNH, HNCA, haCAcoNH, HAcaNH,
HAcacoNH, and HNCO experiments, recorded as de-
scribed elsewhere.36,37 Results obtained from the auto-
mated analysis were extended and, in some cases, cor-
rected by manual analysis of these data together with 3D
hCCcoNH-TOCSY, HcccoNH-TOCSY, and HCCH-COSY
experiments. We made sidechain aromatic, guanido, and
amide 1H, 13C and 15N resonance assignments using
homonuclear 2D TOCSY, 2D 1H-13C HSQC, and 13C-
edited NOESY data. For Z-domain, data collection and
analysis were carried out as described in an article by
Zheng et al.,35 with a uniformly 13C,15N,2H-enriched
sample with 1H-13C–labeled methyl groups. The following
2H-decoupled triple resonance experiments were used as
input for AutoAssign in determining backbone 15N, HN,
13C�, 13C�, sidechain HN, and methyl sidechain 1H-13C
resonance assignments: HNCO, HNcaCO, HNCA,
HNcoCA, HNCACB, HNcoCACB, HcccoNH-TOCSY, and
hCccoNH-TOCSY.

The initial analysis of NOESY peak lists and generation
of conformational constraints for the Z-domain and BRCT
were carried out in a fully automated manner with the
program AutoStructure.31–33 AutoStructure is a rule-
based, expert system that automatically determines pro-
tein structures from NMR data. It generates a reliable
initial protein fold using intelligent analysis methods
based on spectrum-specific properties and the identifica-
tion of self-consistent NOE contact patterns, without the
use of any 3D structure model. In particular, the software
identifies secondary structures, including alignments and
hydrogen-bonding constraints between �-strands, based
on a combined pattern analysis of secondary structure-
specific NOE contacts, chemical shift, scalar coupling
constant, and slow amide proton exchange data. The
experimental NMR input data for Z-domain and BRCT
used for AutoStructure analysis included the resonance
assignment lists, NOESY peak lists derived from the 3D
15N- and 13C–edited NOESY data, 3J(HN-H�) scalar cou-
pling constants (not for Z domain), and slow amide 1H/2H
exchange data. Coupling constants 3J(HN-H�) were ob-
tained from 2D HSQC-J spectra.38 We determined amide
hydrogen-exchange rates by lyophilizing the protein from
H2O, dissolving the protein in D2O, and acquiring a series
of 2D 1H-15N HSQC spectra at 20 min, 45 min, 70 min, 100
min, and 100 h. A small subset of these distance and
hydrogen-bond constraints were then selected to generate
long-range, NOE-like contact restraints for structure pre-
dictions by TOUCHSTONEX, with use of the criteria
described above.
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TABLE I. Prediction Results for the 65 Proteins in Set I With N/8-Simulated Exact
Long-Range Sidechain Contact Restraints

ID Na Nexact
b Npred cont

c Npred dist
d Predicted Onlye Exact Onlyf

Exact �
Predictedg Nexact sat

h Npred sat
i

Small

1ixa 39 5 64 15 5.7 (1/9) 5.3 (2/15) 4.3 (7/9) 5 59
1fc2C 44 5 19 37 3.2 (1/5) 2.9 (1/6) 2.8 (1/7) 5 15
6pti 57 7 92 56 4.8 (1/7) 6.7 (3/7) 4.6 (1/7) 7 79
1rpo 61 8 23 560 1.4 (1/4) 2.2 (1/6) 2.0 (1/6) 8 12

�

1bw6A 56 7 80 100 4.7 (1/9) 4.1 (1/5) 4.1 (1/6) 5 77
2ezh 65 8 21 147 3.0 (1/5) 2.5 (1/6) 2.7 (1/10) 8 13
1c5a 66 8 26 177 4.9 (1/3) 3.8 (1/7) 3.8 (1/7) 8 16
1hp8 68 9 15 193 4.0 (2/6) 2.4 (1/10) 2.3 (1/7) 9 12
2bby 69 9 104 55 4.2 (1/7) 2.4 (1/8) 3.3 (1/7) 9 84
1ftz 70 9 91 180 2.0 (1/9) 3.2 (1/4) 2.0 (1/4) 8 83
1pou 71 9 102 91 3.6 (1/7) 2.8 (1/8) 2.4 (1/7) 9 75
1lea 72 9 136 153 4.2 (1/8) 3.7 (1/7) 4.1 (1/8) 9 120
1kjs 74 9 97 202 8.4 (4/4) 3.4 (1/11) 3.8 (1/7) 9 42
1ner 74 9 85 48 3.0 (2/7) 4.9 (3/7) 2.7 (2/4) 8 60
1aoy 78 10 46 145 5.8 (1/4) 6.5 (1/4) 6.2 (1/6) 10 7
1nkl 78 10 12 213 3.8 (1/7) 1.3 (1/11) 1.3 (1/10) 10 41
1a32 85 11 44 401 8.8 (2/2) 3.2 (3/3) 2.9 (1/3) 11 26
1ngr 85 11 165 109 2.1 (1/10) 2.1 (1/11) 1.7 (1/9) 11 135
2af8 86 11 122 94 4.1 (1/9) 4.4 (1/6) 4.4 (1/7) 10 92
2ezk 93 12 28 130 9.2 (1/6) 5.2 (2/3) 5.1 (1/2) 12 14
21fb 100 13 78 130 9.0 (5/5) 3.9 (1/5) 4.2 (5/7) 12 52
256bA 106 13 133 390 3.3 (1/9) 3.0 (1/9) 2.9 (1/8) 13 123
1hmdA 113 14 50 366 4.4 (3/7) 2.8 (1/6) 2.7 (2/5) 14 29
1hlb 138 17 31 534 5.4 (5/8) 2.9 (1/8) 2.6 (1/7) 16 20
1mba 146 18 266 822 3.5 (1/7) 2.9 (1/9) 2.6 (1/7) 17 224

