
BIOINFORMATICS ORIGINAL PAPER Vol. 21 no. 7 2005, pages 981–987
doi:10.1093/bioinformatics/bti080

Structural bioinformatics

A new approach to prediction of short-range
conformational propensities in proteins
Dominik Gront∗ and Andrzej Kolinski
Faculty of Chemistry, Warsaw University, Pasteura 1, 02-093 Warsaw, Poland

Received on June 8, 2004; revised on September 14, 2004; accepted on October 4, 2004

Advance Access publication October 27, 2004

ABSTRACT
Motivation: Knowledge-based potentials are valuable tools for protein
structure modeling and evaluation of the quality of the structure pre-
diction obtained by a variety of methods. Potentials of such type could
be significantly enhanced by a proper exploitation of the evolutionary
information encoded in related protein sequences. The new poten-
tials could be valuable components of threading algorithms, ab-initio
protein structure prediction, comparative modeling and structure
modeling based on fragmentary experimental data.
Results: A new potential for scoring local protein geometry is
designed and evaluated. The approach is based on the similarity of
short protein fragments measured by an alignment of their sequence
profiles. Sequence specificity of the resulting energy function has
been compared with the specificity of simpler potentials using gap-
less threading and the ability to predict specific geometry of protein
fragments. Significant improvement in threading sensitivity and in the
ability to generate sequence-specific protein-like conformations has
been achieved.
Availability: see: http://www.biocomp.chem.uw.edu.pl
Contact: dgront@chem.uw.edu.pl

INTRODUCTION
A short-range potential means an energy function that evaluates the
probability of a certain local conformation of a protein with a given
sequence of amino acids. Potentials proposed here depend on the
amino acid identities and their sequence context, on the distance
between two Ca atoms and, in some cases, on the predicted sec-
ondary structure. The idea to use the local sequence similarity for
scoring protein structures is not new and has been used in differ-
ent applications. Details vary between particular applications. For
instance, the local sequence similarity could be used as a criterion for
selection of short fragments of structures as building blocks (Simons
et al., 1997) in a fold assembly procedure. It could also be used in
derivation of short-range distance restraints (Skolnick et al., 2003)
to support subsequent threading refinements or restrained ab-initio
folding (Kolinski et al., 2001).

In the present work we provide a systematic derivation of a
set of short-range potentials for protein threading, fold evaluation
and ab-initio algorithms of structure assembly. Results obtained
from various databases (various levels of sequence similarity), with
and without a support of a given or predicted secondary structure

∗To whom correspondence should be addressed.

are compared and the ability of the designed potentials to predict
a precise geometry of short protein fragments is evaluated. The
method is relatively simple and is based on careful analysis of the
sequence–structure relationship that employs profile-to-profile align-
ments (Gribskov et al., 1987). The potentials have a form of energy
histograms and could be easily implemented in various applications.
Of course such potentials are protein dependent. Thus, the detailed
prescription for their derivation is provided and for a number of
example cases the full datasets were made available via our homepage
(http://www.biocomp.chem.uw.edu.pl).

MATERIALS AND METHODS

Input databases
In order to perform the computations described in this work, a custom-
designed database has been prepared. The database contains protein structures
combined with their sequence profiles. Each residue in a protein is described
by its Ca coordinates and by a sequence profile column composed of 20
numbers, defining the probability of each amino acid type occurrence at the
corresponding position in a multiple sequence alignment. The profiles were
generated with PSIBLAST (Altschul et al., 1997) (number of iterations: 7,
cutoff e-value for including the hit into the profile: 1e-7). Two non-redundant
protein structure databases were used. The first one contained proteins with
sequence similarity below 30%, the second one of proteins with sequence
similarity below 90%. Both sets were extracted from PISCES database set
(Wang and Dunbrack, 2003).