�

1tfi 50 6 67 9 8.2 (19/21) 5.9 (1/3) 7.5 (12/14) 3 36
1bq9A 53 7 48 9 6.8 (2/11) 6.5 (7/11) 5.5 (3/13) 7 43
1nxb 53 7 90 40 4.9 (2/4) 7.3 (1/10) 4.4 (2/4) 6 85
1shg 57 7 93 56 7.4 (3/6) 6.3 (2/6) 7.2 (1/3) 7 79
1vif 60 8 58 38 5.5 (3/14) 3.1 (1/6) 3.5 (2/4) 8 35
1fas 61 8 157 73 3.7 (1/6) 4.9 (1/9) 3.6 (1/8) 8 139
1csp 64 8 88 51 3.5 (1/8) 4.8 (2/8) 3.1 (1/7) 7 72
1sro 66 8 74 87 6.7 (1/5) 4.1 (2/7) 5.8 (1/4) 8 56
1pse 69 9 52 27 6.9 (3/10) 8.4 (1/6) 5.9 (1/8) 9 48
1ah9 71 9 113 41 3.6 (1/5) 4.7 (1/8) 3.4 (1/6) 7 94
1iyv 79 10 124 40 4.4 (1/5) 5.3 (4/7) 3.7 (1/12) 10 106
1rip 81 10 106 131 4.7 (1/8) 5.0 (4/4) 4.4 (1/4) 9 92
1tit 89 11 243 206 1.7 (1/8) 2.2 (1/3) 1.5 (1/9) 11 209
1wiu 93 12 279 123 3.2 (1/5) 5.3 (1/6) 2.8 (1/6) 12 233
2pcy 99 12 297 122 4.0 (1/7) 4.7 (3/11) 3.1 (1/8) 11 237
1ksr 100 13 86 51 7.1 (3/11) 4.7 (1/3) 4.5 (1/7) 13 69
1tlk 103 13 224 191 2.9 (1/9) 4.4 (1/5) 2.5 (1/8) 13 195
1thx 108 14 193 136 2.3 (1/8) 3.0 (1/8) 2.6 (1/5) 14 164
4fgf 121 15 68 71 7.6 (1/12) 7.3 (1/13) 4.2 (1/8) 15 56
2azaA 129 16 241 102 5.4 (1/10) 4.9 (1/9) 3.7 (1/8) 15 184

�/�

1gpt 47 6 82 45 3.6 (1/7) 5.2 (1/9) 3.2 (1/11) 6 71
2fdn 55 7 146 5 2.3 (1/9) 2.5 (1/15) 1.8 (1/8) 7 133
1pgx 56 7 43 43 5.0 (3/8) 3.0 (2/6) 4.3 (1/6) 6 32
2ptl 60 8 21 59 2.9 (1/7) 1.9 (1/8) 1.9 (1/10) 8 14
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RESULTS AND DISCUSSION

All structure prediction results, including PDB format
predicted structures, can be found on our group’s website:
http://www.bioinformatics.buffalo.edu/new_buffalo/people/
wli7/touchstonex.

Structure Prediction of 65 Benchmark Proteins
With Use of N/8 Simulated Restraints

The 65 proteins in set I are listed in Table I, together
with their types and lengths. The simulated, exact, long-
range sidechain contact restraints were randomly gener-
ated, as described in the Materials and Methods section.
The number of exact sidechain contact restraints for each
protein is listed in Table I, together with the number of
predicted sidechain contact restraints and predicted local
distance restraints. As shown in the Column 7 of Table I,
with the use of only N/8 exact sidechain contact restraints,

with predicted local distance restraints, but without any
predicted contact restraints, 56 proteins are foldable (i.e.,
at least one cluster centroid with an RMSD of less than 6.5
Å from native was obtained). Fifty-five of these 56 cen-
troids are from the top 5 lowest energy clusters. The
accuracy/RMSD of the prediction shows no apparent depen-
dence on protein length or secondary structure type. In
other words, the prediction is good for both large proteins
and �-proteins. The average RMSD of the best cluster
centroid (lowest RMSD from native) of all 65 proteins
(folded and unfolded) is 4.4 Å. The average rank of the best
RMSD cluster centroids is 1.4, with an average of 7.0 for
the total number of clusters.

Column 8 in Table I lists the prediction results with use
of the simulated exact contact restraints plus the predicted
contact restraints, together with the predicted local dis-
tance restraints. Here, the results are improved even

TABLE I. (Continued)

ID Na Nexact
b Npred cont

c Npred dist
d Predicted Onlye Exact Onlyf

Exact �
Predictedg Nexact sat

h Npred sat
i

2fmr 65 8 106 89 4.6 (1/7) 6.2 (1/9) 4.6 (1/11) 6 92
1cis 66 8 37 71 5.8 (1/6) 4.8 (1/7) 4.2 (1/10) 8 30
1ctf 68 9 108 51 6.0 (2/5) 3.1 (1/4) 4.4 (3/4) 9 68
1stu 68 9 59 172 3.6 (1/3) 6.7 (2/3) 4.3 (1/5) 8 49
1ubi 76 10 123 112 4.2 (1/9) 2.7 (1/6) 3.1 (1/11) 10 97
1vcc 77 10 30 48 6.2 (2/20) 2.5 (1/7) 3.2 (1/4) 9 22
1poh 85 11 138 120 9.8 (2/3) 3.0 (1/5) 4.4 (2/4) 11 91
1ife 91 11 151 180 7.9 (6/6) 2.8 (1/6) 6.0 (2/4) 11 79
2sarA 96 12 116 24 8.0 (1/4) 6.0 (2/8) 4.4 (1/5) 12 91
1stfI 98 12 25 74 7.8 (1/13) 7.4 (1/5) 6.7 (1/6) 12 15
1tsg 98 12 82 110 7.9 (2/10) 10.6 (1/6) 8.3 (2/6) 12 62
1shaA 103 13 73 80 8.9 (2/10) 5.4 (2/7) 5.1 (2/8) 11 61
1erv 105 13 275 167 2.0 (1/8) 2.5 (1/7) 2.3 (1/8) 13 238
5fd1 106 13 103 185 9.6 (2/4) 7.6 (1/3) 8.9 (1/2) 12 87
1cewI 108 14 160 127 5.2 (1/5) 6.4 (1/4) 5.1 (1/8) 14 137
1pdo 121 15 67 122 4.8 (1/2) 4.6 (1/3) 4.2 (2/6) 15 55