The backbone coordinates of some proteins included in the databases are
gapped, i.e. some amino acids are missing. Therefore, the local structural
properties, such as the ri,i+k distances between alpha carbons, were calcu-
lated only for the continuous fragments, i.e. when ri,i+1 = 3.8 ± 0.5 Å for
all residues included in a fragment. In the structural sense this non-broken
subchain has been treated as a separate protein chain. However, the gaps men-
tioned above were not taken into account in the PSIBLAST search—entire
sequences (possibly with some amino acids missing) were used for gener-
ating the sequence profile. Because for short (20 amino acids and shorter)
fragments the PSIBLAST results are not significant, we decided not to use
each separate subchain as an input for PSIBLAST. Gaps existing in the query
sequence may result in gaps in the multiple sequence alignment. The resulting
profile has been cut into fragments to match structural subchains.

Comparison of profiles
Only short fragments of sequence profiles were compared. Their lengths were
fixed and equal L. Depending on the distance range for particular potentials,
the optimal values of L have been found to be equal 17, 18 and 19 for
ri,i+2, ri,i+3 and ri,i+4 distances, respectively. In the simple case, the profile
comparison score can be written as a sum of scores for aligning the related
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columns from profiles 1 and 2:

SP =
L∑

i=1

score(C1,i , C2,i ) (1a)

where Cj ,i is the column corresponding to i-th sequence position in j -th pro-
file. The similarity score for two columns score(C1,i , C2,i ) from two profiles
is defined as follows:

score(C1,i , C2,i ) =
20∑
l=1

20∑
k=1

M(k, l) · C1,i,l · C2,i,k (1b)

where k and l are amino acid types (k, l ∈ {ALA, GLY, etc.}), Cp,i,k is the
probability of the k-th amino acid type occurrence on the i-th position in the
p-th profile. M(k, l) denotes the similarity score for amino acids k and l. We
used the BLOSUM62 similarity matrix.

It has to be noted that the raw score given by formulas (1a) and (1b) is
highly dependent on the fragment length and its amino acid composition.
Therefore, it was normalized in the form of z-score (Panchenko, 2003):

z − SP = SP − <SP>

σ(SP)
(2)

The mean value of the score <SP> and the standard deviation of the score
σ(SP) has to be estimated for all the permutations of the columns in both
profiles. Thus, <SP> stands for an average alignment score for two profiles
with a given length and amino acid composition, no matter what the amino
acid order (column order in profiles) is. Consequently, <SP> was calculated
as follows:

<SP> = 1

L · L

L∑
j=1

L∑
k=1

score(C1,j , C2,k) (3)

σ(SP) was calculated in a similar manner. Due to the non-local scoring we
could not use any of the standard alignment tools such as the local sequence
alignment (Smith and Waterman, 1981). Indeed, the values <SP> and σ(SP)

depend not only on the entire aligned fragment, but also on the amino acids
pair being aligned in a given step of the dynamic programming algorithm.
The present approach required the assumption that L is a constant. As a result
the computational cost was greatly reduced.

Comparison of pairs of sequences
The new short-range potentials proposed in this work heavily rely on the
sequence profiles. However, in order to evaluate the effect of evolutionary
information on the specificity of the designed potentials, the same calculations
(for prediction of the local distances in proteins) have been conducted with
single protein sequences. The scoring formulas were very similar to those for
scoring profiles:

SS =
L∑

i=1

M(s1,i , s2,i ) (4a)

z − SS = SS − <SS>

σ(SS)
(4b)

were sj ,i denotes the i-th amino acid in the j -th sequence. We did not derive
potentials based on the (single) sequence similarity.

Short-range statistical potentials
The general idea of the design of the short-range potential follows our previous
work (Kolinski et al., 1999; Kolinski and Skolnick, 1998). These potentials
were extensively tested in various applications of the reduced protein mod-
els, from comparative modeling to ab-initio folding (Kolinski et al., 1999;
Kolinski and Skolnick, 1998; Boniecki et al., 2003; Kolinski, 2004). For the
reader’s convenience it is briefly outlined below.

Potential functions R13, R14 and R15 have been derived for three types of
short-range distances: between the i-th and (i + 2)-th alpha carbons (called
r13), the i-th and the (i + 3)-th (called r14), and the i-th and the (i + 4)-th
alpha carbons (called r15). (According to the convention assumed in this

Fig. 1. Definitions of the r13 (at the top), r14 and r15 distances (at the bottom
of the picture).

work rij denotes distance and Rij potential corresponding to the rij distance).
Denoting ri as the coordinate vector of the i-th Ca and vi as the unit vector
along the virtual Ca–Ca bond, the distances mentioned above are defined as
follows:

r13i = |ri − ri+2|
r14∗

i = |ri − ri+3| · sign([vi × vi+1] · vi+2)

r15i = |ri − ri+4|
(5)

Statistics for each potential has been generated from a non-redundant struc-
tural database, described above. For the r13 statistics, the histograms
contained 8 bins from 0 to 8 Å, for r14—24 bins from −12 to 12 Å and for r15
16 bins from 0 to 16 Å. The negative values of the r14 distances denote the
left-handed conformations, while the positive ones stand for the right-handed
conformations of the three successive Ca backbone vectors. The geometry
of the 1–3 (two consecutive virtual Ca bonds) fragments has no chirality and
the definition of the chirality of the 1–5 fragments is somewhat ambiguous.
Thus, only the chirality of the 1–4 fragments is treated in the explicit way and
is denoted by the symbol ‘*’ in the abbreviation r14∗

i . Then, the potentials
have been calculated from the histograms as follows:

Ek = − ln

(
ni

n0
+ t

)
(6)

where Ek denotes the value of the potential for the k-th bin of the histogram,
ni is the number of observations for the k-th bin and n0 is the expected number
of observation for the k-th bin. The expected values of the histograms are easy
to calculate:

n0 = N0

k
= 1

k

k∑
i=1

ni (7)

where N0 is the total number of observations for the histogram and k is the
number of bins in the histogram (8, 24 or 16—depending on the potential). In
order to make all the potentials complete, the maximum for all the short-range
interactions has been set equal to an arbitrary value of 2.0 and ascribed to all
empty bins of the distance histogram.

All the potentials depend on the identity of the two amino acids (see
Fig. 1):

(i) The R13 potential for the i-th residue depends on the identity of the
i-th and the (i + 2)-th amino acid.

(ii) The R14 potential for the i-th residue depends on the identity of the
(i + 1)-th and the (i + 2)-th amino acid.
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Short-range conformational propensities in proteins

(iii) The R15 potential for the i-th residue depends on the identity of the
(i + 2)-th and the (i + 4)-th amino acid.

The potentials could be also made specific to the local secondary
structure:

(i) for R13—when amino acids i, i + 1 and i + 2 are helical, then the
fragment is assigned as a helix. When all the three are in a beta sheet,
the fragment is assigned as a beta-type. In all the other cases it is
treated as a coil.

(ii) for R14—when amino acids i, i + 1, i + 2 and i + 3 are helical, then
the fragment is assigned as a helix. When all the four are in a beta
sheet, the fragment is assigned as a beta-type. In all other cases it is
treated as a coil.

(iii) for R15—when amino acids i, i + 1, i + 2, i + 3 and i + 4 are helical,
then the fragment is assigned as a helix When all the five are in a beta
sheet, the fragment is assigned as a beta-type. In all the other cases it
is treated as a coil.

The secondary structure has been assigned by DSSP (Kabsch and Sander,
1983) program assuming the reduced three-letter code. For every type of sec-
ondary structure a separate set of potentials has been derived. Thus, for each
distance type 1200 (20 × 20 × 3) different possibilities exist. Statistics for all
the cases were collected separately and subsequently transformed into poten-
tials. Consequently, the effects of known or predicted secondary structure can
be incorporated into algorithms employing these potentials.