Average 5.11 (1.9/7.4) 4.40 (1.4/7.0) 3.91 (1.5/6.9)
RMSD � 6.5 47 (47) 56 (55) 60 (59)
RMSD � 6.0 45 (45) 51 (51) 58 (57)
RMSD � 5.0 38 (38) 43 (43) 52 (51)
RMSD � 4.0 24 (24) 30 (30) 34 (34)
RMSD � 3.0 11 (11) 20 (20) 21 (21)
aN: the number of protein residues.
bNexact: the number of simulated, exact long-range sidechain contact restraints.
cNpred_cont: the number of predicted sidechain contact restraints.
dNpred_dist: the number of predicted local distance restraints.
ePredicted only: prediction with use of predicted sidechain contact restraints and predicted local distance restraints.
fExact only: prediction with use of exact sidechain contact restraints and predicted local distance restraints.
gExact � predicted: prediction with use of exact sidechain contact restraints, predicted sidechain contact restraints, and predicted local distance
restraints.
hNexact_sat: the number of exact sidechain contact restraints satisfied in the best cluster centroids from prediction with use of exact sidechain
contact restraints, predicted sidechain contact restraints, and predicted local distance restraints.
iNpred_sat: the number of predicted sidechain contact restraints satisfied in the best cluster centroids from prediction with use of exact sidechain
contact restraints, predicted sidechain contact restraints, and predicted local distance restraints.
In columns 6, 7, and 8, the data are shown as the RMSD of the best cluster centroid (rank of the best cluster centroid/total number of clusters). The
best cluster centroid is the one that has the lowest RMSD from native.
The last five rows list the number of proteins folded with an RMSD from native below 6.5 Å, 6.0 Å, 5.0 Å, 4.0 Å, and 3.0 Å, respectively. The data
are represented as the number of proteins folded to a given RMSD threshold in all clusters (the number of proteins folded to a given RMSD
threshold in top five lowest energy clusters).
RMSD: coordinate root-mean-square deviation for C� atoms in angstrom units.
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further: 60 proteins were folded to RMSD from native
below 6.5 Å, 59 of which are from the top 5 lowest energy
clusters. Also, significant improvement is seen in the
number of folded structures with RMSD from native below
6.0, 5.0, and 4.0 Å, which increases from 51 to 58, from 43

to 52, and from 30 to 34, respectively. The average RMSD
of the best cluster centroids of all 65 proteins also de-
creases to 3.91 Å compared to 4.4 Å previously. The
average ranking of the best RMSD cluster centroid is 1.5
from an average of 6.9 for the total number of clusters.

Fig. 1. RMSD improvement with the use of N/8 exact, long-range sidechain contact restraints and predicted
restraints as a function of the RMSD with the use of only predicted restraints for 65 proteins in set I. RMSD
improvement (Delta RMSD) is the difference in the RMSD of the lowest RMSD cluster centroid from native
between the prediction with predicted restraints and that with both exact and predicted restraints.

TABLE II. Summary of Prediction Results for 65 Proteins in Set I With Use of
N/12-, N/8-, N/4-Simulated, Exact Long-Range Sidechain Contact Restraints

Nexact
a N/12b,c N/8b,c N/4b,c

Average 4.17 (1.3/7.1) 3.85 
 0.08 (1.3 
 0.2/6.7 
 0.2) 3.20 (1.2/6.7)

RMSD � 6.5 59 (59) 61 
 1 (61 
 2) 65 (65)
RMSD � 6.0 56 (56) 57 
 1 (57 
 1) 64 (64)
RMSD � 5.0 45 (45) 52 
 1 (51 
 1) 59 (59)
RMSD � 4.0 33 (33) 38 
 4 (38 
 4) 49 (49)
RMSD � 3.0 21 (21) 21 
 2 (21 
 2) 32 (32)
aNexact: the number of simulated, exact long-range sidechain contact restraints.
bN: the number of protein residues.
cPredictions with N/12 and N/8 exact contact restraints used both exact and predicted contact
restraints and predicted local distance restraints, whereas the prediction with N/4 exact
contact restraints used exact contact restraints and predicted local distance restraints alone.
Results with N/8 exact contact restraints (the third column) are from predictions that used
three sets of randomly generated restraints. The mean (
 standard deviation) is shown.
In the second row, the data are shown as the average RMSD of the best cluster centroids
(average rank of the best cluster centroids/average total number of clusters) for 65 proteins in
set I. The best cluster centroid is the one that has the lowest RMSD from native.
The third through seventh rows list the numbers of proteins folded with an RMSD from native
below 6.5 Å, 6.0 Å, 5.0 Å, 4.0 Å, and 3.0 Å, respectively. The data are represented as the number
of proteins folded to a given RMSD threshold in all clusters (the number of proteins folded to a
given RMSD threshold in top five lowest energy clusters).
RMSD: coordinate root-mean-square deviation for C� atoms in angstrom units.
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As a control, column 6 in Table I shows results with
the use of only predicted contact and distance restraints.
Without exact restraints, our ab initio folding algo-
rithm, TOUCHSTONE,22 can fold 47 proteins, all within
the top 5 lowest energy clusters. The average RMSD of
the best cluster centroids of all 65 proteins is 5.11 Å.
Compared to folding with the use of only predicted
restraints, the prediction with only N/8 exact contact
restraints (without predicted contact restraints) does a
better job even though the number of predicted re-
straints is, on average, 1.3 times the number of the
residues. When we added N/8 exact contact restraints to
the predicted restraints, a 1.2 Å improvement in the
average RMSD of the best cluster centroids was achieved.
Figure 1 shows the individual RMSD improvement of
the prediction with use of both exact and predicted
restraints versus the RMSD of the prediction with
predicted restraints alone for different types of proteins.
There is a strong correlation between them (i.e., greater
improvement for high RMSD structures than for low
RMSD structures). However, the RMSD improvement
shows no apparent dependence on protein type and only
a very weak dependence on protein length.

We can also see here the complementary effect of the
exact and predicted restraints. In 41 out of 65 cases, the
prediction with both exact and predicted contact restraints
performed better than the prediction with either alone.
The two kinds of restraints are synergistic.

We also show in columns 9 and 10 of Table I the numbers
of satisfied exact and predicted contact restraints in the
best cluster centroids predicted with the use of both exact
and predicted restraints. As expected, most of the exact
restraints are satisfied. On average, 77% of the predicted
contact restraints are satisfied.