Short-range, protein-dependent (sequence
similarity-based) potentials
The use of sequence profiles instead of sequences greatly improves the sens-
itivity of sequence comparisons. For instance, the assumption that local
structural similarity follows local sequence similarity is employed in sev-
eral secondary structure prediction methods, such as PSIPRED (Jones, 1999)
or PHD (Rost and Sander, 1993).

In the present work the short-range potentials, which have to be derived
separately for each protein sequence, are designed and evaluated. Statistics
accounts only for profiles (of known protein structures) that are locally sim-
ilar to the sequence profile of the query protein (for which the potential is
calculated). Each observation is weighted by the local similarity score. The
details of the procedure for calculation of the R13 potential are given below
as an example.

Let us consider r13 distance between the i-th and the (i + 2)-th residues.
A protein profile fragment of length L, containing the (i + 2)-th amino acid
at its center is compared to all the profile’s fragments in a database. In our
case L = 17, therefore the i-th, (i + 1)-th and the (i + 2)-th residues were at
positions 8, 9 and 10 in the fragment of interest.

To further improve the potentials, the secondary structure information can
be used. A term scoring similarity between the predicted secondary structure
for a query protein and the secondary structure of a protein in the structural
database is added.

z − SPT = z − SP +
L∑

i=1

Si
T (8)

Si
T is the similarity score between the secondary structures of two residues:

Si
T =




−ε when both residues are in E or in H
+ε when one of the residues is in E and the other is in H
0 otherwise

(9)

For the central part of the fragment, i.e. i ∈ [6, 10], ε = 0.16 and 0.08 for the
remaining positions.

For each residue in the query protein (except the nine amino acids frag-
ments at the N-terminus and the C-terminus of the sequence) separate
histograms were generated. Only the observations of r13 distance with z−SPT

(or z−SP) bigger than a threshold value SMIN were included. For each bin in
the histograms, average score (z − SPT or z − SP) was also calculated. Then,

the homology potentials were calculated in a similar fashion as it was done
for the simple statistical potentials. The main difference was that the number
of hits for a bin in a given histogram was weighted by the average profile
similarity score Si for the bin:

Ek = − ln

(
ni · Si

n0
+ t

)
(10)

n0 = N0

k
= 1

k

k∑
i=1

ni · Si (10a)

Sometimes there are none, or very little locally similar profiles for some
regions of the query sequence. In such cases the profile-based potential cannot
be calculated, or the result would be irrelevant. Therefore, the profile-based
potentials have been determined only in these cases where the number of hits
in the histogram (denoted in the formulas written above as N0) was higher
than a certain threshold value NMIN. Proper entries from the corresponding
simple statistical potentials were used for the remaining positions along the
sequence. Proper means the same database (PDB90 or PDB30) and the same
level of the secondary structure information used in the derivation process.

Potential for scoring r14∗ and r15 distances have been derived in an analog-
ous fashion. After optimization based on the gapless threading test described
below, the best values of the cut-off parameters were found. In case where
the secondary structure-based scoring was not applied SMIN = 1.0, other-
wise SMIN = 1.5. In all cases NMIN = 5.0. Five observations per histogram
may appear to be too small. However, it should be noted that in case of our
profile-based potentials all observations fall into one or at most into two bins.

Gapless threading procedure
In order to calculate the gapless threading (Sippl and Weitckus, 1992) score
for a pair of proteins, the shorter one has been thread within the longer. For
each relative position of the first protein in the second protein the short-range
energy of the first sequence in the structure of the second protein has been
calculated, as well as the energy of the second sequence in the first structure.
A minimum energy has been reported for each ‘sequence–structure’ pair. Let
Ei,j denote the energy for the i-th sequence and the j -th structure. Then the
mean z-score for threading of the sequence through all the structures from
the test set is calculated as follows:

z = 1

N

N∑
k=1

Ek,k − <Ek,i>i

σ (Ek,i )i
(11)

where < Ek,i >i is the average energy calculated for the k-th sequence in all
the structures. The mean z-score for threading of all the sequences through a
structure is calculated in a similar manner:

z = 1

N

N∑
k=1

Ek,k − <Ei,k>i

σ (Ei,k)i
(12)

The set of proteins used for the gapless-threading test contained only the
continuous-chain proteins from the PDB30 database (N = 1308 structures).
Each protein from the set has been thread through all the remaining proteins
except of those longer (or shorter) by 80 amino acids or more than the query
sequence.

RESULTS

Dependence between the local sequence similarity and
the local structure similarity
For a pair of proteins from the database PDB30 every sequence frag-
ment from the first protein has been compared with every fragment
from the second protein. Due to the low-sequence similarity in the
database none of the proteins was compared to its close homologues.
For all possible pairs of sequence windows, z − SS, z − SP, and dif-
ference between r13 distances in the two structural fragments were
calculated.
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Fig. 2. Correlation between the z−SS score and the r13 error for the sequence
comparisons.

Fig. 3. Correlation between the z−SS score and the r13 error for the profile–
profile comparison.

The collected statistics can be illustrated in a form of a two-
dimensional histogram. Figure 2 shows the number of counts for
a given z−SS score and the absolute value of the difference between
the r13 values in the compared sequences. The difference between
the r13 measures the error of the prediction. In Figure 3 a similar
statistics for the case of local profile-based comparison is presented.
In both cases a score below 1.4 is not statistically significant—
any values of the r13 error in the range of 0–2.5 Å are almost
equally probable. Comparison of Figure 2 and Figure 3 shows that
the use of the sequence profiles (in contrast to sequences alone)
leads to a significant fraction of the high scoring hits, with a very
low error of the r13 predictions. Histograms for r14 and r15 dis-
tances look very similar to those for r13. It is clear that the value
of the local profile similarity score higher than a certain threshold
value usually implies a significant local structure similarity. Much
larger number of the high scoring (and structurally very similar)
fragments was detected using the profile-based approach. Thus,
it is expected that the homology potentials should be much more
specific.

Table 1. Homology potentials do not cover the whole protein

% All % H % E % C

PDB30
Without secondary structure 14.6 14.3 16.3 13.9
With secondary structure 68 91 85.1 22.2

PDB90
Without secondary structure 37.9 36.6 42.1 36.8
With secondary structure 76.7 92.8 89.4 54.8

The data indicate the percentage of residues, for which homology R13 potential were
successfully derived: as an average on the entire sequences (column % All), on the
helical residues (column % H), on the residues in beta-sheets (column % E) and on the
coil residues (% C).

Table 2. Average percentages of the residues having the native distances in
the global minimum of the R13 potential

% Correctly assigned bins for
All Helical Residues Residues
residues residues in beta-sheet in coil

PDB30
Without secondary structure 74.7 88.0 66.5 67.6
With secondary structure 82.3 95.5 71.3 70.4

PDB90
Without secondary structure 85.6 93.7 80.6 81.4
With secondary structure 84.5 95.4 73.8 77.8

Values were calculated for entire proteins (column % All) and for each type of the
secondary structure: helix, beta-sheet and coil, in % H, % E and % C table columns,
respectively.

Summary of the profile-based potentials
In order to asses the influence of different factors on the quality of the
derived potentials several variants of R13, R14 and R15 potentials
were calculated. The set of test proteins contained only non-broken
protein chains from the PDB30 and PDB90 databases.

In order to asses the quality of potentials computed from the data
which lack homology relationship with the query sequence, we used
the PDB30 set (non-broken proteins and fragments, see ‘Input data-
bases’ for details). The query protein was always removed from
the source set. These (low-homology) potentials are addressed to
ab-initio simulations.

On the contrary, for many sequences, there are many homologous
proteins with already known structures. To model this case, we used
the PDB90 as a source dataset.