To see how much the prediction results depend on a
particular selection of the exact contact restraints, we
randomly generated three sets of N/8 exact restraints
and made three predictions. The average results and
standard deviations are listed in Table II, column 3. All
three sets achieve a similar performance. The mean of
the average RMSD of best cluster centroids for all 65
proteins is 3.85 Å. The standard deviation of the average
RMSD is only 0.08 Å. The mean of the number of
proteins folded to below 6.5 Å from native is 61. The
standard deviation of the number of these folded pro-
teins is 1. The mean rank of the best cluster centroids is
1.3. The standard deviation of the rank is 0.2. The mean
total number of clusters is 6.7. The standard deviation of
the total number of clusters is 0.2. Clearly, the use of
different random sets of restraints did not make much of
a difference in our results.

Structure Prediction of 65 Benchmark Proteins as
a Function of the Number of Restraints

Table II summarizes the results with the use of N/12,
N/8, and N/4 exact sidechain contact restraints. The
results with N/8 exact sidechain contact restraints are
averaged over three sets of randomly generated restraints.
When the number of restraints is small (e.g., N/12 and

N/8), the prediction is made with the use of both exact and
predicted contact restraints. When the number of re-
straints is large (e.g., N/4), the prediction is made with the
use of only exact contact restraints. In such cases, the
number of exact restraints should be sufficient to achieve
successful folding. The predicted restraints sometimes
only add noise, because they are not totally accurate. As
expected, the more exact the restraints, the more accurate
the results. The average RMSD of the lowest RMSD (from
native) cluster centroids for all 65 proteins decreases with
an increasing number of restraints—from 4.2 Å to 3.9 Å to
3.0 Å as the number of restraint increases from N/12 to N/8
to N/4. Also, the number of proteins folded to less than 6.5
Å—6.0, 5.0, 4.0, and 3.0 Å—from native gradually in-
creases. This is especially significant for the number of
proteins folded below 4.0 Å from native, which increases
from 33 to 38 to 49 as the number of restraints grows from
N/12 to N/8 to N/4. When we used N/4 exact restraints, all
65 proteins in this set were folded to an RMSD from native
less than 6.5 Å within the top 5 lowest energy clusters. The
average of the total number of clusters and the rank of the
best cluster centroid also have a tendency to decrease with
the increase of the number of restraints. The average of
the total number of clusters is 7.1, 6.7, and 6.7 for N/12,
N/8, and N/4 exact restraints, respectively. The average
rank of the best cluster centroids is 1.3, 1.3, and 1.2,
respectively.

We have also observed that the results from the predic-
tion with the use of N/12 exact restraints do not differ very
much from those with N/8 exact restraints for this set of 65
proteins. The average RMSD of the lowest RMSD clusters
for all 65 proteins differs only by 0.32 Å. The number of
proteins folded to below 6.5 Å from native differs only by
two. This indicates that our folding algorithm can make a
reasonably good prediction even with as few as N/12 exact
restraints.

Structure Prediction of 60 Benchmark Proteins
With Use of N/8 Simulated Restraints

For the 60 proteins in set II (a harder set), the number of
the exact sidechain contact restraints, the predicted
sidechain contact restraints and local distance restraints
for each protein, and the prediction results are shown in
Table III, columns 3 through 8. Due to the larger size of the
proteins and the lower quality of the predicted restraints,
the second set of 60 proteins is much more challenging to
fold than the first set. This can be seen from the folding
simulation with use of only predicted restraints. Only 28
out of 60 proteins (47%) were folded to an RMSD from
native less than 6.5 Å for set II, whereas 47 out of 65 (72%)
proteins were folded for set I. The average RMSD of the
best cluster centroids for all 60 proteins in set II is 7.08 Å,
whereas the average of the 65 proteins in set I is 5.11 Å.

Nevertheless, when we use only N/8 exact contact
restraints (without predicted contact restraints), 47 pro-
teins are folded to an RMSD from native of less than 6.5 Å,
46 of which are from the top 5 lowest energy clusters. The
average RMSD of the best cluster centroids for all 60
proteins is 5.22 Å. The average of the total number of
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TABLE III. Prediction Results for the 60 Proteins in Set II Using N/8-Simulated,
Exact Long-Range Sidechain Contact Restraints

ID Na Nexact
b Npred_cont

c Npred_dist
d

Predicted
Onlye Exact Onlyf Exact � Predictedg

�

1ppt 36 5 31 68 7.5 (3/3) 3.2 (1/3) 2.2 (3/3)
2erl 40 5 14 57 5.8 (4/7) 6.6 (5/5) 5.4 (1/4)
1eq7A 56 2 6 517 2.6 (3/4) 1.6 (1/2) 1.6 (2/3)
1nkd 59 7 13 785 4.1 (2/2) 2.6 (1/3) 2.5 (1/3)
1i2tA 61 8 52 188 3.2 (2/3) 1.6 (1/7) 2.4 (1/8)
1isuA 62 8 110 131 2.8 (1/9) 6.0 (1/12) 2.1 (1/12)
1ail 70 9 53 154 7.4 (2/4) 2.0 (1/7) 2.8 (1/9)
1utg 70 9 51 269 8.7 (6/6) 6.2 (1/5) 5.4 (2/8)
1hbkA 89 11 29 432 14.3 (1/2) 4.7 (1/3) 5.1 (1/5)
1cy5A 92 12 152 317 1.7 (1/10) 2.4 (1/8) 1.9 (1/8)
1fk5A 93 12 132 89 5.1 (2/4) 3.4 (1/9) 3.7 (1/9)
1bkrA 108 14 131 225 2.1 (1/15) 2.3 (1/6) 2.0 (1/11)
1e6iA 110 14 8 1275 13.1 (1/4) 10.5 (1/6) 10.4 (6/9)
2a0b 118 15 124 227 11.2 (3/5) 2.6 (1/8) 5.9 (2/9)
1fazA 122 15 5 276 11.2 (8/8) 4.7 (1/9) 5.0 (1/9)
1 cpq 129 16 17 1002 7.0 (1/4) 5.4 (1/6) 5.1 (1/9)
1eca 136 17 201 450 3.5 (1/11) 3.0 (1/8) 2.8 (1/8)
2hbg 147 18 161 455 1.7 (1/10) 2.6 (1/10) 2.0 (1/12)
1sra 151 19 118 136 9.4 (5/10) 3.7 (1/8) 4.6 (1/5)
1bd8 156 20 228 439 3.2 (1/17) 7.5 (1/6) 2.6 (1/12)