When the secondary structure information is ignored, the profile-
based potentials cover 14.6% of all the residues (the fraction of
statistically significant hits), when derived from the PDB30 data-
base, and 37.9% when derived from the PDB90 database. When the
secondary structure information is included, this ratio raises to 68
and 76.7%, respectively. Detailed comparison of the results is given
in Tables 1 and 2.

All calculations described above were conducted with known
secondary structure assigned by DSSP. In order to check how the
predicted secondary structure influences our potentials we repeated
the threading test (threading trough all structures from the PDB30
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set) for a set of 37 proteins randomly selected from the PDB30 data-
base. PSIPRED (Jones, 1999) was used as a tool for the secondary
structure prediction.

Simple statistical potentials derived from both PDB30 and PDB90
datasets were used as the reference baseline in the evaluation of
the profile-based potentials. Gapless threading tests were used for
this purpose. Prior the proper tests threading was also used as a
tool for optimization of the algorithm’s parameters L, NMIN and
SMIN. Table 3 contains a summary of the evaluation of the relative
performance of various potentials.

The z-scores for the simple statistical potentials appear to be very
low. Nevertheless, these potentials (and similar potentials) perform
very well in ab initio folding simulations and in threading calcu-
lations. The explanation is that the local conformational stiffness
of polypeptide chains and formation of the secondary structure are
cooperative phenomena. Thus, the specificity for larger fragments of
the sequence could be significantly higher than it might be expec-
ted from the separated entries of the potential. The z-scores for
the profile-based potentials are much higher implying a higher spe-
cificity. The predicted secondary structure information is almost as
good as the exact secondary structure in augmenting the quality of the
potentials. Simple tests based on the prediction of the local distances
(see Fig. 4) show also a qualitative superiority of the profile-based
approach. We expect that the potentials provided here will become a
valuable tool for protein structure prediction.

Test of the profile-based short-range potential in the
ab-initio loop modeling
The simple statistical potentials (employed here as a baseline for
evaluation of the quality of the profile-based potentials) were used
previously in various applications of protein modeling with a reduced
representation of conformational space. It has been shown that the
reduced models with knowledge-based force field (where the stat-
istical potentials of the short-range interactions were their essential
components) allow much more accurate modeling of protein frag-
ments (or loops) than it is possible with more standard tools of
molecular modeling (Boniecki et al., 2003; Kolinski, 2004). This
way a range of applicability of comparative modeling could be sig-
nificantly expanded. Recently, we used these statistical potentials for
a well-controlled test of applicability of reduced models in loop mod-
eling (Kolinski, 2004), demonstrating very good geometrical fidelity
of the resulting models. The results were compared with a very sim-
ilar test of comparative modeling done recently by Fiser and Sali
(2003) for the new version of MODELLER. Here the same experi-
ment is repeated using the profile-based potentials instead the simple
statistical ones. All other conditions of the computational experiment
are exactly the same as in our previous work, i.e. the same are: the test
set of proteins, simulation technique and the remaining components
of the force field.

The test set contains five small globular proteins of various struc-
tural classes. Using the PDB structures we made the DSSP assign-
ments of their secondary structure. Regular elements of the secondary
structure (helices—H and the extended fragments of β-sheets—E)
were assumed to be a template for the loop modeling. Remaining
portions of the structures were treated as unknown. Random starting
conformations of the loops have been generated in the same fashion
as in the previously performed experiment with the simple statist-
ical potential of the short-range interactions. The loop optimization
has been done using the CABS-reduced representation (Boniecki

a

0 -1.2 -2.4

b

0

5

2.5

0

5

2.5

Fig. 4. Dependence between the local energy, calculated for five-residue
fragments and dRMSD from native: (a) the statistical potential, (b) the
profile-based potential. In both cases the potentials were derived with known
secondary structure from PDB90 database. The gray scale is proportional to
the number of counts.

et al., 2003; Kolinski, 2004) and the Replica Exchange Monte Carlo
sampling protocol. Entire structures were optimized, although the
core (or template) part was kept near the starting conformation by a
set of strong native-like distance restraints. The lowest energy struc-
tures were selected for the final evaluation. The details of the CABS
model, its force field and the sampling details could be found in our
recent publications (Boniecki et al., 2003; Kolinski, 2004).

The results of the loop modeling are compared in Table 4. The
data from the previous work are given in the parentheses. Clearly,
the structures generated with the help of the profile-based short-
range potentials are consistently more accurate. In two cases (2fdx
and 2gb1) the improvement in the model quality was of a qualitative
character. Thus it has been demonstrated that the new potentials
have higher predictive power not only for the regular fragments
of protein structures but they also improve the loop predictions.
In all cases the conservative PDB30 versions of the potentials
were used. Obviously, the PDB90 potentials can only be more
accurate.

CONCLUSION
We derived and compared various short-range interaction potentials
using multiple sequence alignments to identify related proteins and
then profile–profile local alignments to score sequence to structure
compatibility of short fragments. Geometry of these fragments was
described as a set of short-range distances between the alpha car-
bons and the resulting statistical potentials were stored in a form
of energy histograms. The potentials were tested in the context
of gapless threading, in the ability to predict geometry of short
fragments of protein backbone and in a conservative test of its
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Table 3. Comparison between the profile-based and the simple statistical potentials in the gapless threading test

Potential type PDB set Secondary Z-scorea Top 1b Top 10c

structure Sequence Structure Sequence Structure Sequence Structure

(a) 30 N 2.05 0.32 0.31 0.02 0.49 0.13
Simple statistical 90 N 2.04 0.33 0.31 0.02 0.49 0.13

30 P 2.96 2.22 0.68 0.50 0.87 0.77
90 P 2.96 2.23 0.67 0.51 0.87 0.77
30 Y 3.57 2.71 0.80 0.66 0.95 0.84
90 Y 3.57 2.72 0.80 0.66 0.95 0.84

Homology (profile-based) 30 N 1.63 0.82 0.46 0.12 0.61 0.28
90 N 2.82 2.46 0.79 0.56 0.90 0.73
30 P 3.85 3.48 0.85 0.75 0.95 0.90
90 P 3.90 3.76 0.91 0.86 0.95 0.91
30 Y 4.08 3.30 0.85 0.74 0.97 0.89
90 Y 3.91 3.87 0.80 0.74 0.88 0.89

(b) 30 N 2.30 0.28 0.35 0.01 0.53 0.10
Simple statistical 90 N 2.27 0.28 0.34 0.01 0.52 0.10

30 P 3.50 1.53 0.67 0.24 0.89 0.52
90 P 3.33 1.54 0.68 0.26 0.89 0.53
30 Y 4.05 1.96 0.77 0.37 0.93 0.63
90 Y 4.04 1.96 0.76 0.37 0.93 0.63

Homology (profile-based) 30 N 1.29 0.50 0.36 0.04 0.55 0.16
90 N 1.88 1.83 0.66 0.31 0.83 0.50
30 P 3.86 2.69 0.79 0.56 0.93 0.80
90 P 3.77 3.00 0.80 0.63 0.94 0.84
30 Y 4.12 2.79 0.79 0.55 0.93 0.77
90 Y 4.64 3.86 0.86 0.82 0.92 0.86

(c) 30 N 3.92 0.97 0.59 0.03 0.71 0.14
Simple statistical 90 N 3.88 0.99 0.58 0.04 0.77 0.26

30 P 3.50 3.13 0.76 0.60 0.91 0.84
90 P 3.49 3.14 0.76 0.60 0.91 0.84
30 Y 3.94 3.60 0.83 0.70 0.96 0.88
90 Y 3.93 3.60 0.82 0.70 0.96 0.89