�

1dxgA 36 5 41 54 6.3 (1/4) 5.0 (1/6) 3.3 (2/4)
1apf 49 6 43 38 5.1 (4/7) 4.4 (2/8) 3.7 (2/6)
2cdx 60 8 58 127 3.6 (1/7) 4.7 (2/6) 3.8 (1/7)
1aiw 62 8 13 85 8.0 (8/18) 6.3 (7/13) 6.5 (1/8)
3ebx 62 8 74 149 2.2 (1/7) 2.4 (1/4) 1.9 (1/7)
1f94A 63 8 75 47 4.1 (1/10) 6.2 (1/14) 4.0 (1/3)
1msi 66 8 27 107 4.4 (1/22) 4.0 (1/8) 3.8 (1/8)
1hoe 74 9 45 108 8.6 (1/9) 5.8 (1/6) 5.0 (2/6)
1ezgA 82 10 52 152 9.6 (8/17) 11.0 (4/13) 9.9 (2/11)
1wkt 88 11 95 124 11.0 (15/16) 5.0 (2/9) 10.2 (8/9)
1fna 91 11 122 133 3.1 (1/7) 2.7 (1/4) 2.9 (1/10)
1who 94 12 145 69 5.5 (1/7) 3.8 (1/7) 3.4 (1/13)
1 tul 102 13 78 144 9.6 (3/11) 3.5 (1/5) 3.4 (1/3)
1sfp 111 14 75 120 7.1 (1/6) 3.7 (1/8) 2.7 (1/9)
2mcm 112 14 71 153 10.0 (1/13) 5.8 (2/9) 5.2 (1/7)
1b2pA 119 15 93 211 11.8 (6/28) 8.3 (4/20) 9.0 (3/13)
1bfg 126 16 168 211 3.5 (1/9) 8.4 (1/11) 2.3 (1/8)
1c3mA 145 18 72 167 10.8 (1/15) 7.6 (1/10) 6.3 (3/12)
1qj8A 148 19 88 262 11.2 (6/9) 7.7 (2/6) 12.3 (1/5)
2i1b 153 19 97 166 6.9 (15/18) 4.9 (2/9) 5.6 (2/8)

�/�

1c8cA 64 8 86 215 7.9 (8/8) 7.1 (5/5) 5.6 (3/6)
1i27A 73 9 72 80 5.6 (4/10) 6.0 (1/5) 4.4 (1/7)
1kp6A 79 10 19 120 9.8 (1/13) 6.4 (1/10) 8.7 (2/6)
1opd 85 11 100 224 10.6 (3/4) 1.7 (1/6) 2.8 (1/5)
1npsA 88 11 100 127 3.6 (1/8) 4.0 (1/9) 2.9 (1/9)
1bm8 99 12 46 135 8.1 (8/13) 5.9 (1/9) 5.3 (1/3)
1t1dA 100 13 101 156 3.7 (1/12) 3.9 (1/6) 2.5 (1/12)
1lkkA 105 13 118 269 4.0 (1/10) 4.7 (2/7) 3.5 (1/12)
1bkf 107 13 96 195 11.0 (1/10) 5.8 (2/7) 5.8 (1/7)
1gnuA 117 15 69 120 9.8 (6/7) 6.1 (2/5) 6.7 (2/7)
1dhn 121 15 135 366 3.3 (1/9) 5.1 (1/9) 3.1 (1/10)
2sak 121 15 40 170 9.2 (3/27) 4.3 (1/8) 6.3 (1/3)
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cluster centroids is 7.7, and the average rank of the best
cluster centroids is 1.7.

When both exact and predicted contact restraints were
used, 48 proteins were folded to an RMSD from native less
than 6.5 Å within the top 5 lowest energy clusters. More
significant improvement is seen in the number of proteins
folded to an RMSD from native below 6.0, 5.0, 4.0, and 3.0 Å.
The average RMSD of the best cluster centroids of 60
proteins is 4.92 Å, which is a 2.2 Å improvement over the
prediction without exact restraints. The individual RMSD
improvement of the prediction with the use of both exact and
predicted restraints for each protein compared to the RMSD
of the prediction with predicted restraints alone is plotted in
Figure 2 according to protein type. Again, the RMSD improve-
ment has a strong correlation to the RMSD of the prediction
without exact restraints, with no correlation to protein
length and only a very weak correlation to protein type (�-
and �/�-proteins are slightly better improved than �-pro-
teins). The average of the total number of clusters is 7.8, and
the average rank of the best cluster centroids is 1.5.

Compared to set I, the difference between the prediction
with both exact and predicted contact restraints, and the
prediction with only predicted contact restraints for set II
is greater; this indicates that the overall quality of the
predicted restraints for this set is not as good as that for
the first set. This is also indicated by the weaker comple-
mentary effect of the exact and predicted contact re-

straints. In 34 out of 60 cases, the prediction with both
exact and predicted contact restraints performed better
than the prediction with either exact or predicted contact
restraints alone. However, this result also demonstrates
that a small number of exact restraints can be very critical.

It is worthwhile to look into the details of the largest
proteins in this set. For the 11 proteins that are larger than
the largest protein in set I (1f4pA, �/�, 147 residues; 2hbg_, �,
147 residues; 1qj8A, �, 148 residues; 1sra_, �, 151 residues;
2i1b_, �, 153 residues; 1nbcA, �/�, 155 residues; 1bd8_, �, 156
residues; 1qstA, �/�, 160 residues; 1fw9A, �/�, 164 residues;
1koe_, �/�, 172 residues; 1amm_, �/�, 174 residues), 4
(1f4pA, 2hbg_, 1nbcA, 1bd8_) were folded to an RMSD from
native less than 6.5 Å with the use of predicted restraints
alone, and an additional 3 (1sra_, 2i1b_, 1qstA) were folded
with the use of both predicted and N/8 exact restraints. There
are still 4 proteins (1qj8A, 1fw9A, 1koe_, and 1amm_) that
could not be folded with N/8 exact restraints. These are large
�- or �/�-proteins having many secondary structure ele-
ments, especially 1amm_ which consist of two domains;
hence, they need more restraints to fold. When we used N/4
exact restraints, all were folded.

Four proteins from this set could not be folded, even with
the use of N/4 exact contact restraints. These were not
necessarily the largest proteins; rather, they possess spe-
cial topologies. 1b2pA (�, 119 residues) is part of a ho-
modimer. It is a 3-�-sheet orthogonal prism made up of 12

TABLE III. (Continued)

ID Na Nexact
b Npred_cont

c Npred_dist
d

Predicted
Onlye Exact Onlyf Exact � Predictedg

1lid 131 16 146 420 2.5 (1/13) 3.6 (1/14) 2.8 (1/10)
1qqhA 144 18 105 128 14.6 (3/10) 11.6 (4/12) 12.0 (1/8)
1f4pA 147 18 176 103 2.8 (1/14) 3.7 (1/3) 2.6 (1/10)
1nbcA 155 19 118 248 5.7 (1/8) 5.2 (2/6) 4.2 (1/7)
1qstA 160 20 216 223 7.7 (2/8) 5.8 (1/8) 4.2 (1/12)
1fw9A 164 21 29 324 12.7 (11/21) 7.7 (1/4) 9.5 (1/8)
1koe 172 22 162 219 14.3 (9/12) 8.1 (3/8) 12.1 (1/9)
1amm 174 22 205 289 10.28 (2/5) 13.2 (8/14) 9.6 (3/7)

Average 7.08 (3.2/10.0) 5.22 (1.7/7.7) 4.92 (1.5/7.8)

RMSD � 6.5 28 (28) 47 (46) 48 (48)
RMSD � 6.0 27 (27) 40 (40) 46 (46)
RMSD � 5.0 21 (21) 32 (32) 35 (35)
RMSD � 4.0 18 (18) 22 (22) 30 (30)
RMSD � 3.0 8 (8) 12 (12) 20 (20)
aN: the number of protein residues.
bNexact: the number of simulated exact long-range sidechain contact restraints.
cNpred_cont: the number of predicted sidechain contact restraints.
dNpred_dist: the number of predicted local distance restraints.
ePredicted only: prediction with use of predicted sidechain contact restraints and predicted local distance restraints.
fExact only: prediction with use of exact sidechain contact restraints and predicted local distance restraints.
gExact � predicted: prediction with use of exact sidechain contact restraints, predicted sidechain contact restraints, and predicted local distance
restraints.
In the sixth through eighth columns, the data are shown as the RMSD of the best cluster centroid (rank of the best cluster centroid/total number of
clusters). The best cluster centroid is the one that has the lowest RMSD from native.
The last five rows list the number of proteins folded with an RMSD from native below 6.5 Å, 6.0 Å, 5.0 Å, 4.0 Å, and 3.0 Å, respectively. The data
are shown as the number of proteins folded to a given RMSD threshold in all clusters (the number of proteins folded to a given RMSD threshold in
top five lowest energy clusters);
RMSD: coordinate root-mean-square deviation for C� atoms in angstrom units.
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strands. 1e6iA (�, 110 residues) forms a complex with a
small peptide ligand. It is a 7-helix up–down bundle.
1ezgA (�, 82 residues) is also part of a homodimer and is a
solenoid made up of 6 �-strands. 1qqhA (�/�, 144 residues)
is a very elongated structure made up of bifurcated and
coiled �-sheets (9 strands) and 3 helices.

In the test sets discussed above, we used randomly
generated, exact sidechain contact restraints. These re-
straints usually distribute over the protein randomly. Yet,
in reality, NOE data do not necessarily distribute over the
protein. They can be limited to part of the protein. To
address this problem, we randomly selected 18 proteins
from set II and considered the case of exact contact
restraints from a randomly selected region of the protein
sidechain contact map. With N/8 exact contact restraints,
TOUCHSTONEX improved the overall RMSD of the best
cluster centroids by an average of 1.2 Å (from an average
RMSD of 7.2 Å decreasing to 6.0 Å). The RMSD of the
protein regions was improved by an average of 1.9 Å (from
an average RMSD of 6.6 Å decreasing to 4.7 Å). This shows
that our folding algorithm does not require that the
restraints be distributed over the protein. Any kind of
exact restraints are helpful.

In these test sets, we used exact restraints (100%
accurate). A practical issue in the NMR structure determi-
nation process is that sometimes bad restraints are encoun-
tered. In the implementation of restraints in our force
field, we allowed a small number of violations of the exact
restraints. Our algorithm can tolerate a small number of
bad restraints. However, the quality of the exact restraints

indeed is very important for our folding algorithm. Too
many bad restraints can ruin the results.

Comparison of Prediction Results for Eight
Proteins with Previously Published Results from
Our Group

Our group has previously published two articles on
folding proteins with the use of a small number of exact
tertiary restraints.8,9 In the first, we used the CAPLUS
model of proteins, and in the second, the SICHO model of
proteins. In those articles, 9 proteins were folded to
moderate resolution with as few as N/7 long-range
sidechain contact restraints. To see how much better we
could do with our current algorithm, we refolded 8 of these
9 proteins with the same set of restraints we used previ-
ously (the data for protein 4fab are missing in the previous
article). For the purpose of direct comparison, in the
folding, we did not use any predicted contact restraints.

The results are clearly better with our new algorithm.
As shown in Table IV, using the same set of restraints, we
folded all proteins with an RMSD that is �0.5–1.7 Å
closer to native. In the previous articles, the algorithms
used the native secondary structure as input. Here, we
used predicted secondary structure. Nevertheless, our
new algorithm still greatly outperformed our previous
algorithms.

The robustness of our new method, TOUCHSTONEX,
comes from the interplay of the protein model, the force
field, and the conformational search engine. Due to the
differences in these aspects between TOUCHSTONEX

Fig. 2. RMSD improvement with the use of N/8 exact long-range sidechain contact restraints and predicted
restraints as a function of the RMSD with the use of only predicted restraints for 60 proteins in set II. RMSD
improvement (Delta RMSD) is the difference in the RMSD of the lowest RMSD cluster centroid from native
between the prediction with predicted restraints and that with both exact and predicted restraints.
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and other approaches reviewed in our Introduction, it is
difficult to identify uniquely the specific basis for the
differences in performance. However, our impression is
that the optimized force field is a key factor to the success
of TOUCHSTONEX.