Homology (profile-based) 30 N 1.93 1.64 0.62 0.13 0.80 0.40
90 N 5.43 2.57 0.89 0.61 0.95 0.81
30 P 5.38 4.88 0.94 0.83 0.98 0.96
90 P 5.32 6.30 0.94 0.85 0.98 0.96
30 Y 4.55 4.08 0.84 0.72 0.96 0.87
90 Y 6.75 6.53 0.94 0.84 0.96 0.92

(d) 30 N 3.64 0.53 0.55 0.02 0.14 0.71
Simple statistical 90 N 3.60 0.53 0.55 0.02 0.15 0.71

30 P 3.53 2.37 0.76 0.50 0.93 0.78
90 P 3.54 2.38 0.76 0.51 0.93 0.79
30 Y 4.07 2.91 0.85 0.66 0.86 0.97
90 Y 4.06 2.91 0.85 0.66 0.86 0.97

Homology (profile-based) 30 N 1.86 0.97 0.60 0.08 0.27 0.75
90 N 3.42 2.42 0.87 0.52 0.73 0.95
30 P 4.65 3.34 0.85 0.75 0.95 0.90
90 P 4.58 4.72 0.91 0.81 0.97 0.95
30 Y 4.50 3.62 0.87 0.74 0.96 0.88
90 Y 5.62 5.17 0.92 0.82 0.95 0.90

The data show the results for R13 (a), for R14 (b), for R15 (c), and for all potentials combined together (d). Eight kinds of potentials have been tested: profile-based and simple-
statistical, with and without secondary structure information, derived from PDB90 or PDB30 database.
az-score calculated in the gapless threading of all structures through a sequence (column ‘sequence’), all sequences through a structure (column ‘structure’).
b‘Top 1’ shows the ratio of native sequences selected as the highest scoring from all the sequences used in threading sequences through a structure (column ‘sequence’) and the ratio
of native structures selected as the best structure (column ‘structure’).
c‘Top 10’ is analogous to ‘Top 1’, but shows the ratio of native structures or sequences found among ten best scoring.
N, secondary structure not used; P, predicted secondary structure; Y, known secondary structure (DSSP).
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Table 4. Comparison of the performance of the sequence similarity-based
potential with the simple statistical potentials in the loop modeling of globular
proteins

Name Type N NL Nmax cRMSD (Å)
All Core Loops

1ten β 89 41 7 1.62 (1.67) 0.53 (0.54) 2.18 (2.28)
256B α 106 22 7 1.19 (1.28) 0.40 (0.42) 2.13 (2.32)
2fdx α/β 138 50 6 1.12 (1.58) 0.44 (0.49) 1.60 (2.17)
2gb1 α + β 56 21 6 0.88 (1.21) 0.53 (0.57) 1.26 (1.69)
4mba α 146 34 8 1.25 (1.34) 0.60 (0.60) 2.17 (2.45)

N, protein length (number of residues); NL, total number of the loop residues, Nmax,
the length of the longest loop; cRMSD, coordinate root mean square deviation from the
native structure after the best superimposition; all, cRMSD for entire model after the best
superimposition with the crystallographic structure; core, cRMSD for the core part of
the model after best superimposition of the core; loops, cRMSD for the all loop residues
of the model after best superimposition of the core structure. The data from the previous
experiments with the simple statistical potentials are given in parentheses.

application to comparative modeling. It has been demonstrated
that a higher level of sequence similarity in the structural database
as well as known (or predicted) secondary structure increase the
specificity and sensitivity of the potentials. Interestingly, the new
potentials work well also in the loop regions of protein structures.
Example data for a set of proteins are available on our homepage
(http://www.biocomp.chem.uw.edu.pl). The algorithms for deriva-
tion of the potentials for large sets of proteins are available upon
request. Future applications of the new potentials include refinement
of the threading alignments, homology modeling with reduced rep-
resentation of the protein conformational space and ab initio structure
prediction for globular proteins.
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