Structure Prediction of Three Proteins With the
Use of Experimental Restraints

In this section, we describe the application of our
algorithm in three cases in which experimental re-

straints were available. These restraints are slightly
different from the simulated restraints used in the
above test sets. They include not only sidechain contact
restraints but also sidechain–main chain and main
chain–main chain contact restraints. The main chain
assignment can usually be performed during the early
stage of NMR structure determination, before the
sidechain assignment is performed.39 Therefore, utiliz-
ing main chain restraints is very important for rapid
protein structure determination by NMR.

Fig. 3. The C� model of the Z-domain of staphylococcal protein A from experimental restraints
superimposed on the first PDB NMR structure of 2SPZ (native). The C� backbone of the predicted model is
indicated by the dark line, and the C� backbone of 2SPZ, by the light line.

TABLE IV. Comparison of Prediction Results for Eight Proteins With
Previously Published Results

ID Na Type Nexact
b

RMSDc

(CABS)
RMSDd

(SICHO)
RMSDe

(CAPLUS)

2gb1 56 �/� 8 2.8 3.4 3.3
6pti 57 �/� 12 4.4 — 10.0

12 4.8 — 6.2
1ctf 68 �/� 10 2.6 3.2 4.2
1pcy 99 � 46 2.4 3.8 3.5

25 3.3 4.9 5.4
2trxA 108 �/� 30 2.2 3.1 3.4
3fxn 138 �/� 35 2.2 4.1 3.9
1mba 146 � 20 2.7 4.3 5.9
1timA 247 �/� 62 5.0 5.1 —

50 5.2 6.0 —
36 5.3 6.7 —

aN: the number of residues of the protein.
bNexact: the number of simulated, exact, long-range sidechain contact restraints.
cCABS: our new algorithm. The results are from the lowest RMSD cluster centroid from native.
d,eSICHO9 and CAPLUS8: our previously published algorithms.
RMSD: coordinate root-mean-square deviation for the C� atoms in angstrom units.
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Structure prediction of the Z-domain of
staphylococcal protein A

The first protein is the Z-domain of staphylococcal
protein A. The high-resolution NMR structure of this
protein has been solved and deposited in the PDB (PDB
code 2SPZ).40 This protein is a 3-helix bundle with 58
residues (Fig. 3). For the purpose of rapid NMR structure
determination with only HN and methyl assignments, we
generated a list of distance constraints between HN and
methyl proton resonances by AutoStructure. A subset of
long-range constraints was selected and used here for
TOUCHSTONEX analysis.

We filtered the selected experimental constraints ac-
cording to the procedure described in the Materials and
Methods section. The input contact restraints are listed
in Table V(A), together with the number of predicted

local distance restraints and sidechain contact re-
straints. There are 4 experimental long-range sidechain
contact restraints and 3 long-range sidechain–main
chain contact restraints. The folding algorithm gener-
ated 3 clusters in total. Table V(B) lists the number of
structures in each cluster, the topology of the cluster
centroids, and their C� coordinate RMSD and distance
RMSD (dRMSD) to native 2SPZ. The lowest energy
cluster centroid is the mirror image of the native fold.
The second lowest energy cluster centroid has the
correct native fold. These 2 clusters are also the most
populated ones, containing 9931 and 792 structures,
respectively. The third cluster is misfolded and also
much less populated (containing only 8 structures). The
C� model of the second cluster centroid superimposed on
the first PDB NMR model of 2SPZ is shown in Figure 3.

Fig. 4. The C� model of BRCT from experimental restraints superimposed on the first PDB NMR structure
of 1L7B (native). The C� backbone of the predicted model is shown by the dark line, and the C� backbone of
1L7B, by the light line.

TABLE V. Summary of Data for the Z-Domain of Staphylococcal Protein A

A. Restraints for the Z-Domain Obtained From Experimental NOE Data

Type of Restraints Number of Restraints Residue 1 and Residue 2

Experimental restraints Sidechain contact restraints 4 16 34
21 55
22 55
26 55

Sidechain–main chain contact restraints 3 55 21
22 55
55 27

Predicted sidechain contact restraints 71
Predicted local distance restraints 142

B. Prediction Results for the Z-Domain as Compared to the Native Structure 2SPZ

Cluster Number of structures RMSDa DRMSDb Topology

1 9931 8.28 2.52 Mirror
2 792 2.35 1.87 Native
3 8 12.88 11.27 Misfold

aRMSD: coordinate root-mean-square deviation for C� atoms in angstrom units.
bdRMSD: distance root-mean-square deviation for C� atoms in angstrom units.
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The two structures are very similar. Neglecting the
flexible ends, the RMSD to native for residues 8 –55 is
2.4 Å. For comparison, the RMSD of the model generated
without experimental restraints is 3.5 Å from native
2SPZ.

Structure prediction of BRCT

The second protein considered is BRCT. The high-
resolution NMR structure of this protein has been deter-
mined, with the program AutoStructure, and deposited in
the PDB (PDB code 1L7B).37 This protein is larger than
2SPZ and has 92 residues with a two-layer � � � fold (Fig.
4). The list of distance and hydrogen-bonding constraints
was first generated by the initial stage of AutoStructure
analysis. The long-range constraints from peaks of weak–
medium to strong intensity were then selected and filtered
for TOUCHSTONEX analysis, including 6 long-range
sidechain–sidechain contact restraints, 10 long-range

sidechain–main chain contact restraints, 6 long-range
main chain–main chain contact restraints, and 2 long-
range main chain hydrogen-bonding restraints. The re-
straints are listed in Table VI(A).

The restrained folding generated 8 clusters. The over-
all results are listed in Table VI(B). The lowest energy
cluster is the dominant cluster. Its centroid has the
overall topology of 1L7B, with an RMSD of 6.1 Å for
residues 6 –91 (neglecting the flexible ends). The lowest
RMSD centroid came from the second lowest energy
cluster, which has 91 structures. The RMSD to native is
4.5 Å. The C� model of the second cluster centroid
superimposed on the first PDB NMR model of 1L7B is
shown in Figure 4. The two proteins are very similar
except for their flexible ends. The remaining clusters are
all misfolded and much less populated. For comparison,
the folding algorithm could not fold this protein without

TABLE VI. Summary of Data for BRCT

A. Restraints for BRCT Obtained From Experimental NOE Data

Type of Restraints Number of Restraints Residue 1 and Residue 2

Experimental restraints Sidechain contact restraints 6 8 49
11 69
15 27
26 79
49 78
79 86

Sidechain–main chain contact restraints 10 77 8
12 45
27 14
19 51
49 30
60 39
60 47
48 68
84 49
85 70

Main chain–main chain contact restraints 6 13 47
14 48
15 49
48 68
49 69
50 70

Main chain hydrogen-bond restraints 2 14 48
49 69

Predicted sidechain contact restraints 294
Predicted local distance restraints 214

B. Prediction Results for BRCT Compared to the Native Structure 1L7B

Cluster Number of Structures RMSDa DRMSDb Topology

1 12,815 6.13 4.38 Native
2 91 4.49 3.53 Native
3 23 11.39 5.08 Misfold
4 4 10.75 6.09 Misfold
5 8 11.96 5.92 Misfold
6 22 9.47 5.98 Misfold
7 4 12.29 6.17 Misfold
8 4 10.51 7.01 Misfold

aRMSD: coordinate root-mean-square deviation for C� atoms in angstrom units.
bdRMSD: distance root-mean-square deviation for C� atoms in angstrom units.
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any experimental restraints. The lowest RMSD cluster
centroid is 6.8 Å from native.

Structure prediction of MIA

The third protein considered is the 108-residue MIA
protein. The X-ray structure of this protein (106 residues,
without the first and last residues) has been solved and
deposited in the PDB (PDB code: 1I1J41). 1I1J consists of
two extremely similar chains, A and B, with a backbone
RMSD of 0.2 Å. Both are mainly �-proteins and have a
partly open �-barrel topology made up of 7 antiparallel
�-strands (Fig. 5).

The NOE data for MIA were provided by Dr. Peter
Domaille of GeneFormatics, Inc. (San Diego, CA). The data
came from the early stage of NMR structure determination
and contain very few unambiguous restraints. After filter-
ing, we obtained only 2 long-range sidechain contact
restraints, and both involve 1 residue—residue 61. In
addition, we obtained 2 long-range sidechain–main chain
contact restraints and 12 long-range main chain–main
chain contact restraints. These restraints are listed in
Table VII(A). In the absence of any experimental re-
straints, the protein could barely be folded with the use of
only predicted restraints. Excluding the dangling first 4
residues, the lowest RMSD between the cluster centroid
and 1I1J chain A is 6.5 Å. When experimental restraints
were added, the lowest RMSD between the cluster centroid
and 1I1J chain A improved to 5.6 Å. The C� model of this
lowest RMSD cluster centroid and X-ray structure of 1I1J

are superimposed in Figure 5. The model reproduced the
overall topology, even though the secondary structure
prediction was poor; it even reproduced the 30s–40s loop
region with high fidelity. This lowest RMSD cluster is the
lowest energy cluster in a total of 6 clusters generated.
Table VII(B) lists the overall results of all 6 clusters.
Among them, the first 2 lowest energy cluster centroids
have the native fold and are also the most populated,
including 3505 and 6863 structures, respectively. The
second cluster centroid was also folded to a slightly lower
resolution structure, with an RMSD from the 1I1J chain A
of 6.2 Å. The third and fourth clusters were also signifi-
cantly populated, including 2220 and 1391 structures,
respectively. The fourth cluster centroid was the mirror
image of the native fold. The remaining 2 clusters were
misfolded and included very few structures (12 and 4
structures, respectively).

For these three examples, only sparse NOE data were
used, especially for MIA, in which the data came from the
very early stage of the NMR structure determination.
From this limited NOE data, only very few sidechain
contact restraints are generated, far fewer than N/8 (for
Z-domain, N/15; for BRCT, N/15; for MIA, N/54). Aside
from the sidechain contact restraints, a small number of
sidechain–main chain and main chain–main chain contact
restraints (for Z-domain, N/19; for BRCT, N/5; for MIA,
N/8) were also generated. Using a total of N/8, N/4, and N/7
restraints, our folding algorithm was able to improve the
RMSD of the Z-domain, BRCT, and MIA significantly (1.1
Å, 2.3 Å, and 0.9 Å, respectively).

Fig. 5. The C� model of the MIA protein from experimental restraints superimposed with the PDB X-ray
structure of 1I1J chain A (native). The C� backbone of the predicted model is indicated by the dark line, and the
C� backbone of 1I1J chain A, by the light line.
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CONCLUSIONS

In this article, we have demonstrated the utility of using
a small number of long-range contact restraints in protein
structure prediction. Our folding algorithm employs a
lattice-based, reduced protein model that explicitly in-
cludes C�, C�, and sidechain centers of mass. Contact
restraints are incorporated into the scoring function as an
NOE-specific pairwise contact potential. With use of N/8-
simulated exact, long-range sidechain contact restraints
(with N being the number of residues), the accuracy of the
assembled structures has been improved relative to the
prediction without any exact restraints, as verified by the
test case of 125 proteins of various secondary structure
types and lengths up to 174 residues. Of these 125
proteins, 108 were folded (with a lowest RMSD cluster
centroid below 6.5 Å from native)—33 more than that of
the prediction without the use of any exact restraints. The
average RMSD of the lowest RMSD cluster centroids from
native for all 125 proteins (folded and unfolded) is 4.4 Å,
which is 1.6 Å less than that of the prediction without the
use of any exact restraints. Moreover, for the 65 proteins in
the first set, 59 could be folded with the use of as few as
N/12 exact restraints compared to 47 without any exact
restraints. Indeed, a small number of exact restraints can
guide the folding process to reach the native fold and
expand the range of manageable proteins.

We also explored the application of our folding algorithm
to three proteins with limited experimental NOE data.
Using very few experimental sidechain contact restraints
(N/54 to N/15) and a small number of sidechain–main
chain and main chain–main chain contact restraints (N/19
to N/5), all three proteins were folded to low-to-medium
resolution structures. The application of TOUCHSTONEX
to the NMR structure determination process is very prom-
ising, especially in the early stages, when only limited data
are available. Although we have only considered the case
of NMR-derived data here, the algorithm is not limited to
NMR, and other experiments that can provide structural
restraints are equally valuable.
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